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Abstract. A multiplicative structure in the cohomological version of Conley index is described
following a joint paper by the author with K. Gęba and W. Uss. In the case of equivariant flows
we apply a normalization procedure known from equivariant degree theory and we propose a
new continuation invariant. The theory is applied then to obtain a mountain pass type theorem.
Another illustrative application is a result on multiple bifurcations for some elliptic PDE.

1. Introduction. In this paper, we consider a module structure of cohomology Conley
index of local flows determined by equivariant smooth vector fields in Rn. By using this
structure, in [7] a continuation invariant called a relative cup-length has been described.
Motivated also by [3], we present here a normalization technique known from equivariant
degree theory. This allows to define a version of the relative cup-length as an element of
the Euler ring of a group G (comp. [6]). Let us observe that the module structure can
be used also in the infinite-dimensional version of the Conley index (see [11]), since it is
preserved after suspension. Some application to PDE is also briefly presented in the last
section.

The paper is organized as follows. Section 2 contains some standard notation for
compact Lie group actions. In Section 3 we recall necessary notions from (equivariant)
Conley index theory and in Section 4 a normalization process is described. In Section 5
we describe an abstract notion of a relative cup-length of an index pair with respect to an
isolating domain. Some simple applications are given in the last two sections. A mountain
pass type theorem is proved in Section 6. Elliptic PDE with Dirichlet boundary condi-
tion and with Z2-symmetry is considered in Section 7. We prove a multiple bifurcation
theorem.
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2. Preliminaries on group actions. We start from some notation about group actions
(see [6] for more details). Let G be a group. If H ⊂ G is a subgroup, we denote by G/H
the set of left cosets gH. Two subgroups H and K of G are conjugate if there exists g ∈ G
such that K = g−1Hg. The conjugacy class of H is denoted by (H). There is a natural
partial order in the set Φ(G) of conjugacy classes:

(K) 6 (H) if there exist K̄ ∈ (K) and H̄ ∈ (H) such that K̄ ⊂ H̄.

Throughout the whole paper we consider only compact Lie groups and their closed
subgroups. Given a subgroup H ⊂ G let N(H) be the normalizer of H. The Weyl group
of H is the quotient W (H) := N(H)/H. Let us define the set

Φ0(G) := {(H) ∈ Φ(G) : dimW (H) = 0}.

A G-set is a pair (X, ξ), where X is a set and ξ : G×X → X is an action of G on X,
i.e., a map such that:

(i) ξ(g1, ξ(g2, x)) = ξ(g1g2, x) for g1, g2 ∈ G and x ∈ X,
(ii) ξ(e, x) = x for x ∈ X, where e ∈ G is the group unit.

In the sequel we write gx instead of ξ(g, x). For every subgroup H ⊂ G the set G/H is a
G-set by the action g(g̃H) = gg̃H. If ξ is continuous, we call (X, ξ) a G-space. We say that
a real (resp. complex) Banach space E is a real (resp. complex) Banach representation
of G if E is G-space and, for each g ∈ G, the map ξE(g, ·) : E 3 x 7→ gx is linear and
bounded.

For x ∈ X, the subgroup Gx = {g ∈ G : gx = x} is called the isotropy group of X of
the point x. The conjugacy class of an isotropy group is called an isotropy type. Denote
by Iso(X) the set of all isotropy types in X. The set Gx = {gx : g ∈ G} is called an orbit
through x.

For a given subgroup H ⊂ G we specify several subspaces of a given G-space X:
XH = {x ∈ X : H = Gx}, X(H) = {x ∈ X : (H) = (Gx)}, XH = {x ∈ X : H ⊂ Gx},
X(H) = {x ∈ X : (H) 6 (Gx)}.

Now we define the Burnside ring of G as follows (cf. [1] for details and examples):
As a group A(G) is a free abelian group generated by (H) ∈ Φ0(G), i.e., an element

a ∈ A(G) is a finite sum a = nH1(H1) + . . .+nHm(Hm) with nHi ∈ Z and (Hi) ∈ Φ0(G).
The operation of multiplication in A(G) is a bit more sophisticated. Let (H), (K) ∈

Φ0(G). Consider the diagonal action of G on G/H × G/K. Then for any (L) ∈ Φ0(G),
the spaces G/HL and G/KL consist of finitely many W (L)-orbits. Therefore the space
(G/H ×G/K)(L)/G is finite. Let nL(H,K) denote the number of elements of this space.
Define

(H) · (K) :=
∑

(L)∈Φ0(G)

nL(H,K)(L).

A free abelian group U(G) = Z(Φ(G)) can also be equipped with a natural multi-
plicative structure and it is called then an Euler ring of G in [6].
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3. Local flows and flow generators. Let X be a space.
Definition 3.1. A flow on X is a map ϕ : X × R→ X such that
• ϕ(x, 0) = x for all x ∈ X;
• ϕ(ϕ(x, t), s) = ϕ(x, s+ t) for all x ∈ X, t, s ∈ R.

A local flow is defined on an open subset
domϕ = {(x, t) : t ∈ (ax, bx), ax < 0 < bx} ⊂ X × R,

with the above properties whenever ϕ is defined.
Let U be an open subset of Rn and F : U → Rn a vector field which is at least

locally Lipschitz (we consider here smooth vector fields for simplicity). Then F generates
a local flow η on U by the rule that η(x, t) is the value of a unique solution to the Cauchy
problem {

η̇(x, ·) = F (η(x, ·)),
η(x, 0) = x

at the time t.
Throughout the whole paper we denote by V a finite-dimensional orthogonal repre-

sentation of a compact Lie group G. Let U ⊂ V be an open G-invariant subset. A local
vector field F : U → V is G-equivariant if F (gx) = gF (x) for all g ∈ G, x ∈ U . It is
easy to observe that the local flow ηF generated by an equivariant vector field is also
equivariant, i.e., g(ηF (x, t)) = ηF (gx, t) for each g ∈ G, whenever defined.

Given a local flow η on U , we define a maximal invariant part of U :
Invη(U) := {x ∈ U : η(x, t) ∈ U for all (x, t) ∈ dom η}.

One easily observes that for a G-equivariant local flow η the above set is a G-invariant
subset of U .
Definition 3.2. An open set W ⊆ U is an isolating domain for a local flow η, if
Invη(W ) ⊂W is a compact subset.

Observe that ifW is an isolating domain then there exists an open relatively compact
neighbourhood W ′ of Invη(W ) such that Invη(W ) = Invη(W ′) ⊂ W ′ ⊂ W ′ ⊂ W .
The compact set W ′ is usually called an isolating neighbourhood in Conley index theory
(cf. [5]). A compact set S is an isolated invariant set, if S = Invη(W ) ⊂ W for some
isolating domain W .
Definition 3.3. Let S be an isolated invariant set. A pair (X,A) of compact G-invariant
sets is called a G-index pair for S, if
• int(X \A) is an isolating domain and S = Inv(X \A) ⊂ int(X \A);
• A is positively invariant in X, i.e., for each x ∈ A: if η(x, [0, t]) ⊂ X for some t > 0
then η(x, [0, t]) ⊂ A;
• A is an exit set from X: if x ∈ X and η(x, t) /∈ X for some t > 0, then there exists
s ∈ [0, t) such that η(x, s) ∈ A.

The following existence result is an easy consequence of the non-equivariant case
(see [17], comp. [9], [10]).
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Theorem 3.4. If U ⊂ V is a G-invariant isolating domain, then there exists a G-index
pair for the compact isolated set S = Invη(U).

If (X,A) is a pair of compact G-spaces, then X/A denotes the pointed compact
G-space obtained by identifying all points of A with the distinguished point. In case of
empty set A we take X/A = X+, where X+ denotes the pointed space with a separate
base point added. Denote by [X/A] the G-equivariant homotopy class of the pointed
space X/A. The following proposition is true.

Proposition 3.5. If (X1, A1), (X2, A2) are two G-index pairs in an isolating domain U ,
then [X1/A1] = [X2/A2].

The proof can be also carried from [17], Theorem 4.10, and it is enough to observe
that all maps defined in [17] are G-equivariant if the local flow is G-equivariant.

Definition 3.6. If U ⊂ V is a G-invariant isolating domain for a G-equivariant local
flow η, then the G-equivariant Conley index is defined to be

CIG(η, U) := [X/A],

where (X,A) is a G-index pair in U .

The independence of the index pair is assured by Proposition 3.5. In fact one can
define the index for isolated invariant sets because of the following obvious localization
property.

Proposition 3.7. Let U ⊂ V be an isolating domain and let U1 ⊂ U be open and
G-invariant with Invη(U) ⊂ U1. Then U1 is an isolating domain and CIG(η, U1) =
CIG(η, U).

Definition 3.8. A local equivariant flow generator is a pair (F,U), where U ⊂ V is open
and G-invariant subset of V , and F : U → V is a G-equivariant vector field generating a
local flow η on U with Invη(U) ⊂ U compact.

We consider here only local flows generated by vector fields. Motivated by [3] we
introduce a convenient relation of otopy which plays a role of continuation. If V is a
representation of G then V × [0, 1] is a G-space with the action g(x, t) = (gx, t). If Ω is
an open (G-invariant) subset of V × [0, 1], then for each τ ∈ [0, 1] we put Ωτ := {x ∈ V :
(x, τ) ∈ Ω}. A map (family of vector fields) h : Ω → V generates a family of local flows
ητ , i.e., hτ = h|Ωτ : Ωτ → V generates ητ .

Definition 3.9. An (equivariant) otopy is a pair (h,Ω), such that Ω ⊂ V × [0, 1] is open
and G-invariant, and the equivariant map h : Ω→ V generates a family of local flows ητ
such that the invariant part

S :=
⋃

τ∈[0,1]

Invητ (Ωτ ) ⊂ V

is compact.

We admit that Ωτ is empty for some τ ∈ [0, 1]. Note that hτ are local flow generators.
We say then also that h1, h0 are otopic local flow generators. This defines an equivalence
relation among local (equivariant) flow generators.
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Proposition 3.10. Let (h,Ω) be an otopy generating a family of equivariant flow gen-
erators of {ητ}τ∈[0,1]. Then CIG(η0,Ω0) = CIG(η1,Ω1).

Proof. This is an immediate consequence of Proposition 3.7 and the continuation property
of the Conley index (see e.g. [10], Proposition 5.5).

Obviously all the properties are valid for non-equivariant Conley index, when a trivial
action of G is considered not necessarily on subsets of Rn, but on locally compact metric
spaces [5].

4. Normalization. For an invariant subset X ⊂ V of a finite-dimensional representa-
tion of G we define

Iso(X) := {(H) ∈ Φ(G) : X(H) 6= ∅},

where X(H) := {x ∈ X : (Gx) = (H)}. For every closed subgroup H ⊂ G the set
M = V(H) is a submanifold of V (in fact it is a linear subspace). Then

ν(M) :=
{

(x, v) ∈M × V : x ∈M, v ∈ Nx = (TxM)⊥
}

denotes a normal bundle over M . We have the map N : ν(M)→ V , N (x, v) := x+ v.
We shall use the following version of the equivariant tubular neighbourhood theorem

(see [3], Theorem 3.1, or [14], Theorem 4.8 for a proof).

Theorem 4.1. There exists an open G-invariant subset T (tubular neighbourhood) con-
taining M and such that the map N restricted to N−1(T ) is a homeomorphism.

Definition 4.2. Let (H) ∈ Iso(V ). A local vector field (f, U) is H-normal if there is an
open G-invariant subset U0 ⊂ V(H) and ε > 0 such that

• T = {x + v : x ∈ U0, v ∈ Nx, |v| < ε} ⊂ U , where T is a tubular neighbourhood
of V(H);
• f(x+ v) = f(x) + v for x ∈ U0, v ∈ Nx, |v| < ε.

Lemma 4.3. Let (f, U) be a local equivariant flow generator and let (H) be a maximal or-
bit type in Iso(U). Then there exist two equivariant local flow generators (f1, U1), (f2, U2)
such that

• U1 ⊂ U , U2 ⊂ U \ U(H), U1 ∩ U2 = ∅,
• (f1, U1) is (H)-normal and f1(x) = f(x) for all x ∈ (U1)(H),
• (f, U) is otopic to the disjoint union (f1, U1) and (f2, U2).

Proof. First we find an open bounded set U0 ⊂ U(H) such that U0 ⊂ U(H) and

Invη(U)(H) = Invη(U) ∩ U(H) ⊂ U0.

Given ρ > 0, we define two sets

X(ρ) := {u+ v ∈ V : u ∈ U0, v ∈ Nu, |v| 6 ρ},
Y (ρ) := {u+ v ∈ V : u ∈ ∂(H)U0, v ∈ Nu, |v| < ρ}.

Let T be a tubular neighbourhood of U(H) in V . Then there exists ε > 0 such that
X(4ε) ⊂ T and Inv(U, η) ∩ Y (4ε) = ∅.
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Next we find a smooth function α : [0, 4ε] → [0, 1] such that α(t) = 0 for t ∈ [0, 2ε],
α(t) = 1 for t ∈ [3ε, 4ε] and α′(t) > 0 for t ∈ (2ε, 3ε). Define r : X(4ε) → X(4ε) by the
formula r(x) := u+ α(|v|)v, where x = u+ v, u ∈ U0, v ∈ Nu.

Let Û := U \ Y (4ε), and f̂ : Û → V be defined by

f̂(x) :=
{
f(r(x)) for x ∈ X(4ε) \ Y (4ε),
f(x) for x ∈ Û \X(4ε).

Clearly (f, Û) and (f̂ , Û) are otopic local flow generators. Observe that f|Û\intX(4ε) =
f̂|Û\intX(4ε).

Take another smooth function θ : [0, 3ε] → [0, 1] such that θ(t) = 1 for t 6 ε and
θ(t) = 0 for all t ∈ [2ε, 3ε]. Define a vector field g : Û → V by

g(x) :=
{
θ(|v|)v for x = u+ v ∈ X(3ε) \ Y (3ε),
0 for x ∈ Û \X(3ε).

Consider a homotopy h : Û × [0, 1] → V given by h(x, t) := f̂(x) + tg(x). Observe that
g|V(H) ≡ 0 and g

Û\X(2ε) ≡ 0. Therefore h defines an otopy relation between (f̂ , Û) and
(f̂ + g, Û).

Now let

U1 :=
{
x = u+ v : u ∈ U0, v ∈ Nu, |v| < ε

}
, U2 := Û \ [X(ε) ∪ U(H)].

Define fi to be a restriction of f̂ + g to Ui, i = 1, 2. Since Inv(Û , η
f̂+g) is a compact

subset of U1 ∪ U2, the generators (f̂ + g, Û) and (f1 t f2, U1 t U2) are otopic. The proof
is complete.

A similar procedure as in Lemma 4.3 can be applied to otopies and we obtain the
following:

Lemma 4.4. Let (h,Ω) be an otopy and (H) a maximal orbit type in Ω. Then there exist
two otopies (k, Ω̂), (l, Ω̃) such that

• Ω̂ ⊂ Ω, Ω̃ ⊂ Ω \ Ω(H), Ω̂ ∩ Ω̃ = ∅;
• (kt, Ω̂) is (H)-normal for all t ∈ [0, 1];
• k(x, t) = h(x, t) for all (x, t) ∈ Ω̂(H);
• (h,Ω)i is otopic to the disjoint union (k, Ω̂)i t (l, Ω̃)i for i = 0, 1.

Thus Lemma 4.4 gives the uniqueness of the decomposition in Lemma 4.3 up to an
otopy, i.e., it is invariant under equivariant continuation.

Now let Iso(V ) = {(H1), (H2), . . . , (Hk)}. Let the order be such that (Hi) < (Hj)
implies i < j.

Theorem 4.5. Let (f, U) be an equivariant local flow generator. Then there exists a
collection of local flow generators (fi, Ui), i = 1, 2, . . . , k, such that fi is (Hi)-normal for
each i = 1, 2, . . . , k and (f, U) is otopic to the disjoint sum (f1, U1)t(f2, U2)t. . .t(fk, Uk).
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Proof. The proof is by induction. We start from (Hk). Applying Lemma 4.3 we obtain
that (f, U) is otopic to (f1, U1) t (f2, U2), where U2 is disjoint from V(Hk). Thus (Hk−1)
is maximal in Iso(U2) and thus we can use Lemma 4.3 again. After k steps we obtain the
desired collection.

We call a collection obtained in Theorem 4.5 a normal collection of local equivariant
flow generators. We have just proved the existence of a normal collection in the otopy
class of any equivariant local flow generator. The uniqueness up to homotopy follows from
the following:
Theorem 4.6. Assume we are given two normal collections {(fαi , Uαi )} of local equivari-
ant flow generators (α = 1, 2, i = 1, 2, . . . , k). Then there exists a normal collection of
otopies {(hi, Ui)} such that, for every i = 1, 2, . . . , k, (hi, Ui) is an otopy between (fi, U1

i )
and (fi, U2

i ).
Proof. An induction argument is the same as in the proof of Theorem 4.5. We only have
to apply Lemma 4.4 instead of Lemma 4.3.
Corollary 4.7. Let (f, U) be an equivariant local flow generator. Then its equivariant
Conley index is homotopy equivalent to a G-CW complex which can be described as a
union:

CIG(η, U) = CIG(η, U1) ∨ CIG(η, U2) ∨ . . . ∨ CIG(η, Uk)
where Ui are domains of a normal collection of local equivariant flow generators which is
otopic to (f, U).

5. Relative cup-length. Throughout this section we assume that A ⊂ X ⊂ Y are
compact metric spaces and denote by H∗ the Alexander–Spanier cohomology with the
coefficients in a fixed abelian group G.

The cup product (see e.g. [20], Section 5.6)
` : Hk(X)×H l(X,A)→ Hk+l(X,A),

endows H∗(X,A) with a structure of an H∗(X)-module. If k : X → Y denotes the
inclusion map, then the formula

β · α := k∗(β)`α

defines on H∗(X,A) a structure of an H∗(Y )-module. The following remark is a simple
consequence of the naturality property of the cup product (see e.g. [12], Proposition 3.10).
Remark 5.1. If B ⊂ A is compact, then

H∗(X,A)→ H∗(X,B)→ H∗(A,B)
is an exact sequence of H∗(Y )-modules, where the maps are induced by inclusions.
Definition 5.2. Let β ∈ Hp(Y ), p > 0, β 6= 0, and A ⊂ X ⊂ Y be CW-complexes. The
relative cup-length of β with respect to (X,A) is the number χ(β;X,A) ∈ N defined as
follows:
• χ(β;X,A) = 0 if H∗(X,A) = 0;
• χ(β;X,A) = 1 if H∗(X,A) 6= 0 and β · α = 0 for every α ∈ H∗(X,A);
• χ(β;X,A) = k > 2 if there exists α0 ∈ H∗(X,A) such that βk−1 · α0 6= 0 and
βk · α = 0 for every α ∈ H∗(X,A).
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Definition 5.3. The relative cup-length of the H∗(Y )-module H∗(X,A) is the number
given by

Υ(X,A;Y ) := max
{
χ(β;X,A) : 0 6= β ∈ Hk(Y ), k > 0

}
.

If Hk(Y ) are trivial for all k > 0, but H∗(X,A) is non-zero, we set Υ(X,A;Y ) = 1; and
if H l(X,A) are trivial for all l > 0, then Υ(X,A;Y ) := 0.

Lemma 5.4. If B ⊂ A ⊂ X ⊂ Y , then
Υ(X,B;Y ) 6 Υ(X,A;Y ) + Υ(A,B;Y ).

Proof. Let k1 := Υ(X,A;Y ), k2 := Υ(A,B;Y ) and
0 6= α ∈ Hp(X,B), p > 0, 0 6= β ∈ Hq(Y ), q > 0.

Let also
i : (X,B)→ (X,A), j : (A,B)→ (X,B)

be inclusions.
Since k2 = Υ(A,B;Y ) we have j∗(βk2 · α) = 0.
By Remark 5.1 there exists γ ∈ H∗(X,A) such that βk2 · α = i∗(γ). Therefore

βk1+k2 · α = i∗(βk1 · γ).
But βk1 · γ = 0 by definition of k1, and thus βk1+k2 · α = 0. This means that

Υ(X,B;Y ) 6 k1 + k2,

which ends the proof.

Lemma 5.5. If A ⊂ X ⊂ Y1 ⊂ Y2, then
Υ(X,A;Y2) 6 Υ(X,A;Y1)

Proof. Let us denote inclusions by
s : X ↪→ Y, k : A ↪→ X, t : A ↪→ Y.

If β ∈ Hq(Y2), q > 0 and α ∈ H∗(X,A), then β · α = t∗(β)`α = k∗
(
s∗(β)

)
`α.

Therefore χ(β;X,A) = χ(s∗(β);X,A) for all β ∈ Hq(Y2), q > 0. But t = k ◦ s, thus the
condition t∗(β)`α 6= 0 implies s∗(β)`α 6= 0, and our inequality follows.

Recall that the cross product is defined by the formula
a× b := p∗1(a)` p∗2(b)

where p1, p2 denote projections (X,A) × (Y,B) onto (X,A) and (Y,B). For algebraic
properties of the maps × : Hk(X) × H l(Y ) → Hk+l(X × Y ) and × : Hk(X,A) ×
H l(Y,B)→ Hk+l(X × Y,X ×B ∪A× Y ) we refer to [12].

Let σ be a generator of H1(I, ∂I), where I := [−1, 1]. The formula
S(a) := a× σ

defines a mapping
S : Hk(X,A)→ Hk+1((X,A)× (I, ∂I)) = Hk+1(X × I,X × ∂I ∪A× I).

The following lemma holds (comp. [12], Theorem 3.21 for more general version).

Lemma 5.6. If X ⊂ Y then S is an isomorphism of H∗(Y )-modules. More exactly
S(b · a) = p∗(b) ·S(a),

where p denotes the projection Y × I onto Y .
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Proof. Let b ∈ H∗(Y ), a ∈ H∗(X,A). Consider the following projections:
p1 : (X × I, A× I)→ (X,A), p2 : (X × I,X × ∂I)→ (I, ∂I), p1 : X × I → X.

The following diagram is commutative (i1(x, t) = (i(x), t)):

X × I i1−−−−→ Y × Iyp1

yp
X

i−−−−→ Y.
Using this diagram together with the naturality and associativity properties of the

cup product we obtain

S(b · a) = (b · a)× σ = p∗1(i∗(b)` a)` p∗2(σ) = p∗1(i∗(b))` p∗1(a)` p∗2(σ)
= p∗1(i∗(b))`S(a) = i∗1(p∗(b))`S(a) = p∗(b) ·S(a),

which ends the proof.

Theorem 5.7.
Υ
(
(X,A)× (I, ∂I);Y

)
= Υ(X,A;Y ).

Proof. Let us notice that formally X × I ⊂ Y × I and thus H∗(X × I,X × ∂I ∪ A× I)
is an H∗(Y × I)-module, but p∗ : H∗(Y ) → H∗(Y × I) is an isomorphism which gives
the naturally isomorphic H∗(Y )-module structure: b � a := p∗(b) · a for b ∈ H∗(Y ) and
a ∈ H∗(X × I,X × ∂I ∪ A × I). By using this into account the desired equality follows
directly from Lemma 5.6.

Now we apply the above notion to the Conley index, first in the nonequivariant case.
It is useful to consider the cohomology Conley index defined by

CH∗(S) := H∗(N,L) = H∗(N/L),
where H∗ denotes the Alexander–Spanier cohomology and (N,L) is an index pair for the
isolated invariant set S. The last equality is understood that we identify H∗(N,L) and
H∗(N/L) via the isomorphism induced by the quotient map.

It is convenient to extend the index to an index of isolating neighbourhoods: if N
is an isolating neighbourhood for η then the homotopy (resp. cohomology) Conley index
of N is defined to be
h(N) = h(N, η) := h(Inv(N, η)), resp. CH∗(N) = CH∗(N, η) := CH∗(Inv(N, η)).
Before giving the definition of the relative cup-length of Conley index we need some

useful lemmas. If (N0, N1) is an index pair and t > 0 then, following [18], we set
N t

1 := {x ∈ N1 : η(x, [−t, 0]) ⊂ N1},
N−t0 :=

{
x ∈ N1 : there is a point x′ ∈ N0 and t′ ∈ [0, t]

with η(x′, [−t′, 0]) ⊂ N1 and η(x′t) = x
}
.

For t > 0 define a map of pointed spaces
g : (N1/N

−t
0 , ∗)→ (N t

1/N0 ∩N t
1, ∗)

by

g([x]) :=
{

[η(x, t)] if η(x, [0, t]) ⊂ N1 \N0,

∗ otherwise.
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It is known ([18], Lemma 23.14) that g is a homeomorphism. Therefore g induces an
isomorphism

g∗ : H∗(N t
1, N0 ∩N t

1)→ H∗(N1, N
−t
0 ).

Lemma 5.8. Assume that N is an isolating neighbourhood for η and (N1, N0) is an index
pair for S ⊂ N . If N1 ⊂ N then the inclusion i : (N1, N0 ∩N t

1)→ (N1, N
−t
0 ) induces an

isomorphism
i∗ = (g∗)−1 : H∗(N1, N

−t
0 )→ H∗(N1, N0 ∩N t

1).

Proof. Consider the following diagram, where the vertical arrows denote the quotient
maps:

(N1, N
−t
0 ) i←−−−− (N1, N0 ∩N t

1)y y
N1/N

−t
0

g−−−−→ N1/(N0 ∩N t
1).

From the definition of g it is obvious that the diagram is homotopy commutative and the
conclusion follows.

Definition 5.9. Let N be an isolating neighbourhood for the flow η. We define the
relative cup-length of η with respect to N to be

Υ(η,N) := Υ(N1, N0;N),
where (N1, N0) is an index pair for S.

The following lemma states that Υ(η,N) is well defined.

Lemma 5.10. Let N be an isolating neighbourhood for η and let S ⊂ N be an isolated
invariant set. If (N1, N0) and (N1, N0) are index pairs for S such that N1, N1 ⊂ N then

Υ(N1, N0;N) = Υ(N1, N0;N).

Proof. As in the proof of Lemma 23.17 in [18], we consider the following sequence of
maps, where j, î, î1 are defined by inclusion maps of pairs of spaces and g, ĝ are as above.
All of them are homotopy equivalences of pointed spaces, as is in details proved in [18].

N1/N0
j−−−−→ N1/N

−t
0

g−−−−→ N t
1/(N0 ∩N−t1 ) î1−−−−→ N1/N

−t
0

ĝ−−−−→ N t
1/(N0 ∩N

t

1 ) î−−−−→ N t
1/(N0 ∩N

t

1).
By Lemma 5.8 and definition of j it follows that the following sequence of isomorphisms

H∗(N1, N0) ≈←−−−− H∗(N1, N
−t
0 ) ≈←−−−− H∗(N t

1, N0 ∩N−t1 ) ≈−−−−→ H∗(N1, N
−t

0 )
≈−−−−→ H∗(N t

1, N0 ∩N
t

1 ) ≈−−−−→ H∗(N t
1, N0 ∩N

t

1 )
all are induced by inclusions. Therefore they all are isomorphisms of H∗(N)-modules and
the conclusion follows.

The continuation property holds for the relative cup-length.

Lemma 5.11. Consider a continuous family of flows ηλ : X × R → X, λ ∈ [0, 1]. Let
N ⊂ X be an isolating neighbourhood for all flows ηλ. Then

Υ(η0, N) = Υ(η1, N).
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Proof. Similarly as in the proof of Lemma 5.10 we shall use parts of the proof of Theorem
23.31 in [18]. Given µ ∈ [0, 1], there exists a neighbourhood W of µ in [0, 1] with the
property that for all λ ∈ W we can find pairs (N1, N0) ⊂ (Pλ1 , Pλ0 ) ⊂ (N1, N0) such
that (N1, N0), (N1, N0) are index pairs for ηµ in N , and (Pλ1 , Pλ0 ) is an index pair for ηλ
in N (see Lemma 23.28 in [18]). Then it is shown in the proof of Theorem 23.31 in [18]
that the inclusion i : (N1, N0) → (Pλ1 , Pλ0 ) induces a homotopy equivalence of pointed
spaces N1/N0 and Pλ1 /Pλ0 . The same argument applies to show that i∗ : H∗(Pλ1 , Pλ0 ) ≈
H∗(N1, N0) is an isomorphism of H∗(N)-modules. Therefore Υ(ηλ, N) = Υ(ηµ, N). Since
[0, 1] is compact and connected, this completes the proof.

One easily sees that the relative cup length is also invariant under otopy (the proof
is practically the same).

Now we turn back to the equivariant case. Let V be a finite-dimensional orthogonal
representation of a compact Lie group G and let Iso(V ) = {(H1), (H2), . . . , (Hk)}. Con-
sider an equivariant flow generator which is already a collection of local flow generators
(f1, U1) t (f2, U2) t . . . t (fk, Uk) such that fi is (Hi)-normal, i = 1, 2, . . . , k.

Consider one component (fi, Ui) which is (Hi)-normal. Choose a representative
H ∈ (Hi). Then V H is a linear subspace of V and it is a representation of the Weyl group
WH. The set UHi = Ui ∩ V H is WH-invariant and fh : UHi → V H is a WH-equivariant
local flow generator (comp. [1]). Therefore we can consider the local flow η̂ defined on
the quotient space N := UHi /WH ⊂ V H/WH. Then the relative cup-length Υ(η̂, N) is
well-defined. It is easy to observe that for any other representative H̃ = gHg−1 in the
same conjugacy class we obtain a conjugated local flow and therefore it gives the same
number Υ(η̂, N). Therefore we are ready to define a G-equivariant otopy invariant.

Definition 5.12. Let us consider a G-equivariant local flow generator (f, U), which
generates a local flow η. We define

ΥG(η, U) :=
∑

(Hi)∈Φ(G)

Υ(η̂i, N) · (Hi) ∈ U(G),

where η̂i, N) are as above.

Because of Lemma 5.11 this notion is well defined. Now, by use of Theorem 4.5 for an
arbitrary equivariant flow generator we find in the otopy class a collection of local flow
generators which is normal and apply the above definition. Thus we obtain an invariant
with immediate properties:

Theorem 5.13.

a) If two equivariant local flow generators (f0, U0), (f1, U1) are otopic then

ΥG(η0, U0) = ΥG(η1, U1),

where ηi are the local flows generated by fi, respectively.
b) If the H-component of ΥG(η, U) is non-zero, then Inv(η, UH) 6= ∅. Moreover, if

f = ∇ϕ is a gradient, then this coefficient is a lower bound of critical WH-orbits
of ϕ.
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Proof. The first statement is a consequence of the continuation property of each coeffi-
cient Υ(η̂i, N), see Lemma 5.11. As for the second one, we can apply Theorem 4.1 of [7]
for the local flow η̂, defined by a H-normal component of the normal collection of local
flow generators in the otopy class of (f, U).

6. Mountain Pass type theorems. In this section we give simple applications of the
module structure described above. We start with a classic result.

Let M be a smooth closed manifold and let f : M → R be a function of class C1.
Assume that f has only a finite number of critical points. Let c1 < c2 < . . . < cp denote
critical values of f . We choose numbers a0, a1, . . . , ap such that

a0 < c1 < a1 < c2 < . . . < cp < ap

As usual, we consider sublevel sets fa := {x ∈M : f(x) 6 a}.
Denote by ϕ : M × R → M the flow generated by a vector field −∇f : M → TM .

The following is well-known.

Theorem 6.1. For every i = 1, 2, . . . , p the sets fai are isolating neighbourhoods, and
(fai , fai−1) are index pairs for ϕ.

We can assume that fai are CW-complexes (ai are regular values). One observes that
fap = M , because cp is a maximum of f . Let R be any ring of coefficients.

Lemma 6.2. Let β ∈ Hk(M ;R), k > 0. Then for every i = 1, 2, . . . , p we have the
inequality χ(β; fai , fai−1) 6 1.

Proof. Since Inv(fai \ fai−1) ⊂ f−1(ci) is finite, the set A = {x1, x2, . . . , xs}, which cor-
responds to one critical level ci and each of the singletons {xj}, is an isolated invariant set.
Moreover as an isolating neighbourhood we can choose a small disc Dj which is contained
in fai \ fai−1 and is disjoint with the other discs Dk. Thus the disjoint sum D =

⋃
Dj

is an isolating neighbourhood for A. We find an index pair (Y, Z) for A in D. Since
Dj are contractible, we have χ(β;Y, Z) 6 1. On the other hand, both pairs (Y,Z) and
(fai , fai−1) are index pairs for A in (fai \fai−1), thus the inclusion gives an isomorphism
of H∗(Y, Z) and H∗(fai , fai−1) as H∗(M)-modules.

Proposition 6.3. For every i = 0, 1, 2, . . . , p and β ∈ Hk(M) we have χ(β; fai) 6 i.

Proof. The set fa0 is empty thus we start the induction. The inequality
χ(β; fai) 6 χ(β; fai , fai−1) + χ(β; fai−1)

can be proved identically to Lemma 5.6 (with B = ∅). Then we apply Lemma 4.3 to
complete the proof.

Therefore we have proved

Theorem 6.4. If M is a smooth closed manifold and a C1-function f : M → R has
a finite number of critical points on at most p levels, then χ(β;M) 6 p for every
β ∈ Hk(M), k > 0.

Example 6.5. Let M be an n-dimensional real projective space RPn. We have
H∗(M ;Z2) = Z2[α]/αn+1, where α ∈ H1(M ;Z2). This means that χ(α;M) = n + 1.
Therefore each smooth function f : RPn → R has at least n+ 1 critical points.
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The following example is a straightforward consequence of the last one.

Example 6.6. Let Sn−1 be a unit sphere in Rn and consider an even function f :
Sn−1 → R of class C1 with a finite number of critical points. Then f has at least n pairs
of antipodal critical points with different values.

Let f : Rn → R be an even function of class C1 such that the vector field −∇f
generates a flow ϕ on Rn. Assume that the annulus Ω := {x ∈ Rn : r 6 ‖x‖ 6 R} is an
isolating neighbourhood for ϕ. Moreover, assume

(H1) f(x) 6 0 for x ∈ ∂Ω and ∂Ω is an exit set (e.g. −∇f is directed outward of Ω at
points in ∂Ω).

(H2) There exists ρ ∈ (r,R) such that for x with ‖x‖ = ρ we have f(x) > α > 0.

Theorem 6.7. Under the above assumptions f has at least n pairs of critical points in Ω.

Let us begin with some notation. First, since the antipodal action of the group Z2 on Ω
is free, the quotient spaceM = Ω/Z2 is a compact manifold with boundary. Indeed,M is
diffeomorphic to the product RPn−1 × [r,R], and the boundary ∂M ≈ RPn−1 × {r,R}.
If we denote by σ the generator of the group H1([r,R], {r,R};Z2), then by Lemma 5.6
H∗(M,∂M ;Z2) is a H∗(M)-module with the generator β = 1 × σ ∈ H1(M,∂M ;Z2).
Nontrivial elements are of the form β ·γk ∈ Hk+1(M,∂M ;Z2), where γ ∈ H1(RPn−1;Z2).

We denote with the same letter f the induced map f : M → R. As before, we consider
the sublevel sets fa = {x ∈M : f(x) 6 a}. We have natural inclusions ia : fa ↪→M .

Definition 6.8. Let ξ ∈ H∗(M,∂M ;Z2). The depth of ξ is the number
ν(ξ) = inf{a : i∗a(ξ) 6= 0}.

Notice that the depth of any element is always a critical level of f . Indeed, if a is a
regular value of f , then for some ε > 0 the interval [a − ε, a] consists of regular values.
By Deformation Lemma, fa−ε is a deformation retract of fa. Thus, if i∗a(ξ) 6= 0 then also
i∗a−ε(ξ) 6= 0.

We start with

Lemma 6.9. ν(β) > α, where α is from (H2).

Proof. Let 0 < a < α. Consider the commutative diagram

H0(M) -
mono

H0(∂M) -
δ1

H1(M,∂M)

?

id∗

?

i∗a

?

i∗a

H0(fa) -k
H0(∂M) -δ

H1(fa, ∂M)

We have to prove that i∗a(β) = 0. Since δ1 is an epimorphism, there exists β such that
β = δ1(β). Therefore i∗a(β) = i∗a(δ1(β)) = δ(id∗(β)).

On the other hand, by our assumptions ∂M ⊂ fa has two connected components
and the generators of H0(∂M) correspond to the generators of H0(fa) given by different



72 Z. DZEDZEJ

components of fa, containing them. Therefore id∗(β) ∈ Im(k) and thus δ(id∗(β)) = 0.
This completes the proof.
Lemma 6.10. Assume that f has only a finite number of critical points. Let c = ν(β · γk)
be the only critical value in the interval [a1, a2]. Then ν(β · γk+1) > ν(β · γk).
Proof. We have i∗a2

(β · γk) 6= 0 and i∗a1
(β · γk) = 0. We can repeat the argument from

Lemma 6.2. The set of critical points A ⊂ f−1(c) is finite and (fa2 , fa1) is an index pair
of it. We have then χ(γ; fa2 , fa1) 6 1. On the other hand, applying the proof of Lemma
5.4 with B = ∂M ⊂ A = fa1 ⊂ X = fa2 ⊂ Y = M we obtain the inequalities

k 6 χ(γ; fa2 , ∂M) 6 χ(γ; fa2 , fa1) + χ(γ; fa1 , ∂M) 6 1 + (k − 1) = k.

Therefore i∗a2
(β · γk+1) = 0, which ends the proof.

Proof of Theorem 6.7. Now the proof of Theorem 6.7 is immediate. If the number of
critical points is finite, then the above lemmas give us n different critical levels of f ,
which are greater than α.

A more general abstract result of this type can be found in [7], Theorem 4.1.

7. Elliptic BVP. Consider the following family of Dirichlet boundary problems with a
parameter λ ∈ R:

∆ + λu = g(u) in Ω (1)
u = 0 in ∂Ω (2)

where
• Ω ⊂ Rn is an open Lipschitzian domain;
• g ∈ C1(R,R) defines a C1-operator G : L2(Ω) → L2(Ω), G(u)(x) := g(u(x)) such
that G(u) = o(‖u‖) when u→ 0;
• g = γ′, where γ ∈ C2(R,R).

It is clear that u ≡ 0 is a solution of the above problem for every λ ∈ R.
We are interested in the existence and multiplicity of bifurcation for this problem.

To this aim we formulate an appropriate problem in the Hilbert space L2(Ω). Let 〈·, ·〉
denote the inner product in L2(Ω). Consider the Sobolev space H1(Ω) ⊂ L2(Ω) with the
inner product

〈u, v〉1 =
n∑
i=1
〈u′xi , v

′
xi〉+ 〈u, v〉,

where derivatives are weak derivatives. By H1
0 (Ω) we denote the closure of a subspace

C∞0 (Ω) ⊂ H1(Ω) in the norm ‖·‖1.
A variational reformulation of the problem (1)(2) is the following integral equation

t(u, v)− 〈λu, v〉+ 〈G(u), v〉 = 0 ∀v ∈ H1
0 (Ω), (3)

where

t(u, v) =
n∑
i=1
〈u′xi , v

′
xi〉

is a bilinear form onH1
0 (Ω). Then solutions to (3) are called weak solutions to the Dirichlet

problem (1)(2). Since t is densely defined, symmetric, closed and bounded from below,
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there exists a closed linear operator T on L2(Ω) with the domain D(T ) ⊂ H1
0 (Ω) and

t(u, v) = 〈Tu, v〉 ∀u ∈ D(T ), v ∈ H1
0 (Ω).

The operator T is positive and invertible, both T and T−1 : L2(Ω) → L2(Ω) are
selfadjoint and closed. Moreover, T is completely continuous by the Rellich–Kondrashov
theorem (comp. [8]).

The spectrum σ(T ) of T consists of a sequence of real eigenvalues with finite multi-
plicities 0 < λ1 < λ2 < . . ., and λk →∞ when k →∞.

Thus the equality
t(u, v) =

〈
T 1/2u, T 1/2v

〉
∀u, v ∈ H1

0 (Ω),
defines a selfadjoint operator in L2(Ω) such that T = (T 1/2)2. T 1/2 is an isomorphism of
spaces H1

0 (Ω) and L2(Ω) and its inverse is completely continuous. Now we can write our
problem (3) in the form〈

T 1/2u, T 1/2v
〉
− 〈λu, v〉+ 〈G(u), v〉 = 0 ∀v ∈ H1

0 (Ω), (4)
or, equivalently,

〈w, ζ〉 −
〈
λT−1/2w, T−1/2ζ

〉
+
〈
T−1/2G(T−1/2w), ζ

〉
= 0 ∀ζ ∈ L2(Ω), (5)

where w = T 1/2u, ζ = T 1/2v. Since T 1/2 is selfadjoint, we obtain an equivalent form
〈w, ζ〉 − 〈λT−1w, ζ〉+ 〈T−1/2G(T−1/2w), ζ〉 = 0 ∀ζ ∈ L2(Ω). (6)

That is, we have an equation in L2(Ω):
w − λT−1w + f(w) = 0, (7)

where f : L2(Ω) → L2(Ω) is given by f(w) = T−1/2G(T−1/2w). This map is of class C1

and f(w) = o(‖w‖), whenever w → 0; hence w = 0 is a solution to (7). Bifurcation of
nontrivial solutions can happen only for λ = λk ∈ σ(T ), when Ker (id−λT−1) 6= 0.

Defining a selfadjoint and compact operators Aλ := id−(λk + λ)T−1 for λ ∈ R we
write (7) in the form

Aλw + f(w) = 0.

Since λk is an isolated eigenvalue of T with finite multiplicity, we have 0<dim KerA0<∞
and for λ 6= 0 Aλ is an isomorphism onto R(Aλ) in a small neighbourhood of λ = 0. It is
easy to check that F : L4(Ω)×R→ L2(Ω) given by F (w, λ) := Aλw+f(w) is a family of
gradient vector fields with potentials for the components given by aλ(w) = 1

2 〈Aλw,w〉,
ϕ(w) =

∫
Ω γ
(
T−1/2w(x)

)
dx, respectively. In this way we obtain a bifurcation problem in

the sense of [7], Section 5:
F (w, λ) = 0. (8)

That is, for some interval 0 ∈ (λ1, λ2) ⊂ [λ1, λ2] we have F (0, λ) = 0 for all λ, and the
derivatives with respect to ω, DωF (0, λ1) and DωF (0, λ2) are isomorphisms. We can now
apply a finite-dimensional reduction:

Assume that we have two Banach spaces embedded continuously in a Hilbert space
E1 ⊂ E0 ⊂ H. They all can be representations of the group G.

Theorem 7.1 ([7], Theorem 5.1). Let a G-equivariant mapping F : ΩF → E0 define a
bifurcation problem on [λ1, λ2]. If there exist decompositions

E1 = V ⊕W1, E0 = V ⊕W0, F (x, y, λ) = (f1(x, y, λ), f2(x, y, λ)),
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such that
Df2(0, λ)|W1 : W1 ≈W0 for λ ∈ [λ1, λ2]

then there exist:

(1) an open G-invariant subset Ω ⊂ Ωf , with {0} × [λ1, λ2] ⊂ Ω;
(2) a map h : Ωh → E0, defining a bifurcation problem on [λ1, λ2]

such that

(a) F|Ω defines a bifurcation problem on [λ1, λ2] equivalent to that defined by h;
(b) h(V ∩ Ωh) ⊂ V and h−1(0) ⊂ V ;
(c) if D1f2(0, 0, λ) = 0 then D1h(0, 0, λ) = D1f1(0, 0, λ).

Here the finite-dimensional subspace V is KerA0.

Remark. In fact, in order to apply the above theorem we use a small perturbation
argument near λ = 0 (comp. [13], Section II.4.2). We omit the details (see also [21]).
Observe that the reduction procedure works for equivariant maps.

In a finite-dimensional case V = (Rn, ϕ) is an orthogonal representation of a compact
Lie group G, i.e. ϕ : G→ O(n) is a group homomorphism. Let S(V ) := {x ∈ V : |x| = 1},
and S(Rn, ε) := {x ∈ Rn : |x| = ε}. We can use the following

Lemma 7.2 ([7], Lemma 6.2). Let f : Ωf → Rn be a gradient equivariant map defining
a bifurcation problem on [−1, 1] and Aλ := Dxf(0, λ), λ ∈ [−1, 1]. Assume that there is
C > 0 such that

〈A1(x), x〉 > C|x|2 for x ∈ Rn

and
〈A−1(x), x〉 6 −C|x|2 for x ∈ Rn.

Then for a sufficiently small ε the number of zero G-orbits of f in S(Rn, ε) × (−1, 1) is
not less than the cup-length of S(V )/G.

Applying the above results to the trivial group G = {e}, we have the following:

Theorem 7.3. For each k ∈ N the point (0, λk) is a bifurcation point of (7) of order at
least 2, i.e. for λ = λk there exist at least two solutions on each sufficiently small sphere
in L2(Ω).

Proof. It is enough to observe that the cup-length of a sphere is 2 and use Lemma 7.2.

Assume now that our domain is symmetric and the function g in problem (1) is odd
g(−x) = −g(x). Then

F (−w, λ) = −F (w, λ).

Theorem 7.4. If g is an odd function and Ω is a symmetric domain in Rn with respect
to the antipodal action, then each point (0, λk) is a bifurcation point of order 2l, where
l is the multiplicity of λk.

Proof. One observes that the reduction procedures preserve the equivariance property.
An action of Z2 on L2(Ω)×R is given by −1 ·(f(x), λ) = (f(−x), λ). The main ingredient
is that the cup-length of Sl−1/Z2 is equal to l.



CONLEY INDEX 75

The last two results are not new, in fact. Similar results one can find e.g. in [2]. They
are described here as a simple illustration of the technique. More complicated symmetries
may be considered (comp. an example in [21]). The author is also convinced that problems
with p-Laplacians can be considered in a similar way. An application to periodic solutions
of Hamiltonian systems is given in [7], where a natural action the group G = S1 on the
space of periodic functions is used.
Acknowledgments. This research was supported by Polish Ministry of Higher Edu-
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