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Sokolovská 83, 186 75 Praha 8, Czech Republic

E-mail: pick@karlin.mff.cuni.cz, slavikova@karlin.mff.cuni.cz

Abstract. We survey results from the paper [CPS] in which we developed a new sharp iteration
method and applied it to show that the optimal Sobolev embeddings of any order can be derived
from isoperimetric inequalities. We prove thereby that the well-known link between first-order
Sobolev embeddings and isoperimetric inequalities translates to embeddings of any order, a fact
that had not been known before. We show a general reduction principle that reduces Sobolev
type inequalities of any order involving arbitrary rearrangement-invariant norms on open sets
in Rn, possibly endowed with a measure density and satisfying an isoperimetric inequality of
fairly general type, to considerably simpler one-dimensional inequalities for suitable integral op-
erators depending on the isoperimetric function of the relevant sets. As a direct application of
the reduction principle we determine the optimal target space in the relevant Sobolev embed-
dings both in standard and in non-standard classes of function spaces and underlying measure
spaces. In particular, the results apply to any-order Sobolev embedding on regular (John) do-
mains, on Maz’ya classes of (possibly irregular) Euclidean domains described in terms of their
isoperimetric function, and on families of product probability spaces, of which the Gauss space
and the exponential measure space are classical instances.
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1. Introduction. Sobolev spaces are certain specific Banach spaces containing weakly
differentiable functions of several variables that arise in connection with problems in
mathematical physics and PDEs. Their key importance for solving such problems has
been known since about late 1930’s, when the first contribution of S. L. Sobolev to their
study appeared ([So2]). Sobolev spaces constitute an indispensable tool in applications,
but they are also interesting on their own, as a very particular mathematical structure
with unique properties. There is a vast literature available nowadays on Sobolev spaces,
including monographs [RAA, AF, Ma3, Ma4, KJF] and more.

The most important feature of Sobolev spaces is how they embed into other function
spaces. The primary role is played by Lebesgue spaces but there are other function spaces
which are also of interest. Sometimes the class of Lebesgue spaces is not rich enough to
enable one to describe all the important characteristics in a satisfactory way, and in such
situations other function spaces come handy. Depending on the nature of the problem,
the first call then usually goes either for Orlicz spaces or for Lorentz spaces. Orlicz spaces
present a convenient replacement for Lebesgue spaces especially in cases when certain
limiting growth of functions involved is needed, either more rapid or more slow than the
power functions can offer. Lorentz spaces and their likes, on the other hand, turn out to
be a very precise tool for fine-tuning and tightening of the results.

The central question behind the Sobolev spaces reads as follows. Given an information
about the gradient of a scalar function of several real variables, what can we say about
the function itself? For example, if the gradient belongs to certain Lebesgue space, will
the function itself belong to the same space? Or to a different Lebesgue space? And, if
there are more possibilities, which of these spaces gives the strongest result? The answer
is usually formulated in form of some Sobolev inequality or Sobolev embedding.

For example, let Ω be a bounded domain in Rn, n ≥ 2, having a Lipschitz boundary.
The most classical form of the Sobolev inequality concerns Lebesgue spaces. It asserts
that, given 1 ≤ p < n and setting p∗ = np

n−p , there exists C > 0 such that(∫
Ω
|u(x)|p

∗
dx

)1/p∗

≤ C
(∫

Ω

(
|(∇u)(x)|p + |u(x)|p

)
dx

)1/p

for every weakly-differentiable function u for which the right hand side is finite. (Here and
throughout, C denotes a constant independent of important quantities, not necessarily
the same at each occurrence.)

It is useful to restate the Sobolev inequality in the form of certain specific relation
between function spaces. Given two normed linear spaces X(Ω) and Y (Ω) which both are
subsets of the set of all Lebesgue-measurable real-valued functions defined on Ω, we say
that X(Ω) is (continuously) embedded into Y (Ω) if X(Ω) ⊂ Y (Ω) in the set-theoretical
sense and, moreover, the identity operator is continuous from X(Ω) into Y (Ω), that is,
there exists a positive constant C such that for every u ∈ X(Ω) one has ‖u‖Y (Ω) ≤
C‖u‖X(Ω). We shall write X(Ω)→ Y (Ω) to denote that X(Ω) is embedded into Y (Ω).

Given p ∈ [1,∞), we define the Sobolev space W 1,p(Ω) as the collection of all weakly-
differentiable real-valued functions u on Ω such that u ∈ Lp(Ω) and |∇u| ∈ Lp(Ω), where
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∇u is the weak gradient of u. It can be shown that the set W 1,p(Ω), endowed with the
norm

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω),

is a Banach space. We also introduce the Sobolev space of functions vanishing at the
boundary of Ω, namely W 1,p

0 (Ω) as the closure of C∞0 (Ω) (the functions having derivatives
of all orders and a compact support in Ω) in W 1,p(Ω).

The above Sobolev inequality thus translates to an embedding between function
spaces, namely

W 1,p(Ω)→ Lp
∗
(Ω), 1 ≤ p < n. (1)

The relation (1) is called the Sobolev embedding. The space Lp(Ω) will be considered as
the domain space, while the space Lp∗ will be considered as the range (or target) space in
the Sobolev embedding. We shall also say that the Sobolev space W 1,p(Ω) is built upon
the Lebesgue space Lp(Ω).

The main object of our study will be the question of how sharp (or optimal) is the range
space in the Sobolev embedding. By calling the target function space in an embedding
“sharp” within some category we mean that this space cannot be replaced by an essentially
smaller space from the same category without violating the embedding.

We study the sharpness (or optimality) in the context of the so-called rearrangement-
invariant spaces (or r.i. spaces for short). The key ingredient in the investigation of
optimality of a given function space is the reduction principle, a result that enables one
to reduce a Sobolev embedding to a considerably simpler one-dimensional inequality.

A typical example of the reduction principle is the following result (see [Ci1] for the
case of Orlicz spaces, and [EKP] for the general case). If Ω is a Lipschitz domain in Rn
and X(Ω), Y (Ω) are r.i. spaces, then the first-order Sobolev embedding

V 1X(Ω)→ Y (Ω) (2)

holds if and only if the inequality∥∥∥∥∫ 1

t

f(s)s−1+1/n ds

∥∥∥∥
Y (0,1)

≤ C‖f‖X(0,1) (3)

holds for some constant C and every nonnegative f ∈ X(0, 1). (Here the spaces X(0, 1),
Y (0, 1) are the representation spaces of X(Ω), Y (Ω).)

A procedure which is by now standard (see [EKP, KP]) enables us to use the reduction
theorem to carry out a construction of the optimal range partner for a given fixed domain
space in the Sobolev embedding. In the case of the Lipschitz domain, this result reads as
follows. Given an r.i. spaceX(Ω), define the space Y ′(Ω) as the collection of all measurable
functions u on Ω such that

‖u‖Y ′(Ω) =
∥∥∥∥t1/n−1

∫ t

0
u∗(s) ds

∥∥∥∥
X′(0,1)

<∞,

where X ′(0, 1) is the associate space to X(0, 1). Then the space Y (Ω), whose associate
space is Y ′(Ω), is the desired optimal range partner for X(Ω). The space Y (Ω) can be
evaluated explicitly in customary situations. For example, if X(Ω) is the Lebesgue space
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Lp(Ω), then the above procedure yields Y (Ω) = Lp
∗,p(Ω), a two-parameter Lorentz space.

This means that the Sobolev embedding

W 1,p(Ω)→ Lp
∗,p(Ω) (4)

holds, and the range space is optimal in the sense that whenever Z(Ω) is a rearrangement-
invariant space such that

W 1,p(Ω)→ Z(Ω),

then, necessarily, Lp∗,p(Ω)→ Z(Ω). Of course one has, in particular, Lp∗,p(Ω)→ Lp
∗(Ω),

and this embedding is strict, so (4) indeed is a nontrivial improvement of (1).
It turns out that the Lipschitz property of the underlying domain Ω is not necessary

for such results. Both the reduction principle and the optimal range construction work
with no changes when Ω is only required that its isoperimetric function IΩ(s) satisfies

IΩ(s) ≈ s1/n′ (5)
near 0, where n′ = n

n−1 . This condition is fulfilled in the class of the so-called John
domains, which are more general than the Lipschitz ones. (Here, and in what follows,
the notation ≈ means that the two sides are bounded by each other up to multiplicative
constants.)

Some specific problems however entail a further generalization of the underlying do-
main. The study of elliptic PDEs with degenerating coefficients require underlying do-
mains, whose isoperimetric function decays to 0 faster than in (5). The study of gener-
alized hypercontractivity theory and integrability properties of the associated heat semi-
groups entails one to investigate Sobolev embeddings on Rn, n ≥ 1, endowed with some
probability measures, of which the Gaussian measure and the exponential measure are
typical examples.

The intimate connection of Sobolev spaces to isoperimetric inequalities was first ob-
served by Maz’ya [Ma1, Ma2], who proved that quite general Sobolev inequalities are
equivalent to either isoperimetric or isocapacitary inequalities. Before the two problems
had been investigated separately, by Sobolev ([So1, So2]), Gagliardo ([Ga]) and Niren-
berg ([Ni]) on the one hand, and by De Giorgi ([DeG]) on the other. Independently,
Federer and Fleming [FF] also exploited De Giorgi’s isoperimetric inequality to exhibit
the best constant in the special case of the Sobolev inequality for functions whose gra-
dient is integrable with power 1 in Rn via De Giorgi’s isoperimetric inequality. These
advances paved the way to an extensive research, along diverse directions, on the in-
terplay between isoperimetric and Sobolev inequalities, and to a number of remarkable
applications, e.g. by Moser [Mo], Talenti [Ta], Aubin [Au], or Brezis and Lieb [BrL].
The contributions to this field now constitute the corpus of a vast literature, which
includes the papers [AFT, BCR1, BWW, BH, BoL, BK1, BK2, CK, Che, Ci1, Ci2,
CP, EKP, Gr, HK, HS1, HS2, KM, Kl, Ko, LPT, LYZ, Mi, Zh] and the monographs
[BZ, CDPT, Cha, He, Ma3, Sa].

The approach to Sobolev embeddings via isoperimetric inequalities has some consid-
erable advantages. First it covers a fairly broad range of situations, including Lipschitz
domains, John domains, Maz’ya domains, probability measure spaces, and more. Second,
it typically leads to sharp results. The drawback is that the existing literature is often re-
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stricted to the first-order derivatives, except perhaps for a very few quite specific instances
while many important problems require higher order of the derivatives involved. This is
mainly caused by the techniques used such as truncation, symmetrization, Pólya–Szegö
principles etc., which do not allow a direct generalization to the higher-order case. Alter-
native methods which can be employed to handle higher-order Sobolev inequalities such
as representation formulas, potential estimates, Fourier transforms or atomic decompo-
sition are not flexible enough to provide us with optimal results in sufficient generality.

Recently, in [CPS], we adopted a new approach which shows that in fact isoperimetric
inequalities do imply optimal higher-order Sobolev embeddings in a very general frame-
work. Moreover, we employ Sobolev-type spaces built upon any rearrangement-invariant
Banach function spaces. The central ingredient of our approach is the combination of
the first-order reduction principle with an iteration method, which is sharp enough to
produce optimal higher-order reduction principles from the first-order ones. As a conse-
quence, optimal results within the class of rearrangement-invariant spaces are obtained
for Sobolev embeddings of any order. More precisely, we can characterize the best possible
target for arbitrary-order Sobolev embeddings, in the class of all rearrangement-invariant
Banach function spaces. A key step of the method is the development of a sharp iteration
method involving subsequent applications of optimal Sobolev embeddings. We consider
this method of independent interest for its possible use in different problems.

Let Ω be a domain in Rn, n ≥ 1, equipped with a finite measure ν which is absolutely
continuous with respect to the Lebesgue measure, with density ω. Namely, dν(x) =
ω(x) dx, where ω is a Borel function such that ω(x) > 0 a.e. in Ω. We assume, for
simplicity, that ν(Ω) = 1. The basic case when ν is the Lebesgue measure will be referred
to as Euclidean. Sobolev embeddings of arbitrary order for functions defined in Ω, with
unconstrained values on ∂Ω, will be considered.

The isoperimetric function IΩ,ν is precisely known only in some rather rare situations.
This is so e.g. when Ω is an Euclidean ball [Ma3] or when it is the entire Rn equipped
with the Gauss measure [Bor]. For our purpose, however, only the asymptotic behavior
of IΩ,ν near 0 is needed, and that can be evaluated for various classes of domains, for
example for Lipschitz domains, John domains or for the space Rn equipped with product
probability measures.

Let m ∈ N and let X(Ω, ν) be a rearrangement-invariant space. We define the m-th
order Sobolev space V mX(Ω, ν) as

V mX(Ω, ν) =
{
u : u is m-times weakly differentiable in Ω, and |∇mu| ∈ X(Ω, ν)

}
. (6)

We also define the subspace V m⊥ X(Ω, ν) of V mX(Ω, ν) as

V m⊥ X(Ω, ν) =
{
u ∈ V mX(Ω, ν) :

∫
Ω
∇ku dν(x) = 0 for k = 0, . . . ,m− 1

}
. (7)

Here,∇mu denotes the vector of all m-th order weak derivatives of u. Let us notice that in
the definition of V mX(Ω, ν) it is only required that the derivatives of the highest order m
of u belong to X(Ω, ν). This assumption does not entail, in general, that also u and its
derivatives up to the order m− 1 belong to X(Ω, ν), and even to L1(Ω, ν). Thus, it may
happen that V mX(Ω, ν) * V kX(Ω, ν) for m > k.
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As already mentioned, our approach to reduction principles for higher-order Sobolev
embeddings relies on the iteration of first-order results. A natural worry here is of course
the question of whether optimality is preserved under iteration. Examples show that
when optimality is considered within standard families of function spaces, this is not
necessarily so, even in the basic setting of Euclidean domains with Lipschitz boundaries.
For instance, for a regular domain Ω in R2, one has

V 2L1(Ω)→ L∞(Ω). (8)

On the other hand, iteration of two consequent first-order Sobolev embeddings, optimal
within Lebesgue spaces, only gives

V 2L1(Ω)→ V 1L2(Ω)→ Lq(Ω) (9)

for every q < ∞. The space V 1L2(Ω) contains unbounded functions, hence there must
be a loss of information in the iteration process.

One might relate the loss of optimality in the chain of embeddings (9) to the lack of
an optimal Lebesgue target space for the first-order Sobolev embedding of V 1L2(Ω) when
n = 2. However, similar loss can happen in situations where the optimal first-order target
spaces do exist. Consider, for example, Euclidean Sobolev embeddings involving Orlicz
spaces. In this setting the optimal target space always exists, and it can be explicitly
determined [Ci1, Ci4]. Indeed, if Ω is a regular domain in Rn and 1 ≤ m < n, then

V mLn/m(Ω)→ expLn/(n−m)(Ω) (10)

[Yu, Po, St]; see also [Tr] for m = 1. Here, expLα(Ω), with α > 0, denotes the Orlicz
space associated with the Young function given by et

α − 1 for t ≥ 0. The target space
in (10) is known to be optimal in the class of all Orlicz spaces [Ci1, Ci4]. Assume, for
example, that n ≥ 3 and m = 2. Then (10) reduces to

V 2Ln/2(Ω)→ expLn/(n−2)(Ω). (11)

However, iterating first-order embeddings, optimal in Orlicz spaces, one gets only

V 2Ln/2(Ω)→ V 1Ln(Ω)→ expLn/(n−1)(Ω) % expLn/(n−2)(Ω). (12)

Thus, subsequent applications of first-order optimal Sobolev embeddings even in the class
of Orlicz spaces, where optimal target space always exists, need not result in optimal
higher-order Sobolev embeddings.

The underlying idea behind the method that we shall develop is that such a loss of
optimality of the target space under iteration does not occur, provided that first-order (in
fact, any-order) Sobolev embeddings whose targets are optimal among all rearrangement-
invariant spaces are iterated. We thus proceed via a two-step argument, which can be
outlined as follows. Firstly, given any r.i. space X(Ω, ν) and the isoperimetric function
IΩ,ν of (Ω, ν), the optimal target among all rearrangement-invariant function norms for
the first-order Sobolev space V 1X(Ω, ν) is characterized; secondly, first-order Sobolev
embeddings with an optimal target are iterated to derive optimal targets in arbitrary-
order Sobolev embeddings.
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Returning back to our examples, we may recall that the optimal r.i. range partner
for V 1L1(Ω) is not the Lebesgue space L2(Ω) but the (essentially smaller) Lorentz space
L2,1(Ω), and then we get

V 2L1(Ω)→ V 1L2,1(Ω)→ L∞(Ω), (13)

with no loss of information or optimality. Similarly, iterating the (optimal) embeddings

V 1Ln/2(Ω)→ V 1Ln,n/2(Ω) and V 1Ln,n/2(Ω)→ L∞,n/2;−1(Ω),

where L∞,n/2;−1(Ω) is the so-called Lorentz–Zygmund space, we get

V 2L1(Ω)→ L∞,n/2;−1(Ω),

which, thanks to the (strict) embedding L∞,n/2;−1(Ω)→ expLn/(n−2)(Ω) is even better
result than (11), we see that, again, no information has been lost.

2. Preliminaries. We denote by M(Ω, ν) the class of real-valued ν-measurable func-
tions on Ω and by M+(Ω, ν) the class of nonnegative functions in M(Ω, ν). Given
f ∈M(Ω, ν), its non-increasing rearrangement is defined by

f∗(t) = inf
{
λ > 0 : ν

(
{x ∈ Ω : |f(x)| > λ}

)
≤ t
}
, t ∈ [0,∞).

We defineM0(Ω, ν) = {u ∈M(Ω, ν) : u is finite a.e. in Ω}. It will be handy to introduce
the maximal non-increasing rearrangement of f by

f∗∗(t) = t−1
∫ t

0
f∗(s) ds, t ∈ (0,∞).

We say that a functional ‖ · ‖X(0,1) :M+(0, 1)→ [0,∞] is a function norm, if, for all
f , g and {fj}j∈N in M+(0, 1), and every λ ≥ 0, the following properties hold:

(P1) ‖f‖X(0,1) = 0 if and only if f = 0; ‖λf‖X(0,1) = λ‖f‖X(0,1);
‖f + g‖X(0,1) ≤ ‖f‖X(0,1) + ‖g‖X(0,1);

(P2) f ≤ g a.e. implies ‖f‖X(0,1) ≤ ‖g‖X(0,1);
(P3) fj ↗ f a.e. implies ‖fj‖X(0,1) ↗ ‖f‖X(0,1);
(P4) ‖1‖X(0,1) <∞;
(P5)

∫ 1
0 f(x) dx ≤ C‖f‖X(0,1) for some constant C independent of f .

If, in addition,

(P6) ‖f‖X(0,1) = ‖g‖X(0,1) whenever f∗ = g∗,

we say that ‖ · ‖X(0,1) is a rearrangement-invariant function norm.
With any rearrangement-invariant function norm ‖·‖X(0,1), there is associated another

functional on M+(0, 1), denoted by ‖ · ‖X′(0,1), and defined, for g ∈M+(0, 1), as

‖g‖X′(0,1) = sup
f≥0

‖f‖X(0,1)≤1

∫ 1

0
f(s)g(s) ds.

It turns out that ‖ · ‖X′(0,1) is also a rearrangement-invariant function norm, which is
called the associate function norm of ‖ · ‖X(0,1).
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Given a rearrangement-invariant function norm ‖·‖X(0,1), the space X(Ω, ν) is defined
as the collection of all functions u ∈M(Ω, ν) such that the expression

‖u‖X(Ω,ν) = ‖u∗‖X(0,1) (14)

is finite. Such an expression defines a norm on X(Ω, ν), and the latter is a Banach space
endowed with this norm, called a rearrangement-invariant space. Moreover, X(Ω, ν) ⊂
M0(Ω, ν) for any rearrangement-invariant space X(Ω, ν). The space X(0, 1) is called the
representation space of X(Ω, ν).

Let 0 < p, q ≤ ∞ and α ∈ R. Then the Lorentz–Zygmund space Lp,q;α(Ω, ν) is the
collection of all f ∈M(Ω, ν) such that ‖f‖Lp,q;α(Ω,ν) <∞, where

‖f‖Lp,q;α(Ω,ν) := ‖t1/p−1/q logα
(
e
t

)
f∗(t)‖Lq(0,1).

Occasionally we will have to work with a modification of Lorentz–Zygmund spaces in
which f∗ is replaced by f∗∗. We denote such a space by L(p,q;α)(Ω), hence

‖f‖L(p,q;α)(Ω) := ‖t1/p−1/q logα
(
e
t

)
f∗∗(t)‖Lq(0,1).

If one of the following conditions
1 < p <∞, 1 ≤ q ≤ ∞, α ∈ R;
p = 1, q = 1, α ≥ 0;
p =∞, q =∞, α ≤ 0;
p =∞, 1 ≤ q <∞, α+ 1/q < 0,

(15)

is satisfied, then Lp,q;α(Ω) is equivalent to a rearrangement-invariant Banach function
space.

Given any Young function A : [0,∞) → [0,∞), namely a convex increasing function
vanishing at 0, the Orlicz space LA(Ω, ν) is defined as the collection of all ν-measurable
functions u on Ω such that ‖u‖LA(Ω,ν) <∞, where

‖u‖LA(Ω,ν) = inf
{
λ > 0 :

∫
Ω
A
( |u(x)|

λ

)
dν(x) ≤ 1

}
.

The assumptions on A guarantee that the functional ‖u‖LA(Ω,ν) is a norm with respect
to which the Orlicz space LA(Ω, ν) is a Banach space. The norm ‖u‖LA(Ω,ν) is called the
Luxemburg norm.

3. Main results and examples. The isoperimetric inequality relative to (Ω, ν) tells
us that

Pν(E,Ω) ≥ IΩ,ν(ν(E)), (16)

where E is any measurable set E ⊂ Ω, and Pν(E,Ω) stands for its perimeter in Ω with
respect to ν. Moreover, IΩ,ν denotes the largest non-decreasing function in [0, 1

2 ] for which
(16) holds, called the isoperimetric function (or isoperimetric profile) of (Ω, ν), which was
introduced in [Ma1].

The results concerning optimality of function spaces in Sobolev embeddings depend
only on a lower bound for the isoperimetric function IΩ,ν of (Ω, ν) in terms of some
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other non-decreasing function I : [0, 1]→ [0,∞); precisely, on the existence of a positive
constant c such that

IΩ,ν(s) ≥ cI(cs) for s ∈ [0, 1
2 ]. (17)

First, it can be observed that if IΩ,ν(s) does not decay at 0 faster than linearly, namely
if there exists a positive constant C such that

IΩ,ν(s) ≥ Cs for s ∈ [0, 1
2 ], (18)

then any function u ∈ V mX(Ω, ν) does at least belong to L1(Ω, ν), together with all its
derivatives up to the order m− 1. In the light of (18), we can safely assume that

inf
t∈(0,1)

I(t)
t

> 0. (19)

The next theorem is our main general reduction principle.

Theorem 3.1. Assume that (Ω, ν) fulfils (17) for some non-decreasing function I sat-
isfying (19). Let m ∈ N, and let ‖ · ‖X(0,1) and ‖ · ‖Y (0,1) be rearrangement-invariant
function norms. If there exists a constant C1 such that∥∥∥∥∫ 1

t

f(s)
I(s)

(∫ s

t

dr

I(r)

)m−1
ds

∥∥∥∥
Y (0,1)

≤ C1‖f‖X(0,1) (20)

for every nonnegative f ∈ X(0, 1), then

V mX(Ω, ν)→ Y (Ω, ν), (21)

and there exists a constant C2 such that

‖u‖Y (Ω,ν) ≤ C2‖∇mu‖X(Ω,ν) (22)

for every u ∈ V m⊥ X(Ω, ν).

It turns out that inequality (20) holds for every nonnegative f ∈ X(0, 1) if and only
if it just holds for every nonnegative and non-increasing f ∈ X(0, 1).

A major feature of Theorem 3.1 is the difference occurring in (20) between the first-
order case (m = 1) and the higher-order case (m > 1). Indeed, the integral operator
appearing in (20) when m = 1 is just a weighted Hardy-type operator, namely a prim-
itive of f times a weight, whereas, in the higher-order case, a genuine kernel, with a
more complicated structure, comes into play. In fact, this seems to be the first known
instance where such a kernel operator is needed in a reduction principle for Sobolev-type
embeddings.

As we shall see, the Sobolev embedding (21) (or the Poincaré inequality (22)) and
inequality (20) are actually equivalent in customary families of measure spaces (Ω, ν). This
fact allows us to determine the optimal rearrangement-invariant target spaces in Sobolev
embeddings for these measure spaces. Incidentally, let us mention that when m = 1, this
is the case whenever the geometry of (Ω, ν) allows the construction of a family of trial
functions u in (21) or (22) characterized by the following properties: the level sets of u are
isoperimetric (or almost isoperimetric) in (Ω, ν); |∇u| is constant (or almost constant)
on the boundary of the level sets of u. If m > 1, then the latter requirement has to be
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complemented by requiring that the derivatives of u up to the order m restricted to the
boundary of the level sets satisfy certain conditions depending on I.

Such conditions have, however, a technical nature, and it is not worth to state them
explicitly. In fact, heuristically speaking, properties (20), (22) and (21) turn out to be
equivalent for every m ≥ 1 on the same measure spaces (Ω, ν) as for m = 1. Such
an equivalence certainly holds in any customary, non-pathological situation, including the
three frameworks to which our results will be applied, namely John domains, Euclidean
domains from Maz’ya classes and product probability spaces in Rn extending the Gauss
space. In all these cases, we can characterize optimal arbitrary-order rearrangement-
invariant target spaces.

Now we are in a position to characterize the space which is the optimal rearrangement-
invariant target space in the Sobolev embedding (21). Such an optimal space is the one
associated with the rearrangement-invariant function norm ‖ · ‖Xm,I(0,1), whose associate
norm is defined as

‖f‖X′
m,I

(0,1) =
∥∥∥∥ 1
I(s)

∫ s

0

(∫ s

t

dr

I(r)

)m−1
f∗(t) dt

∥∥∥∥
X′(0,1)

(23)

for f ∈M+(0, 1).

Theorem 3.2. Assume that (Ω, ν), m, I and ‖ · ‖X(0,1) are as in Theorem 3.1. Then
the functional ‖ · ‖X′

m,I
(0,1), given by (23), is a rearrangement-invariant function norm,

whose associate norm ‖ · ‖Xm,I(0,1) satisfies

V mX(Ω, ν)→ Xm,I(Ω, ν), (24)

and there exists a constant C such that

‖u‖Xm,I(Ω,ν) ≤ C‖∇mu‖X(Ω,ν) (25)

for every u ∈ V m⊥ X(Ω, ν).
Moreover, if (Ω, ν) is such that (21), or equivalently (22), implies (20), and hence

(20), (21) and (22) are equivalent, then the function norm ‖ ·‖Xm,I(0,1) is optimal in (24)
and (25) among all rearrangement-invariant norms.

An important special case of Theorems 3.1 and 3.2 is enucleated in the following
corollary.

Corollary 3.3. Assume that (Ω, ν), m, I and ‖ · ‖X(0,1) are as in Theorem 3.1. If∥∥∥∥ 1
I(s)

(∫ s

0

dr

I(r)

)m−1
∥∥∥∥
X′(0,1)

<∞ , (26)

then
V mX(Ω, ν)→ L∞(Ω, ν), (27)

and there exists a constant C such that

‖u‖L∞(Ω,ν) ≤ C‖∇mu‖X(Ω,ν) (28)

for every u ∈ V m⊥ X(Ω, ν).
Moreover, if (Ω, ν) is such that (21), or equivalently (22), implies (20), and hence

(20), (21) and (22) are equivalent, then (26) is necessary for (27) or (28) to hold.
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If (Ω, ν) is such that (21), or equivalently (22), implies (20), and hence (20), (21)
and (22) are equivalent, then (27) cannot hold, whatever ‖ · ‖X(0,1) is, if I decays so fast
at 0 that ∫

0

dr

I(r) =∞.

We shall now point out the preservation of optimality in targets among all rearrange-
ment-invariant spaces under iteration of Sobolev embeddings of arbitrary order.

Theorem 3.4. Assume that (Ω, ν), I and ‖ · ‖X(0,1) are as in Theorem 3.1. Let k, h ∈ N.
Then

(Xk,I)h,I(Ω, ν) = Xk+h,I(Ω, ν), (29)

up to equivalent norms.

In many instances in practice, the function I satisfies the estimate∫ s

0

dr

I(r) ≈
s

I(s) for s ∈ (0, 1). (30)

We note that (30) is not true for every relevant case. It holds for instance for John
domains and for domains from Maz’ya classes Jα with α < 1, but it does not hold for
domains in J1 or for the Gaussian space.

It is useful to treat the cases for which (30) holds separately because then the results
of Theorems 3.1, 3.2 and 3.4 can be considerably simplified. For example, the reduction
theorem then reads as follows.

Corollary 3.5. Let (Ω, ν), m, I, ‖·‖X(0,1) and ‖·‖Y (0,1) be as in Theorem 3.1. Assume,
in addition, that I fulfils (30). If there exists a constant C1 such that∥∥∥∥∫ 1

t

f(s) s
m−1

I(s)m ds

∥∥∥∥
Y (0,1)

≤ C1‖f‖X(0,1) (31)

for every nonnegative f ∈ X(0, 1), then

V mX(Ω, ν)→ Y (Ω, ν), (32)

and there exists a constant C2 such that

‖u‖Y (Ω,ν) ≤ C2‖∇mu‖X(Ω,ν) (33)

for every u ∈ V m⊥ X(Ω, ν).

Let us now deal with specific situations separately.
We say that a bounded open set Ω in Rn is called a John domain if there exist a

constant c ∈ (0, 1) and a point x0 ∈ Ω such that for every x ∈ Ω there exists a rectifiable
curve $ : [0, l]→ Ω, parameterized by the arc length and such that $(0) = x, $(l) = x0,
and

dist ($(r), ∂Ω) ≥ cr for r ∈ [0, l].

The class of John domains includes other more classical families of domains, such as
Lipschitz domains, and domains with the cone property. The John domains arise in con-
nection with the study of holomorphic dynamical systems and quasiconformal mappings.
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John domains are known to support a first-order Sobolev inequality with the same expo-
nents as in the standard Sobolev inequality [Bo, HK, KM]. In fact, being a John domain is
a necessary condition for such a Sobolev inequality to hold in the class of two-dimensional
simply connected open sets, and in quite general classes of higher dimensional domains
[BK1]. We note that, as a consequence of (5), the corresponding function I now satis-
fies (30). The reduction principle thus takes the following form.

Theorem 3.6. Let n ∈ N, n ≥ 2, and let m ∈ N. Assume that Ω is a John domain
in Rn. Let ‖ · ‖X(0,1) and ‖ · ‖Y (0,1) be rearrangement-invariant function norms. Then the
following assertions are equivalent.

(i) The Hardy type inequality∥∥∥∫ 1

t

f(s)s−1+m/n ds
∥∥∥
Y (0,1)

≤ C1‖f‖X(0,1) (34)

holds for some constant C1, and for every nonnegative f ∈ X(0, 1).
(ii) The Sobolev embedding

V mX(Ω)→ Y (Ω) (35)

holds.
(iii) The Poincaré inequality

‖u‖Y (Ω) ≤ C2‖∇mu‖X(Ω) (36)

holds for some constant C2 and every u ∈ V m⊥ X(Ω).

Given an r.i. space X(Ω) where Ω is a John domain, the corresponding optimal range
partner in the Sobolev embedding on a John domain is then the space Xm,John(Ω), whose
associate space has norm

‖f‖X′
m,John(Ω) =

∥∥∥s−1+m/n
∫ s

0
f∗(r) dr

∥∥∥
X′(0,1)

, f ∈M+(Ω). (37)

Our next set of instances will be Maz’ya classes of Euclidean domains. Given
α ∈ [ 1

n′ , 1], we denote by Jα the Maz’ya class of all Euclidean domains Ω satisfying
(17), with I(s) = sα for s ∈ [0, 1

2 ], namely domains Ω in Rn such that

IΩ(s) ≥ Csα for s ∈ [0, 1
2 ], (38)

for some positive constant C. Thanks to (5), any John domain belongs to the class J1/n′ .
The reduction theorem in the class Jα takes the following form.

Theorem 3.7. Let n ∈ N, n ≥ 2, m ∈ N, and α ∈ [ 1
n′ , 1]. Let ‖ · ‖X(0,1) and ‖ · ‖Y (0,1) be

rearrangement-invariant function norms. Assume that either α ∈ [ 1
n′ , 1) and there exists

a constant C1 such that∥∥∥∥∫ 1

t

f(s)s−1+m(1−α) ds

∥∥∥∥
Y (0,1)

≤ C1‖f‖X(0,1) (39)

for every nonnegative f ∈ X(0, 1), or α = 1 and there exists a constant C1 such that∥∥∥∥∫ 1

t

f(s)1
s

(
log s

t

)m−1
ds

∥∥∥∥
Y (0,1)

≤ C1‖f‖X(0,1) (40)
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for every nonnegative f ∈ X(0, 1). Then the Sobolev embedding

V mX(Ω)→ Y (Ω) (41)

holds for every Ω ∈ Jα and, equivalently, the Poincaré inequality

‖u‖Y (Ω) ≤ C2‖∇mu‖X(Ω) (42)

holds for every Ω ∈ Jα, for some constant C2 and every u ∈ V m⊥ X(Ω).
Conversely, if the Sobolev embedding (41), or, equivalently, the Poincaré inequality

(42), holds for every Ω ∈ Jα, then either inequality (39), or (40) holds, according to
whether α ∈ [ 1

n′ , 1) or α = 1.

Given an r.i. space X(Ω) where Ω ∈ Jα, the corresponding optimal range partner in
the Sobolev embedding on a Maz’ya domain is then the space Xm,α(Ω), whose associate
space has norm

‖f‖X′m,α(Ω) =


∥∥∥s−1+m(1−α)

∫ s

0
f∗(r) dr

∥∥∥
X′(0,1)

if α ∈ [ 1
n′ , 1),∥∥∥∥1

s

∫ s

0

(
log s

r

)m−1
f∗(r) dr

∥∥∥∥
X′(0,1)

if α = 1, f ∈M+(Ω).
(43)

We shall now apply the general results to some concrete function spaces. We shall
mainly focus on Lebesgue, Lorentz and Orlicz spaces.

Theorem 3.8. Let n ∈ N, n ≥ 2, and let Ω ∈ Jα for some α ∈ [ 1
n′ , 1). Let m ∈ N and

p ∈ [1,∞]. Then

V mLp(Ω)→


Lp/(1−mp(1−α))(Ω) if m(1− α) < 1 and 1 ≤ p < 1

m(1−α) ,

Lr(Ω) for any r ∈ [1,∞) if m(1− α) < 1 and p = 1
m(1−α) ,

L∞(Ω) otherwise.

(44)

Moreover, in the first and the third cases, the target spaces in (44) are optimal among all
Lebesgue spaces, as Ω ranges in Jα.

Although the target spaces in (44) cannot be improved in the class of Lebesgue spaces,
the conclusions of (44) can be strengthened if more general rearrangement-invariant
spaces are employed. Such a strengthening can be obtained as a special case of a So-
bolev embedding for Lorentz spaces which reads as follows.

Theorem 3.9. Let n ∈ N, n ≥ 2, and let Ω ∈ Jα for some α ∈ [ 1
n′ , 1). Let m ∈ N and

p, q ∈ [1,∞]. Assume that one of the conditions in (15) with α = 0 holds. Then

V mLp,q(Ω)→


Lp/(1−mp(1−α)),q(Ω) if m(1− α) < 1 and 1 ≤ p < 1

m(1−α) ,
L∞,q;−1(Ω) if m(1− α) < 1, p = 1

m(1−α) and q > 1,
L∞(Ω) otherwise,

(45)

Moreover, the target spaces in (45) are optimal among all rearrangement-invariant spaces,
as Ω ranges in Jα.



50 A. CIANCHI, L. PICK AND L. SLAVÍKOVÁ

The particular choice of parameters p = q, 1 ≤ p < 1
m(1−α) in Theorem 3.9 shows

that
V mLp(Ω)→ Lp/(1−mp(1−α)),p(Ω).

This is a non-trivial strengthening of the first embedding in (44), since
Lp/(1−mp(1−α)),p(Ω) $ Lp/(1−mp(1−α)).

Likewise, the choice m(1 − α) < 1 and p = q = 1
m(1−α) shows that also the second

embedding in (44) can be in fact essentially improved to
V mLp(Ω)→ L∞,p;−1(Ω).

Assume now that α = 1. The embedding theorem in Lebesgue spaces takes the fol-
lowing form.

Theorem 3.10. Let n ∈ N, n ≥ 2, and let Ω ∈ J1. Let m ∈ N and p ∈ [1,∞]. Then

V mLp(Ω)→
{
Lp(Ω) if 1 ≤ p <∞,
Lr(Ω) for any r ∈ [1,∞), if p =∞.

(46)

In the former case, the target space is optimal in (46) among all Lebesgue spaces, as
Ω ranges in J1.

Optimal embeddings for Lorentz–Sobolev spaces are provided in the next theorem.

Theorem 3.11. Let n ∈ N, n ≥ 2, and let Ω ∈ J1. Let m ∈ N and p, q ∈ [1,∞]. Assume
that one of the conditions in (15) with α = 0 holds. Then

V mLp,q(Ω)→
{
Lp,q(Ω) if 1 ≤ p <∞,
expL1/m(Ω) if p = q =∞.

(47)

The target spaces are optimal in (47) among all rearrangement-invariant spaces, as
Ω ranges in J1.

Our next application concerns Orlicz–Sobolev spaces. Let n ∈ N, n ≥ 2, m ∈ N,
α ∈ [ 1

n′ , 1), and let A be a Young function. We may assume, without loss of generality,
m(1− α) < 1 and ∫

0

( t

A(t)

)(m(1−α))/(1−m(1−α))
dt <∞. (48)

Indeed, the function A can be modified near 0, if necessary, in such a way that (48) is
fulfilled, on leaving the space V mLA(Ω) unchanged (up to equivalent norms).

If m < 1
1−α and ∫ ∞( t

A(t)

)(m(1−α))/(1−m(1−α))
dt =∞, (49)

we define the function Hm,α : [0,∞)→ [0,∞) as

Hm,α(s) =
(∫ s

0

( t

A(t)

)(m(1−α))/(1−m(1−α))
dt

)1−m(1−α)
for s ≥ 0, (50)

and the Young function Am,α as
Am,α(t) = A(H−1

m,α(t)) for t ≥ 0. (51)
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Theorem 3.12. Assume that n ∈ N, n ≥ 2, m ∈ N, α ∈ [ 1
n′ , 1) and Ω ∈ Jα. Let A be a

Young function fulfilling (48). Then

V mLA(Ω)→
{
LAm,α(Ω) if m < 1

1−α and (49) holds,
L∞(Ω) if either m ≥ 1

1−α or m < 1
1−α and (49) fails.

(52)

Moreover, the target spaces in (52) are optimal among all Orlicz spaces, as Ω ranges
in Jα.

Example 3.13. Consider the case when

A(t) ≈ tp(log t)β near infinity, where either p > 1 and β ∈ R, or p = 1 and β ≥ 0.

Hence, LA(Ω) = Lplogβ(Ω). An application of Theorem 3.12 tells us that

V mLplogβ(Ω)→

Lp/(1−pm(1−α))logβ/(1−pm(1−α))(Ω) if mp(1− α) < 1,
expL1/(1−(1+β)m(1−α))(Ω) if mp(1− α) = 1 and β < 1−m(1−α)

m(1−α) ,
exp expL1/(1−m(1−α))(Ω) if mp(1− α) = 1 and β = 1−m(1−α)

m(1−α) ,
L∞(Ω) if either mp(1− α) > 1,

or mp(1− α) = 1 and β > 1−m(1−α)
m(1−α) .

(53)

Moreover, the target spaces in (53) are optimal among all Orlicz spaces, as Ω ranges
in Jα.

The first three embeddings in (53) can be improved on allowing more general rearran-
gement-invariant target spaces. Indeed, we have

V mLplogβ(Ω)→
Lp/(1−pm(1−α)),p;β/p(Ω) if mp(1− α) < 1,
L∞,1/(m(1−α));m(1−α)β−1(Ω) if mp(1− α) = 1 and β < 1−m(1−α)

m(1−α) ,
L∞,1/(m(1−α));−m(1−α),−1(Ω) if mp(1− α) = 1 and β = 1−m(1−α)

m(1−α) ,
(54)

the targets being optimal among all rearrangement-invariant spaces in (54) as Ω ranges
among all domains in Jα.

Our final set of examples will concern the product probability spaces.
The class of product probability measures in Rn, n ≥ 1, arises in connection with

the study of generalized hypercontractivity theory and integrability properties of the
associated heat semigroups. The isoperimetric problem in the corresponding probability
spaces was studied in [BCR], see also [BCR1, BH, Le1, Le2].

Assume that Φ : [0,∞) → [0,∞) is a strictly increasing, twice continuously differen-
tiable convex function in (0,∞) such that

√
Φ is concave, and Φ(0) = 0. Let µΦ be the

probability measure on R given by

dµΦ(x) = cΦe
−Φ(|x|) dx, (55)

where cΦ is a constant chosen in such a way that µΦ(R) = 1. The product measure µΦ,n



52 A. CIANCHI, L. PICK AND L. SLAVÍKOVÁ

on Rn, n ≥ 1, generated by µΦ, is then defined as

µΦ,n = µΦ × . . .× µΦ︸ ︷︷ ︸
n−times

. (56)

Clearly, µΦ,1 = µΦ, and (Rn, µΦ,n) is a probability space for every n ∈ N.
The main example of a measure µΦ is obtained by taking

Φ(t) = 1
2 t

2.

This choice yields µΦ,n = γn, the Gauss measure which obeys

dγn(x) = (2π)−n/2e−|x|
2/2 dx. (57)

More generally, the Boltzmann measures γn,β are associated with

Φ(t) = 1
β t
β

for some β ∈ [1, 2]. Let H : R→ (0, 1) be defined as

H(t) =
∫ ∞
t

cΦe
−Φ(|r|) dr for t ∈ R, (58)

and let FΦ : [0, 1]→ [0,∞) be given by

FΦ(s) = cΦe
−Φ(|H−1(s)|) for s ∈ (0, 1), and FΦ(0) = FΦ(1) = 0. (59)

Since µΦ is a probability measure and µΦ,n is defined by (56), it is easily seen that, for
each i = 1, . . . , n,

µΦ,n
(
{(x1, . . . , xn) : xi > t}

)
= H(t) for t ∈ R, (60)

and
PµΦ,n

(
{(x1, . . . , xn) : xi > t},Rn

)
= cΦe

−Φ(|t|) = −H ′(t) for t ∈ R. (61)

Hence, FΦ(s) agrees with the perimeter of any half-space of the form {xi > t}, whose
measure is s.

Next, define LΦ : [0, 1]→ [0,∞) as

LΦ(s) = sΦ′
(
Φ−1(log( 2

s )
))

for s ∈ (0, 1], and LΦ(0) = 0. (62)

Then the isoperimetric function of (Rn, µΦ,n) satisfies

I(Rn,µΦ,n)(s) ≈ FΦ(s) ≈ LΦ(s) for s ∈ [0, 1
2 ] (63)

(see [BCR, Proposition 13 and Theorem 15]). Furthermore, half-spaces, whose bound-
ary is orthogonal to a coordinate axis, are “approximate solutions” to the isoperimetric
problem in (Rn, µΦ,n) in the sense that there exist constants C1 and C2, depending on n,
such that, for every s ∈ (0, 1), any such half-space V with measure s satisfies

C1PµΦ,n(V,Rn) ≤ I(Rn,µΦ,n)(s) ≤ C2PµΦ,n(V,Rn).

In the special case when µΦ,n = γn, the Gauss measure, equation (63) yields

I(Rn,γn)(s) ≈ s
(
log 2

s

)1/2 for s ∈ (0, 1
2 ]. (64)

Note that now (30) is not satisfied. Moreover, any half-space is, in fact, an exact minimizer
in the isoperimetric inequality [Bo, ST].
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The reduction theorem for Sobolev embeddings in product probability spaces reads
as follows.

Theorem 3.14. Let n ∈ N, m ∈ N, let µΦ,n be the probability measure defined by (56),
and let ‖ · ‖X(0,1) and ‖ · ‖Y (0,1) be rearrangement-invariant function norms. Then the
following facts are equivalent.

(i) The inequality∥∥∥∥∫ 1

s

f(r)
(
Φ−1(log 2

s )− Φ−1(log 2
r )
)m−1

rΦ′
(
Φ−1(log 2

r )
) dr

∥∥∥∥
Y (0,1)

≤ C1‖f‖X(0,1) (65)

holds for some constant C1, and for every nonnegative f ∈ X(0, 1).
(ii) The embedding

V mX(Rn, µΦ,n)→ Y (Rn, µΦ,n) (66)

holds.
(iii) The Poincaré inequality

‖u‖Y (Rn,µΦ,n) ≤ C2‖∇mu‖X(Rn,µΦ,n) (67)

holds for some constant C2, and for every u ∈ V m⊥ X(Rn, µΦ,n).

When m = 1 and the measure µΦ,n agrees with the Gauss measure γn, the result of
Theorem 3.14 is by now standard (see e.g. [CP]).

The rearrangement-invariant function norm ‖ · ‖Xm,Φ(0,1) which yields the optimal
rearrangement-invariant target space Y (Rn, µΦ,n) in embedding (66) is defined as follows.
Let ‖ · ‖X(0,1) be a rearrangement-invariant function norm, and let n,m ∈ N. Then
‖·‖Xm,Φ(0,1) is the rearrangement-invariant function norm whose associate function norm
is given by

‖f‖X′
m,Φ(0,1) =

∥∥∥∥∫ r

0
f∗(s)

(
Φ−1(log 2

s )− Φ−1(log 2
r )
)m−1

rΦ′
(
Φ−1(log 2

r )
) ds

∥∥∥∥
X′(0,1)

(68)

for f ∈M+(0, 1).
The reduction theorem takes a simpler form in the case of Gaussian measure.

Theorem 3.15. Let X(Rn, γn) and Y (Rn, γn) be r.i. spaces, and let m ≥ 1. There exists
a constant C1 such that

‖u‖Y (Rn,γn) ≤ C1‖∇mu‖X(Rn,γn)

for every u ∈ V m⊥ X(Rn, γn) if and only if there exists a constant C2 such that∥∥∥∥ 1(
1 + log 1

s

)(m−1)/2

∫ 1

s

f(r)
(
log r

s

)m−1

r
(
1 + log 1

r

)1/2 dr∥∥∥∥
Y (0,1)

≤ C2‖f‖X(0,1)

for every f ∈ X(0, 1).

Given n,m ∈ N, and a rearrangement-invariant function norm ‖ · ‖X(0,1), let us define
‖·‖Xm,G(0,1) as the rearrangement-invariant function norm whose associate function norm
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is given by

‖f‖X′
m,G

(0,1) =
∥∥∥∥ 1
r
(
log 2

r

)1/2 ∫ r

0
f∗(s)

(
log r

s

)m−1(
log 2

s

)(m−1)/2 ds

∥∥∥∥
X′(0,1)

(69)

for f ∈M+(0, 1).

Theorem 3.16. Let n ∈ N, m ∈ N, and let ‖ · ‖X(0,1) be a rearrangement-invariant
function norm. Then the functional ‖ · ‖X′

m,G
(0,1), given by (69), is a rearrangement-

invariant function norm, whose associate norm ‖ · ‖Xm,G(0,1) satisfies

V mX(Rn, γn)→ Xm,G(Rn, γn) (70)

with norm independent of n, and

‖u‖Xm,G(Rn,γn) ≤ C‖∇mu‖X(Rn,γn) (71)

for some constant C independent of n, for every u ∈ V m⊥ X(Rn, γn). Moreover, the func-
tion norm ‖ · ‖Xm,G(0,1) is optimal in (70) and (71) among all rearrangement-invariant
norms.

We finish with an application of our results to the particular case when µΦ,n is a
Boltzmann measure, and the norms are of Lorentz–Zygmund type.

Theorem 3.17. Let n,m ∈ N, let β ∈ [1, 2] and let p, q ∈ [1,∞] and α ∈ R be such that
one of the conditions in (15) is satisfied. Then

V mLp,q;α(Rn, γn,β)→
{
Lp,q;α+m(β−1)/β(Rn, γn,β) if p <∞;
L∞,q;α−m/β(Rn, γn,β) if p =∞.

(72)

Moreover, in both cases, the target space is optimal among all rearrangement-invariant
spaces.

When β = 2, Theorem 3.17 yields the following sharp Sobolev type embeddings in
Gauss space.

Theorem 3.18. Let n,m ∈ N, and let p, q ∈ [1,∞] and α ∈ R be such that one of the
conditions in (15) is satisfied. Then

V mLp,q;α(Rn, γn)→
{
Lp,q;α+m/2(Rn, γn) if p <∞;
L∞,q;α−m/2(Rn, γn) if p =∞.

Moreover, in both cases, the target space is optimal among all rearrangement-invariant
spaces.

A further specialization of the indices p, q, α appearing in Theorem 3.18 leads to the
following basic embeddings.

Corollary 3.19. Let n,m ∈ N.
(i) Assume that p ∈ [1,∞). Then

V mLp(Rn, γn)→ Lp(logL)mp/2(Rn, γn),

and the target space is optimal among all rearrangement-invariant spaces.
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(ii) Assume that γ > 0. Then
V m expLγ(Rn, γn)→ expL2γ/(2+mγ)(Rn, γn),

and the target space is optimal among all rearrangement-invariant spaces.
(iii) V mL∞(Rn, γn)→ expL2/m(Rn, γn),

and the target space is optimal among all rearrangement-invariant spaces.
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[KJF] A. Kufner, O. John, S. Fuč́ık, Function Spaces, Academia, Prague, 1977.
[Le1] M. Ledoux, The concentration of measure phenomenon, Math. Surveys Monogr. 89,

Amer. Math. Soc., Providence, RI, 2001.
[Le2] M. Ledoux, Spectral gap, logarithmic Sobolev constant and geometric bounds, in: Sur-

veys in Differential Geometry, Vol. IX, 219–240, Int. Press, Somerville, MA, 2004.
[LPT] P.-L. Lions, F. Pacella, M. Tricarico, Best constants in Sobolev inequalities for func-

tions vanishing on some part of the boundary and related questions, Indiana Univ.
Math. J. 37 (1988), 301–324.

[LYZ] E. Lutwak, D. Yang, G. Zhang, Sharp affine Lp Sobolev inequalities, J. Differential
Geometry 62 (2002), 17–38.

[Ma1] V. G. Maz’ya, Classes of regions and imbedding theorems for function spaces, Dokl.
Akad. Nauk. SSSR 133 (1960), 527–530 (Russian); English transl.: Soviet Math. Dokl.
1 (1960), 882–885.

[Ma2] V. G. Maz’ya, On p-conductivity and theorems on imbedding certain functional spaces
into the space C, Dokl. Akad. Nauk. SSSR 140 (1961), 299–302 (Russian); English
transl.: Soviet Math. Dokl. 2 (1961), 1200–1203.

[Ma3] V. G. Maz’ya, Sobolev Spaces, Springer, Berlin, 1985.
[Ma4] V. G. Maz’ya, Sobolev Spaces, Springer, Berlin, 2011.
[Mi] E. Milman, On the role of convexity in functional and isoperimetric inequalities, Proc.

London Math. Soc. (3) 99 (2009), 32–66.
[Mo] J. Moser, A sharp form of an inequality by Trudinger, Indiana Univ. Math. J. 20

(1971), 1077–1092.
[Ni] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa

(3) 13 (1959), 115–162.
[Po] S. I. Pohozaev, On the imbedding Sobolev theorem for pl = n, in: Doklady (Proceed-

ings) of the Scientific-Techn. Conference on results of the papers in 1964–65, Section
Math., Moscow Power Engineering Inst., 1965, 158–170 (Russian).

[Sa] L. Saloff-Coste, Aspects of Sobolev-type inequalities, London Math. Soc. Lecture Note
Ser. 289, Cambridge Univ. Press, Cambridge, 2002.

[So1] S. L. Sobolev, On some estimates relating to families of functions having derivatives
that are square integrable, Dokl. Akad. Nauk. SSSR 10 (1936), 267–270 (Russian); Sur
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