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Abstract. In this work we will consider a class of second order perturbed Hamiltonian systems
of the form q̈ + Vq(t, q) = f(t), where t ∈ R, q ∈ Rn, with a superquadratic growth condition on
a time periodic potential V : R×Rn → R and a small aperiodic forcing term f : R→ Rn. To get
an almost homoclinic solution we approximate the original system by time periodic ones with
larger and larger time periods. These approximative systems admit periodic solutions, and an
almost homoclinic solution for the original system is obtained from them by passing to the limit
in C2

loc(R,Rn) when the periods go to infinity. Our aim is to show the existence of two different
approximative sequences of periodic solutions: one of mountain pass type and the second of local
minima.

1. Introduction. In this work we will consider a class of second order perturbed Hamil-
tonian systems

q̈ + Vq(t, q) = f(t) (1)

where t ∈ R, q ∈ Rn, and a potential V : R × Rn → R and a forcing term f : R → Rn
satisfy the following hypotheses:

(H1) V (t, q) = −K(t, q) + W (t, q), where K,W : R × Rn → R are C1-maps, T -periodic
with respect to t, T > 0,

(H2) there are constants b1, b2 > 0 such that for all (t, q) ∈ R× Rn,

b1|q|2 ≤ K(t, q) ≤ b2|q|2,
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(H3) for all (t, q) ∈ R× Rn, K(t, q) ≤ (q,Kq(t, q)) ≤ 2K(t, q),
(H4) Wq(t, q) = o(|q|) as |q| → 0 uniformly with respect to t,
(H5) there is a constant µ > 2 such that for every t ∈ R and q ∈ Rn \ {0},

0 < µW (t, q) ≤ (q,Wq(t, q)),

(H6) f : R→ Rn is a continuous bounded function.

Here and subsequently, (·, ·) : Rn×Rn → R is the standard inner product and | · | : Rn →
[0,∞) is the Euclidean norm.

In the literature, (H2) is called a pinching type condition, and (H5) is a superquadratic
growth condition due to A. Ambrosetti and P. H. Rabinowitz. (1) is also called the
Lagrangian or Newtonian system.

Let us remark that if the forcing term f is trivial and the conditions (H1)–(H5) are
fulfilled then 0 ∈ Rn is a stationary point of (1). Therefore it is natural to ask for the
existence of homoclinic (to 0) solution of (1), i.e. a solution Q : R → Rn such that
(Q(t), Q̇(t))→ (0, 0) as t→ ±∞. If f is nontrivial then 0 ∈ Rn is no longer a stationary
point of (1), and hence (1) does not possess homoclinics (to 0) in the classical sense.
Nevertheless we can still study the existence of a solution q : R→ Rn such that q(t)→ 0
as t→ ±∞. Moreover, under suitable assumptions on V , q̇(t)→ 0 as t→ ±∞.

In many papers concerning systems of second order ODE’s, solutions vanishing at ±∞
(both with the extra property that q̇(t) → 0 as t → ±∞, and without it) are called
homoclinic, too. See for example: [IJ, LJ, S, TL, TX, ZY]. As it might be confusing to
people working in the theory of dynamical systems, in [J1] we introduced and since then
we have consistently used the notion of an almost homoclinic solution (to 0) of (1).

Definition 1.1. A solution q : R→ Rn of (1) is said to be almost homoclinic if q(t)→ 0
as t→ ±∞.

For each k ∈ N, let Ek = W 1,2
2kT (R,Rn), the Sobolev space of 2kT -periodic functions

on R with values in Rn under the norm

‖q‖Ek
=
(∫ kT

−kT
(|q(t)|2 + |q̇(t)|2)dt

)1/2
.

Let L∞2kT (R,Rn) denote the space of 2kT -periodic essentially bounded measurable
functions from R into Rn equipped with the norm

‖q‖L∞
2kT

= ess sup
{
|q(t)| : t ∈ [−kT, kT ]

}
.

Proposition 1.2 (see [IJ, Proposition 1.1]). There is a positive constant C such that for
each k ∈ N and q ∈ Ek,

‖q‖L∞
2kT
≤ C‖q‖Ek

. (2)

If T ≥ 1
2 then the inequality (2) holds with C =

√
2 (see [IJ, Fact 2.8]). Set

M = sup
{
W (t, q) : t ∈ [0, T ], |q| = 1

}
,

m = inf
{
W (t, q) : t ∈ [0, T ], |q| = 1

}
,

b̄1 = min{1, 2b1},
b̄2 = max{1, 2b2}.
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We will also assume that the forcing term is sufficiently small in L2(R,Rn). Precisely,

(H7) 2M < b̄1 and ‖f‖L2(R,Rn) ≤ β
2C , where 0 < β < b̄1 − 2M and C is the constant

from the inequality (2).

In [IJ] we proved the following theorem.

Theorem 1.3 (see [IJ, Theorem 1.2]). Under the conditions (H1)–(H7), the system (1)
has an almost homoclinic solution q0 ∈W 1,2(R,Rn) such that q̇0(t)→ 0 as t→ ±∞.

If the forcing term f is trivial and the conditions (H1)–(H5) are fulfilled then (1) pos-
sesses a nontrivial homoclinic solution.

To prove this theorem we applied the approximative method stated in a general setting
and proved in [J2].

Theorem 1.4 (see [J2, Theorem 1.2]). Let V : R× Rn → R and f : R→ Rn satisfy the
following hypotheses:

(C1) V is C1-smooth with respect to all variables and T -periodic with respect to t, T > 0,
(C2) f is nontrivial, bounded, continuous and square integrable.

Assume that for each k ∈ N, the Newtonian system

q̈ + Vq(t, q) = fk(t), (3)

where fk : R→ Rn is the 2kT -periodic extension of f restricted to the interval [−kT, kT )
over R, has a solution qk ∈ Ek. If {‖qk‖Ek

}k∈N is a bounded sequence in R then there
exist a subsequence {qkj}j∈N and a function q ∈W 1,2(R,Rn) such that

qkj
→ q as j →∞,

in the topology of C2
loc(R,Rn) and q is an almost homoclinic solution of the Newtonian

system (1).

By a solution qk ∈ Ek we mean a 2kT -periodic solution of (3), i.e. qk(kT )−qk(−kT ) =
0 = q̇k(kT )− q̇k(−kT ) and qk ∈ C2((−kT, kT ),Rn).

Such a sequence {qk}k∈N as in Theorem 1.4 is called an approximative sequence for (1).
Here and subsequently, C2

loc(R,Rn) denotes the space of C2 functions on R with values
in Rn under the topology of uniformly convergence of functions and all derivatives up to
the order 2 on every compact subsets of R.

Let Ik : Ek → R be defined by

Ik(q) =
∫ kT

−kT

(1
2 |q̇(t)|

2 − V (t, q(t)) + (fk(t), q(t))
)
dt. (4)

The functional Ik is C1 and its critical points are 2kT -periodic solutions of (3). In [IJ]
by the use of the Mountain Pass Theorem (see for example [MW, Theorem 4.10]) we
received an approximative sequence {qk}k∈N for (1). In consequence, we got an almost
homoclinic solution q0 of (1) as the limit in the topology of C2

loc(R,Rn) of a certain
subsequence {qkj

}j∈N. For a fixed k ∈ N, qk is a critical point of mountain pass type for
the Lagrangian functional Ik.

According to MathSciNet up till now the paper [IJ] has been cited over 50 times
by many authors. In some papers (see for example: [LJ,TL,TX,ZY]) Theorem 1.3 was
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extended to a broader class of potentials. However, it seems that no one has asked for
the multiplicity of almost homoclinic solutions.

The aim of this paper is to show the existence of another approximative sequence
{pk}k∈N for (1). For each k ∈ N, pk is a point of minimum of Ik on a ball in Ek.
Theorem 1.5. Under the assumptions (H1)–(H7), the system (1) possesses two approx-
imative sequences: one of mountain pass type and the second of local minima.

Using Theorem 1.4 we get an almost homoclinic solution p0 of (1) as the limit in
C2

loc(R,Rn) of a subsequence {pkj
}j∈N ⊂ {pk}k∈N. Unfortunately, we are not able to

answer for the question whether p0 is different from q0.

2. An approximative sequence of local minima. To prove the existence of an ap-
proximative sequence {pk}k∈N (of local minima) for (1) we will need the following result.
Lemma 2.1. If V and f satisfy (H1)–(H7) then for every k ∈ N the functional Ik satisfies
the Palais-Smale condition, i.e. every sequence {um}m∈N ⊂ Ek such that {Ik(um)}m∈N
is bounded in R and I ′k(um)→ 0 in E∗k , as m→∞, contains a convergent subsequence.

The proof of this lemma can be found in [IJ] (see [IJ, the proof of Lemma 2.4]).
Applying (H5) we see that for each q 6= 0 and t ∈ [0, T ] the function

(0,+∞) 3 ζ 7→W (t, ζ−1q)ζµ

is nonincreasing. On account of the above remark, we have

W (t, q) ≤W
(
t,
q

|q|

)
|q|µ, if 0 < |q| ≤ 1, t ∈ [0, T ] (5)

and
W (t, q) ≥W

(
t,
q

|q|

)
|q|µ, if |q| ≥ 1, t ∈ [0, T ]. (6)

Let
% = 1

C
.

Fix k ∈ N. Assume that q ∈ Ek and ‖q‖Ek
≤ %. From (2) it follows that ‖q‖L∞

2kT
≤ 1.

Applying (H2), (5) and (H7) we get

Ik(q) ≥ 1
2 b̄1‖q‖

2
Ek
−M‖q‖2Ek

− ‖fk‖L2
2kT
‖q‖L2

2kT

≥ 1
2 b̄1‖q‖

2
Ek
−M‖q‖2Ek

− β

2C ‖q‖Ek

= 1
2 (b̄1 − β − 2M)‖q‖2Ek

+ β

2 ‖q‖
2
Ek
− β

2C ‖q‖Ek
. (7)

Set
α = b̄1 − β − 2M

2C2 .

The condition (H7) implies α > 0. Define
dk = inf

‖q‖Ek
≤%
Ik(q).

Since Ik(0) = 0 we have dk ≤ 0. By Ekeland’s variational principle (see [MW, Theorem
4.1]), there is a minimizing sequence {um}m∈N ⊂ {q ∈ Ek : ‖q‖Ek

≤ %} such that
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Ik(um) → dk and I ′k(um) → 0 as m → ∞. From Lemma 2.1 we conclude that dk is a
critical value of Ik. Consequently, there exists pk ∈ Ek such that ‖pk‖Ek

≤ %, Ik(pk) = dk
and I ′k(pk) = 0. Thus pk is a 2kT -periodic solution of (3), and Theorem 1.4 now implies
pk → p0 in the topology of C2

loc(R,Rn), where p0 is an almost homoclinic solution of (1).
For the unperturbed system (f ≡ 0) it suffices to take pk ≡ 0 for each k ∈ N, therefore

p0 ≡ 0.

3. An open problem. At the beginning we briefly sketch the proof of existence of an
approximative sequence {qk}k∈N, of mountain pass type, for (1).

Using (H2) and (6) we obtain

Ik(q) ≤ 1
2 b̄2‖q‖

2
Ek
−m

∫ kT

−kT
|q(t)|µ dt+ ‖fk‖L2

2kT
‖q‖Ek

+ 2kTm (8)

for each k ∈ N. We conclude from (8) that there exists e1 ∈ E1 such that ‖e1‖E1 > % and
I1(e1) < 0. Define

ek(t) =
{
e1(t) for |t| ≤ T,
0 for T < |t| ≤ kT

for k > 0. Then ek ∈ Ek, ‖ek‖Ek
= ‖e1‖E1 > % and Ik(ek) = I1(e1) < 0. As (7), (8) and

Lemma 2.1 hold, by the Mountain Pass Theorem we see that Ik possesses a critical value
ck ≥ α given by

ck = inf
g∈Γk

max
s∈[0,1]

Ik(g(s)),

where
Γk = {g ∈ C([0, 1], Ek) : g(0) = 0, g(1) = ek}.

Hence there is qk ∈ Ek such that Ik(qk) = ck and I ′k(qk) = 0. Moreover, the sequence
{‖qk‖Ek

}k∈N is bounded in R (see the proof of [IJ, Lemma 2.6]).
Since ck ≥ α > 0 ≥ dk, we have pk 6= qk for each k ∈ N. Thus Theorem 1.5 is proved.
Theorem 1.4 implies {qk}k∈N goes to q0 along a subsequence in the topology of

C2
loc(R,Rn). In [IJ] it was proved that for the unperturbed system q0 6= 0 ≡ p0.
The question still unanswered is whether q0 6= p0 in the case f 6= 0.
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