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Abstract. In the paper, a fractional continuous Roesser model is considered. Existence and
uniqueness of a solution and continuous dependence of solutions on controls of the nonlinear
model are investigated. Next, a theorem on the existence of an optimal solution for linear model
with variable coefficients is proved.

1. Introduction. In the last few decades, fractional calculus plays an essential role
in the fields of mathematics, physics, electronics, mechanics, chemistry, etc. (cf. [CM],
[GO], [KST], [SKM], [WG]). Many physical phenomena are modelled accurately by using
fractional partial differential equations. For instance, the fractional diffusion equations
have been studied by many authors (cf. [L], [MP], [SW]). Moreover, the kinetic and
advection-dispersion equations have been investigated very well (cf. [SZ], [LATZ]).

In our paper we consider the following fractional nonlinear continuous control system




(
Dα1
a1+,t1x1

)
(t) = f1(t, x1(t), x2(t), u(t)),(

Dα2
a2+,t2x2

)
(t) = f2(t, x1(t), x2(t), u(t)),

t = (t1, t2) ∈ P = [a1, b1]× [a2, b2] a.e.,
(1.1)

{(
I1−α1
a1+,t1x1

)
(a1, t2) = 0, t2 ∈ [a2, b2] a.e.,(

I1−α2
a2+,t2x2

)
(t1, a2) = 0, t1 ∈ [a1, b1] a.e.,

(1.2)

u(t) ∈M ⊂ Rm, t ∈ P,

(1)
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with the performance index

J(x1, x2, u) =
∫
P

f0(t, x1(t), x2(t), u(t)) dt, (2)

where fi : P × Rn × Rn × M → Rn, f0 : P × Rn × Rn × M → R, αi ∈ (0, 1) for
i = 1, 2, Dαi

ai+,tixi denotes the left-sided Riemann–Liouville derivative of order αi of the
function xi with respect to variable ti, I1−αi

ai+,tixi—left-sided Riemann–Liouville integral
of order 1− αi of the function xi with respect to variable ti (i = 1, 2).

If α1 = α2 = 1 then system (1) is an extension of 2-D continuous Roesser model of the
first order, which is a counterpart of 2-D discrete Roesser model introduced by Roesser in
1975 ([Roes]). Such models (continuous and discrete), which are applied to the research
of transformation of images and chemistry processes, have been investigated by many
authors (cf. [I1], [I2], [W]). In paper [W] a theorem on the existence and uniqueness of
solution and the maximum principle for problem (1)–(2), with α1 = α2 = 1, in the case
when f0, f1, f2 are linear, have been proved. In [I2] the maximum principle for linear
control system and nonlinear performance index has been derived. Moreover, in [I1] for
such a problem, a theorem on the existence of an optimal solution in the case when a
function f0 is convex with respect to variables (x1, x2, u) has been obtained. In [I1] an
existence and uniqueness of solution and a continuous dependence of solutions on controls
for the nonlinear Roesser model of the first order also have been proved.

In the paper [R] the fractional linear continuous Roesser model of type (1.1) with par-
tial Caputo derivatives is investigated. The boundary conditions are described by partial
derivatives of the integer and zero order. Particularly, a general response formula for such
a problem is derived. This model is applied in fractional diffusion and transmission line
equations (cf. [R1]).

The aim of this paper is obtaining analogous results for problem (1)–(2) as in [I1] for
the continuous Roesser model of the first order.

In Section 2 some basic definitions and facts concerning the fractional calculus of
functions of two variables are given.

Next (Section 3), we prove a theorem on the existence and uniqueness of a solution to
system (1) for any control u ∈ Lp(P,M) (Theorem 3.1) and a theorem on the continuous
dependence of solutions on controls (Theorem 3.2). Finally, in the case when functions
f1, f2 are linear, we derive a theorem on the existence of an optimal solution for problem
(1)–(2) (Theorem 4.4) and demonstrate a simple illustrative example (Section 5).

To the best knowledge of the author, the problems studied in Sections 3 and 4 have
not been considered yet.

2. Preliminaries. In this section we give basic definitions and facts connected with the
fractional integrals and derivatives of functions of two variables.

Let P = [a1, b1]× [a2, b2] ⊂ R2 be a fixed bounded rectangle.
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Definition 2.1 ([SKM, Formula 24.4]). Let ϕ = ϕ(t1, t2) ∈ L1(P,Rn) and α > 0. The
functions Iαa1+,t1ϕ and Iαb1−,t1ϕ of the form(

Iαa1+,t1ϕ
)
(t1, t2) := 1

Γ(α)

∫ t1

a1

ϕ(τ1, t2)
(t1 − τ1)1−α dτ1, (t1, t2) ∈ (a1, b1)× (a2, b2) a.e.

(
Iαb1−,t1ϕ

)
(t1, t2) := 1

Γ(α)

∫ b1

t1

ϕ(τ1, t2)
(τ1 − t1)1−α dτ1, (t1, t2) ∈ (a1, b1)× (a2, b2) a.e.

are called left-sided and right-sided Riemann–Liouville integrals of order α on P of the
function ϕ with respect to variable t1, respectively.

If α = 0 then we put

Iαa1+,t1ϕ := ϕ and Iαb1−,t1ϕ := ϕ.

Remark 2.2. It is easy to show that the functions

(a1, b1)× (a2, b2) 3 (t1, t2) 7→
(
Iαa1+,t1ϕ

)
(t1, t2) ∈ R̄n

(a1, b1)× (a2, b2) 3 (t1, t2) 7→
(
Iαb1−,t1ϕ

)
(t1, t2) ∈ R̄n

are defined almost everywhere, summable and consequently almost everywhere finite on
(a1, b1)× (a2, b2). Moreover (cf. [M, Lemma 1.4]), for every α1, α2 > 0 we have(

Iα1
a1+,t1I

α2
a1+,t1ϕ

)
(t1, t2) =

(
Iα1+α2
a1+,t1 ϕ

)
(t1, t2), (t1, t2) ∈ (a1, b1)× (a2, b2) a.e., (3)(

Iα1
b1−,t1I

α2
b1−,t1ϕ

)
(t1, t2) =

(
Iα1+α2
b1−,t1 ϕ

)
(t1, t2), (t1, t2) ∈ (a1, b1)× (a2, b2) a.e. (4)

Remark 2.3. We identify functions that are equal a.e. on P .

Analogously, one can define fractional Riemann–Liouville integrals of functions
ϕ ∈ L1(P,Rn) with respect to variable t2.

We shall formulate next theorems and lemmas in this section for the function Iαa1+,t1ϕ.
The other fractional integrals introduced above have analogous properties.

Similarly, as in the case of functions of one variable (cf. [K, Lemma 1]) we can prove
the following lemma.

Lemma 2.4. If ϕ ∈ Lp(P,Rn), 1 6 p <∞, α > 0, then∣∣(Iαa1+,t1ϕ
)
(t1, t2)

∣∣p 6 c1
(
Iαa1+,t1 |ϕ|

p)(t1, t2), (t1, t2) ∈ P a.e.,

where c1 =
(
(b1 − a1)α/Γ(α+ 1)

)p−1. Consequently, Iαa1+,t1ϕ ∈ L
p(P,Rn).

Now, we shall prove two lemmas.

Lemma 2.5. If g ∈ L1(P,Rn), α > 0 and
(
Iαa1+,t1g

)
(t1, t2) = 0 for a.e. (t1, t2) ∈ P , then

g(t1, t2) = 0 for a.e. (t1, t2) ∈ P .

Proof. Condition (3) implies that

0 =
(
I1−α
a1+,t10

)
(t1, t2) =

(
I1−α
a1+,t1I

α
a1+,t1g

)
(t1, t2) =

(
I1
a1+,t1g

)
(t1, t2) =

∫ t1

a1

g(s, t2) ds

for a.e. (t1, t2) ∈ P . It means that g(t1, t2) = 0 for a.e. (t1, t2) ∈ P and the proof is
completed.
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Lemma 2.6. Let α > 0 and 1 6 p < ∞. Then the operator Iαa1+,t1 : Lp(P,Rn) →
Lp(P,Rn) is bounded; precisely, for any function ϕ ∈ Lp(P,Rn)∥∥Iαa1+,t1ϕ

∥∥
Lp

6 K1 ‖ϕ‖Lp ,

where K1 = (b1 − a1)α/Γ(α+ 1).

Proof. From Lemma 2.4 and the Fubini Theorem it follows that∥∥Iαa1+,t1ϕ
∥∥p
Lp

=
∫
P

∣∣(Iαa1+,t1ϕ
)
(t1, t2)

∣∣p dt1 dt2 6 c1

∫
P

(
Iαa1+,t1 |ϕ|

p)(t1, t2) dt1 dt2

= c1

Γ(α)

∫ b2

a2

(∫ b1

a1

(∫ t1

a1

|ϕ(τ1, t2)|p

(t1 − τ1)1−α dτ1

)
dt1

)
dt2

= c1

Γ(α)

∫ b2

a2

(∫ b1

a1

(
|ϕ(τ1, t2)|p

∫ b1

τ1

1
(t1 − τ1)1−α dt1

)
dτ1

)
dt2

= c1

αΓ(α)

∫ b2

a2

∫ b1

a1

|ϕ(τ1, t2)|p (b1 − τ1)α dτ1 dt2

6
c1(b1 − a1)α

Γ(α+ 1) ‖ϕ‖pLp =
(

(b1 − a1)α

Γ(α+ 1)

)p
‖ϕ‖pLp

for any ϕ ∈ Lp(P,Rn), where c1 is the constant from Lemma 2.4.

Definition 2.7. By AC(t1) (AC(t2)) we denote the set of all functions z : P → Rn such
that

z(t1, t2) =
∫ t1

a1

l(τ1, t2) dτ1 + p(t2) for a.e. (t1, t2) ∈ P(
z(t1, t2) =

∫ t2

a2

l(t1, τ2) dτ2 + p(t1) for a.e. (t1, t2) ∈ P
)

with l ∈ L1(P,Rn) and p ∈ L1([a2, b2],Rn)
(
p ∈ L1([a1, b1],Rn)

)
.

Remark 2.8. From the above definition it follows that the function z ∈ AC(t1)
(z ∈ AC(t2)) is summable on P and satisfies the condition z(a1, t2) = p(t2) for a.e.
t2 ∈ [a2, b2]

(
z(t1, a2) = p(t1) for a.e. t1 ∈ [a1, b1]

)
. Moreover, there exists the partial

derivative ∂z
∂t1

( ∂z∂t2 ) a.e. on P and

∂z

∂t1
(t1, t2) = l(t1, t2), (t1, t2) ∈ P a.e.( ∂z

∂t2
(t1, t2) = l(t1, t2), (t1, t2) ∈ P a.e.

)
.

Remark 2.9. From the previous remark it follows that the representation of z from
Definition 2.7 is unique.

Definition 2.10. Let p ≥ 1. By Iαa1+,t1(Lp) we shall denote the set

Iαa1+,t1(Lp) :=
{
f : P → Rn : f(t) = (Iαa1+,t1ϕ)(t), t ∈ P a.e., where ϕ ∈ Lp(P,Rn)

}
.

Analogously, one can define the sets Iαa2+,t2(Lp) and Iαbi−,ti(L
p), i = 1, 2.
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Now, we shall prove the following

Proposition 2.11. Let f ∈ L1(P,Rn), α > 0 and 1 6 p < +∞. Then

f ∈ Iαa1+,t1(Lp) ⇐⇒ I1−α
a1+,t1f ∈ AC

p(t1) and
(
I1−α
a1+,t1f

)
(a1, ·) = 0,

where ACp(t1) :=
{
h ∈ AC(t1) : ∂h

∂t1
∈ Lp(P,Rn) and h(a1, ·) ∈ Lp([a2, b2],Rn)

}
.

Proof. Let us assume that f ∈ Iαa1+,t1(Lp). Then there exists a function ϕ ∈ Lp(P,Rn)
such that f(t1, t2) =

(
Iαa1+,t1ϕ

)
(t1, t2) for a.e. (t1, t2) ∈ P . Thus from property (3) we

obtain(
I1−α
a1+,t1f

)
(t1, t2) =

(
I1−α
a1+,t1I

α
a1+,t1ϕ

)
(t1, t2) =

(
I1
a1+,t1ϕ

)
(t1, t2) =

∫ t1

a1

ϕ(τ1, t2) dτ1

for a.e. (t1, t2) ∈ P . Consequently, I1−α
a1+,t1f ∈ ACp(t1) and

(
I1−α
a1+,t1f

)
(a1, ·) ≡ 0 (cf.

Remark 2.8).
Now, let

I1−α
a1+,t1f ∈ AC

p(t1) and
(
I1−α
a1+,t1f

)
(a1, ·) ≡ 0.

Then there exists (Remark 2.8) a function ϕ ∈ Lp(P,Rn) such that(
I1−α
a1+,t1f

)
(t1, t2) =

∫ t1

a1

ϕ(τ1, t2) dτ1 =
(
I1
a1+,t1ϕ

)
(t1, t2), (t1, t2) ∈ P a.e.

Using once again property (3), we get(
I1−α
a1+,t1f

)
(t1, t2) =

(
I1
a1+,t1ϕ

)
(t1, t2) =

(
I1−α
a1+,t1I

α
a1+,t1ϕ

)
(t1, t2), (t1, t2) ∈ P a.e.,

and consequently(
I1−α
a1+,t1

(
f −

(
Iαa1+,t1ϕ

)))
(t1, t2) = 0, (t1, t2) ∈ P a.e.

From Lemma 2.5 it follows that f = Iαa1+,t1ϕ a.e. on P , so f ∈ Iαa1+,t1(Lp). The proof is
completed.

Analogously we can prove the following proposition.

Proposition 2.12. Let f ∈ L1(P,Rn) and α > 0. Then

f ∈ Iαa2+,t2(Lp) ⇐⇒ I1−α
a2+,t2f ∈ AC

p(t2) and
(
I1−α
a2+,t2f

)
(·, a2) = 0,

f ∈ Iαb1−,t1(Lp) ⇐⇒ I1−α
b1−,t1f ∈ AC

p(t1) and
(
I1−α
b1−,t1f

)
(b1, ·) = 0,

f ∈ Iαb2−,t2(Lp) ⇐⇒ I1−α
b2−,t2f ∈ AC

p(t2) and
(
I1−α
b2−,t2f

)
(·, b2) = 0.

Definition 2.13. Let α ∈ (0, 1) and f ∈ L1(P,Rn). We say that the function f pos-
sesses the left-sided Riemann–Liouville derivative Dα

a1+,t1f of order α with respect to
variable t1, if I1−α

a1+,t1f ∈ AC(t1). By this derivative we mean the classical partial deriva-
tive ∂

∂t1

(
I1−α
a1+,t1f

)
(existing a.e. on P ) of the function

(
I1−α
a1+,t1f

)
, it means(

Dα
a1+,t1f

)
(t1, t2) := ∂

∂t1

(
I1−α
a1+,t1f

)
(t1, t2), (t1, t2) ∈ P a.e.

Similarly, we say that the function f possesses the left-sided Riemann–Liouville derivative
Dα
a2+,t2f of order α with respect to variable t2, if I1−α

a2+,t2f ∈ AC(t2). By this derivative
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we mean the classical partial derivative ∂
∂t2

(
I1−α
a2+,t2f

)
, it means(

Dα
a2+,t2f

)
(t1, t2) := ∂

∂t2

(
I1−α
a2+,t2f

)
(t1, t2), (t1, t2) ∈ P a.e.

Remark 2.14. Analogously we define the right-sided Riemann–Liouville partial deriva-
tive of α of the function f ∈ L1(P,Rn). Precisely(

Dα
bi−,tif

)
(t1, t2) := − ∂

∂ti

(
I1−α
bi−,tif

)
(t1, t2), (t1, t2) ∈ P a.e.,

provided I1−α
b1−,t1f ∈ AC(t1), when i = 1 and I1−α

b2−,t2f ∈ AC(t2), when i = 2.
Remark 2.15. From the above definition, Remark 2.8, Proposition 2.11 and its proof it
follows that, if α ∈ (0, 1) and f ∈ Iαai+,ti(L

p)
(
f ∈ Iαbi−,ti(L

p)
)
, i = 1, 2, then f possesses

the left-sided (right-sided) Riemann–Liouville derivative of order α Dα
ai+,tif

(
Dα
bi−,tif

)
and then Dα

ai+,tif = ϕ
(
Dα
bi−,tif = ψ

)
a.e. on P , where ϕ (ψ) is such that f = Iαai+,tiϕ(

f = Iαbi−,tiψ
)
.

Now, let us define a norm in Iαa1+,t1(Lp)
(
Iαb1−,t1(Lp)

)
in the following way:

‖f‖Iαa1+,t1
(Lp) := ‖Dα

a1+,t1f‖Lp
(
‖f‖Iα

b1−,t1
(Lp) := ‖Dα

b1−,t1f‖Lp
)
.

Similarly, we can introduce a norm in Iαa2+,t2(Lp), Iαb2−,t2(Lp). It is easy to check that
the spaces under consideration with the norms introduced above are completed.

Later on, we shall use a theorem being the counterpart of some facts ([KST, Lemmas
2.4, 2.5a, 2.6a]) for fractional partial derivatives.
Theorem 2.16. Let 0 < α < 1, 1 6 p <∞ and i = 1, 2.

1. If f ∈ Lp(P,Rn), then(
Dα
ai+,tiI

α
ai+,tif

)
(t1, t2) = f(t1, t2) and

(
Dα
bi−,tiI

α
bi−,tif

)
(t1, t2) = f(t1, t2)

for a.e. (t1, t2) ∈ P ;
2. if f ∈ Iαai+,ti(L

p), then(
Iαai+,tiD

α
ai+,tif

)
(t1, t2) = f(t1, t2), (t1, t2) ∈ P a.e.;

3. if f ∈ Iαbi−,ti(L
p), then(
Iαbi−,tiD

α
bi−,tif

)
(t1, t2) = f(t1, t2), (t1, t2) ∈ P a.e.

One can easy deduce the first property by using the definition of fractional partial
derivative and conditions (3), (4). The other properties of this theorem follow immediately
from the first property.

By using the above theorem and Lemma 2.6 we shall prove the following
Lemma 2.17. Let α ∈ (0, 1), 1 6 p <∞, (xk)k∈N ⊂ Iαa1+,t1(Lp) and x0 ∈ Iαa1+,t1(Lp). If
the sequence (xk)k∈N tends to x0 in Iαa1+,t1(Lp), then it tends to x0 in Lp(P,Rn).

Proof. Let xk −→
k→∞

x0 in Iαa1+,t1(Lp). From Theorem 2.16 and Lemma 2.6, we get∥∥xk − x0∥∥
Lp

=
∥∥Iαa1+,t1D

α
a1+,t1(xk − x0)

∥∥
Lp

6 K1
∥∥Dα

a1+,t1(xk − x0)
∥∥
Lp

= K1
∥∥xk − x0∥∥

Iαa1+,t1
(Lp) −→k→∞ 0.

It means that xk −→
k→∞

x0 in Lp(P,Rn).
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Let αi, βi > 0, i = 1, 2, 1 6 p < ∞, α = (α1, α2), β = (β1, β2), a = (a1, a2),
b = (b1, b2). We define the set Iαa+(Lp)(t1, t2)

(
Iβb−(Lp)(t1, t2)

)
in the following way:

Iαa+(Lp)(t1, t2) := Iα1
a1+,t1(Lp)× Iα2

a2+,t2(Lp)(
Iβb−(Lp)(t1, t2) := Iβ1

b1−,t1(Lp)× Iβ2
b2−,t2(Lp)

)
.

In Iαa+(Lp)(t1, t2)
(
Iβb−(Lp)(t1, t2)

)
we introduce a norm in the following way:

‖f‖Iαa+(Lp)(t1,t2) :=
∥∥(Dα1

a1+,t1f1)
∥∥
Lp

+
∥∥(Dα2

a2+,t2f2)
∥∥
Lp(

‖f‖Iβ
b−(Lp)(t1,t2) :=

∥∥(Dβ1
b1−,t1f1)

∥∥
Lp

+
∥∥(Dβ2

b2−,t2f2)
∥∥
Lp

)
,

where f = (f1, f2). From the fact that Iαiai+,ti(L
p),
(
Iβibi−,ti(L

p)
)
, i = 1, 2, are complete it

follows that Iαa+(Lp)(t1, t2)
(
Iβb−(Lp)(t1, t2)

)
are complete.

From Lemma 2.17 we obtain immediately
Lemma 2.18. Let α1, α2 ∈ (0, 1), 1 6 p <∞, (xk)k∈N = (xk1 , xk2)k∈N ⊂ Iαa1+,t1(Lp)(t1, t2)
and x0 = (x0

1, x
0
2) ∈ Iαa1+,t1(Lp)(t1, t2). If the sequence (xk)k∈N tends to x0 in the space

Iαa1+,t1(Lp)(t1, t2), then it tends to x0 in the space Lp(P,R2n).

3. The fractional Roesser control system. In this section, we shall consider frac-
tional control system (1).

By a solution to this problem we mean a function x = (x1, x2) ∈ Iαa+(Lp)(t1, t2).
It is easy to see that the existence of a solution to system (1) in the set Iαa+(Lp)(t1, t2)

is equivalent to the existence of a solution to the system

ϕ1(t) = f1

(
t,

1
Γ(α1)

∫ t1

a1

ϕ1(τ, t2)
(t1 − τ)1−α1

dτ,
1

Γ(α2)

∫ t2

a2

ϕ2(t1, τ)
(t2 − τ)1−α2

dτ, u(t)
)

ϕ2(t) = f2

(
t,

1
Γ(α1)

∫ t1

a1

ϕ1(τ, t2)
(t1 − τ)1−α1

dτ,
1

Γ(α2)

∫ t2

a2

ϕ2(t1, τ)
(t2 − τ)1−α2

dτ, u(t)
)

t ∈ P a.e.

(5)

in the set Lp(P,R2n).
Indeed, if x = (x1, x2) ∈ Iαa+(Lp)(t1, t2) is a solution to problem (1), then there exists

a function ϕ = (ϕ1, ϕ2) ∈ Lp(P,R2n) such that
xi(t) =

(
Iαiai+,tiϕi

)
(t), t ∈ P a.e., i = 1, 2,

and (cf. Theorem 2.16 p. 1)

ϕi(t) =
(
Dαi
ai+,tiI

αi
ai+,tiϕi

)
(t) =

(
Dαi
ai+,tixi

)
(t) = fi(t, x1(t), x2(t), u(t))

= fi
(
t,
(
Iα1
a1+,t1ϕ1

)
(t),
(
Iα2
a2+,t2ϕ2

)
(t), u(t)

)
, i = 1, 2,

for a.e. t ∈ P .
Conversely, if ϕ = (ϕ1, ϕ2) ∈ Lp(P,R2n) is a solution to problem (5), then x =

(x1, x2) =
(
Iα1
a1+,t1ϕ1, I

α2
a2+,t2ϕ2

)
∈ Iαa+(Lp)(t1, t2) and (cf. Remark 2.15)(

Dαi
ai+,tixi

)
(t) = ϕi(t) = fi

(
t, (Iα1

a1+,t1ϕ1)(t), (Iα2
a2+,t2ϕ2)(t), u(t)

)
= fi(t, x1(t), x2(t), u(t))

for a.e. t ∈ P , i = 1, 2. Moreover, from Propositions 2.11 and 2.12 it follows that the
boundary conditions (1.2) are satisfied.
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3.1. Existence and uniqueness of a solution. Applying the Banach contraction
principle, we shall prove a theorem on the existence and uniqueness of a solution x =
(x1, x2) of system (1) for any control u ∈ Lp(P,M) (1 6 p <∞).

Theorem 3.1. Let α1, α2 ∈ (0, 1) and 1 6 p <∞. If (for i = 1, 2)

1. fi(·, x1, x2, u) is measurable on P for all x1, x2 ∈ Rn, u ∈ M and fi(t, x1, x2, ·) is
continuous on M for a.e. t ∈ P and all x1, x2 ∈ Rn;

2. there exists a constant N > 0 such that∣∣fi(t, x1, x2, u)− fi(t, y1, y2, u)
∣∣ 6 N

(
|x1 − y1|+ |x2 − y2|

)
for a.e. t ∈ P and all x1, x2, y1, y2 ∈ Rn, u ∈M ;

3. there exist a function r ∈ Lp(P,R+
0 ) and a constant γ > 0 such that

|fi(t, 0, 0, u)| 6 r(t) + γ|u|

for a.e. t ∈ P and all u ∈M ,

then problem (1) possesses a unique solution x ∈ Iαa+(Lp)(t1, t2) corresponding to any
control u ∈ Lp(P,M).

Proof. To prove this theorem it suffices to show that for any control u ∈ Lp(P,M) there
exists a unique fixed point of the operator Φu =

(
Φ1
u,Φ2

u

)
: Lp(P,R2n) −→ Lp(P,R2n),

Φiu
(
ϕ1(·), ϕ2(·)

)
= fi

(
·, (Iα1

a1+,t1ϕ1)(·), (Iα2
a2+,t2ϕ2)(·), u(·)

)
, i = 1, 2.

First, let us notice that the operator Φu is well defined. Indeed, from Lemma 2.4 it follows
that

(
Iαiai+,tiϕi

)
(·) ∈ Lp(P,Rn) (i = 1, 2). In particular, it means that the functions

P 3 t 7→ fi
(
t,
(
Iα1
a1+,t1ϕ1

)
(t),
(
Iα2
a2+,t2ϕ2

)
(t), u(t)

)
∈ Rn, i = 1, 2,

are measurable. Moreover, by assumptions 2 and 3, for i = 1, 2, we have∣∣fi(t, (Iα1
a1+,t1ϕ1)(t), (Iα2

a2+,t2ϕ2)(t), u(t)
)∣∣p

6 2p−1(∣∣fi(t, (Iα1
a1+,t1ϕ1)(t), (Iα2

a2+,t2ϕ2)(t), u(t)
)
− fi(t, 0, 0, u(t))

∣∣p + |fi(t, 0, 0, u(t))|p
)

6 2p−1Np
(∣∣(Iα1

a1+,t1ϕ1)(t)
∣∣+
∣∣(Iα2

a2+,t2ϕ2)(t)
∣∣)p + 2p−1(r(t) + γ|u(t)|

)p
6 22p−2Np

(∣∣(Iα1
a1+,t1ϕ1)(t)

∣∣p +
∣∣(Iα2

a2+,t2ϕ2)(t)
∣∣p)+ 22p−2(r(t)p + γp|u(t)|p

)
for a.e. t ∈ P . It means that the operator Φu belongs to Lp(P,R2n).

Let us consider, in the space Lp(P,R2n), the Bielecki norm given by the formula

‖ϕ‖k :=
(∫

P

e−kp(t1+t2) |ϕ(t1, t2)|pR2n dt1 dt2

)1/p
, (6)

where k > 0 is any fixed constant. It is clear that

e−k(b1+b2)‖ϕ‖Lp(P,R2n) 6 ‖ϕ‖k 6 e−k(a1+a2)‖ϕ‖Lp(P,R2n). (7)

Consequently, the space Lp(P,R2n) with Bielecki norm is complete.
Now, we shall show that Φu is contracting in the space Lp(P,R2n) with norm (6).

Indeed, using [KST, Lemma 2.7a], Lemma 2.4, the Fubini Theorem and assumption 2,
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we obtain∥∥Φu(ϕ)− Φu(ψ)
∥∥p
k

=
∫
P

e−kp(t1+t2)
∣∣∣f(t, (Iα1

a1+,t1ϕ1)(t), (Iα2
a2+,t2ϕ2)(t), u(t)

)
− f

(
t, (Iα1

a1+,t1ψ1)(t), (Iα2
a2+,t2ψ2)(t), u(t)

)∣∣∣p
R2n

dt1 dt2

6 2p−1
∫
P

e−kp(t1+t2)
(∣∣∣f1

(
t, (Iα1

a1+,t1ϕ1)(t), (Iα2
a2+,t2ϕ2)(t), u(t)

)
− f1

(
t, (Iα1

a1+,t1ψ1)(t), (Iα2
a2+,t2ψ2)(t), u(t)

)∣∣∣p
+
∣∣∣f2
(
t, (Iα1

a1+,t1ϕ1)(t), (Iα2
a2+,t2ϕ2)(t), u(t)

)
− f2

(
t, (Iα1

a1+,t1ψ1)(t), (Iα2
a2+,t2ψ2)(t), u(t)

)∣∣∣p) dt1 dt2
6 2pNp

∫
P

e−kp(t1+t2)(∣∣(Iα1
a1+,t1(ϕ1 − ψ1))(t)

∣∣+
∣∣(Iα2

a2+,t2(ϕ2 − ψ2))(t)
∣∣)p dt1 dt2

6 22p−1Np

∫
P

e−kp(t1+t2)(∣∣(Iα1
a1+,t1(ϕ1 − ψ1))(t)

∣∣p +
∣∣(Iα2

a2+,t2(ϕ2 − ψ2))(t)
∣∣p) dt1 dt2

6 22p−1Npc

∫
P

e−kp(t1+t2)((Iα1
a1+,t1 |ϕ1 − ψ1|p

)
(t) +

(
Iα2
a2+,t2 |ϕ2 − ψ2|p

)
(t)
)
dt1 dt2

= 22p−1Npc

(∫ b2

a2

(∫ b1

a1

e−kp(t1+t2)(Iα1
a1+,t1(|ϕ1 − ψ1|p(·, t2))

)
(t1) dt1

)
dt2

+
∫ b1

a1

(∫ b2

a2

e−kp(t1+t2)(Iα2
a2+,t2

(
|ϕ2 − ψ2|p(t1, ·)

))
(t2) dt2

)
dt1

)
= 22p−1Npc

(∫ b2

a2

(∫ b1

a1

|ϕ1 − ψ1|p (t1, t2)
(
I
α1
b1−,t1e

−kp(·+t2))(t1) dt1
)
dt2

+
∫ b1

a1

(∫ b2

a2

|ϕ2 − ψ2|p (t1, t2)
(
I
α2
b2−,t2e

−kp(t1+·))(t2) dt2
)
dt1

)
,

where c = maxi=1,2{ci} and ci, i = 1, 2, are constants from Lemma 2.4 applied to the
operators Iα1

a1+,t1 , I
α2
a2+,t2 . Here Iαiai+,ti is the left-sided integral operator of order αi of a

function of one variable ti.
It is easy to calculate that(
I
α1
b1−,t1e

−kp(·+t2))(t1) = 1
Γ(α1)

∫ b1

t1

e−kp(τ+t2)

(τ − t1)1−α1
dτ = 1

Γ(α1)

∫ b1−t1

0

e−kp(w+t1+t2)

w1−α1
dw

= e−kp(t1+t2)

Γ(α1)

∫ b1−t1

0
e−kpwwα1−1 dw

= e−kp(t1+t2)

kpΓ(α1)

∫ kp(b1−t1)

0
e−rrα1−1 1

(kp)α1−1 dr

= e−kp(t1+t2)

(kp)α1Γ(α1)

∫ kp(b1−t1)

0
e−rrα1−1 dr

6
e−kp(t1+t2)

(kp)α1Γ(α1)

∫ ∞
0

e−rrα1−1 dr = e−kp(t1+t2)(kp)−α1 .
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Similarly, we assert that(
I
α2
b2−,t2e

−kp(t1+·))(t2) 6 e−kp(t1+t2)(kp)−α2 .

Consequently,

‖Φu(ϕ)− Φu(ψ)‖pk 6 22p−1Npc

(∫
P

|ϕ1 − ψ1|p (t)e−kp(t1+t2)(kp)−α1 dt1 dt2

+
∫
P

|ϕ2 − ψ2|p (t)e−kp(t1+t2)(kp)−α2 dt1 dt2

)
6 22p−1Npcmax

{
(kp)−α1 , (kp)−α2

}
×
∫
P

e−kp(t1+t2)(|ϕ1(t)− ψ1(t)|p + |ϕ2(t)− ψ2(t)|p
)
dt1 dt2

6 22pNpcmax
{

(kp)−α1 , (kp)−α2
}

×
∫
P

e−kp(t1+t2) |ϕ(t)− ψ(t)|pR2n dt1 dt2

= 22pNpcmax
{

(kp)−α1 , (kp)−α2
}
‖ϕ− ψ‖pk.

Let us notice that for sufficiently large k the constant 4N
(
max
i=1,2
{ci}max

i=1,2
{(kp)−αi}

)1/p

lies in (0, 1). It means that the operator Φu is contracting in the space Lp(P,R2n). Using
the Banach contraction principle, we assert that this operator possesses a unique fixed
point.

3.2. Continuous dependence of solutions on controls. In this part of the paper,
we shall prove a theorem on the continuous dependence of solutions of problem (1) on
controls. We have

Theorem 3.2. Let α1, α2 ∈ (0, 1), 1 6 p < ∞. If all assumptions of Theorem 3.1 are
satisfied and the sequence of controls (ul)l∈N tends to ũ in the space Lp(P,M), then the
sequence of corresponding solutions (xl)l∈N = (xl1, xl2)l∈N of system (1) tends to x̃ =
(x̃1, x̃2) in the space Iαa+(Lp)(t1, t2).

Proof. Assume that the sequence (ul)l∈N tends to the function ũ in the space Lp(P,M).
Using analogous arguments as in the proof of Theorem 3.1, one can show that for any
fixed k > 0 and all l ∈ N

‖ϕl − ϕ̃‖k =
∥∥Φl(ϕl)− Φ̃(ϕ̃)

∥∥
k
6
∥∥Φl(ϕl)− Φl(ϕ̃)

∥∥
k

+
∥∥Φl(ϕ̃)− Φ̃(ϕ̃)|

∥∥
k

6 µk‖ϕl − ϕ̃‖k +
∥∥Φl(ϕ̃)− Φ̃(ϕ̃)

∥∥
k
,

where µk := 4N
(
maxi=1,2{ci}maxi=1,2

{
(kp)−αi

})1/p, Φ̃,Φl : Lp(P,R2n)→ Lp(P,R2n),

Φ̃ 3 ϕ(·) =
(
ϕ1(·), ϕ2(·)

)
7→
(
f1
(
·,
(
Iα1
a1+,t1ϕ1

)
(·),
(
Iα2
a2+,t2ϕ2

)
(·), ũ(·)

)
,

f2
(
·,
(
Iα1
a1+,t1ϕ1

)
(·),
(
Iα2
a2+,t2ϕ2

)
(·), ũ(·)

))
,
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Φl 3 ϕ(·) =
(
ϕ1(·), ϕ2(·)

)
7→
(
f1
(
·,
(
Iα1
a1+,t1ϕ1

)
(·),
(
Iα2
a2+,t2ϕ2

)
(·), ul(·)

)
,

f2
(
·,
(
Iα1
a1+,t1ϕ1

)
(·),
(
Iα2
a2+,t2ϕ2

)
(·), ul(·)

))
,

ϕl, ϕ̃ are fixed points of the operators Φl, Φ̃, respectively.
Consequently (using also inequality (7)), for sufficiently large k > 0, we obtain

‖ϕl − ϕ̃‖k 6
1

1− µk
∥∥Φl(ϕ̃)− Φ̃(ϕ̃)

∥∥
k
6
e−k(a1+a2)

1− µk
∥∥Φl(ϕ̃)− Φ̃(ϕ̃)

∥∥
Lp(P,R2n)

= e−k(a1+a2)

1− µk

(∫
P

∣∣∣f(t, (Iα1
a1+,t1 ϕ̃1

)
(t),
(
Iα2
a2+,t2 ϕ̃2

)
(t), ul(t)

)
− f

(
t,
(
Iα1
a1+,t1 ϕ̃1

)
(t),
(
Iα2
a2+,t2 ϕ̃2

)
(t), ũ(t)

)∣∣∣p
R2n

dt1 dt2

)1/p

for all l ∈ N and additionally µk ∈ (0, 1). Moreover, using the Lebesgue dominated
convergence theorem, one can prove that∫

P

∣∣∣f(t, (Iα1
a1+,t1 ϕ̃1

)
(t),
(
Iα2
a2+,t2 ϕ̃2

)
(t), ul(t)

)
− f

(
t,
(
Iα1
a1+,t1 ϕ̃1

)
(t),
(
Iα2
a2+,t2 ϕ̃2

)
(t), ũ(t)

)∣∣∣p
R2n

dt1 dt2 −→
l→∞

0.

It means that ‖ϕl − ϕ0‖k −→
l→∞

0. Since

‖xl − x̃‖Iαa+(Lp)(t1,t2) =
∥∥xl1 − x̃1

∥∥
I
α1
a1+,t1

(Lp) +
∥∥xl2 − x̃2

∥∥
I
α2
a2+,t2

(Lp)

=
∥∥Iα1
a1+,t1ϕ

l
1 − I

α1
a1+,t1 ϕ̃1

∥∥
I
α1
a1+,t1

(Lp) +
∥∥Iα2
a2+,t2ϕ

l
2 − I

α2
a2+,t2 ϕ̃2

∥∥
I
α2
a2+,t2

(Lp)

=
∥∥Dα1

a1+,t1I
α1
a1+,t1ϕ

l
1 −D

α1
a1+,t1I

α1
a1+,t1 ϕ̃1

∥∥
Lp

+
∥∥Dα2

a2+,t2I
α2
a2+,t2ϕ

l
2 −D

α2
a2+,t2I

α2
a2+,t2 ϕ̃2

∥∥
Lp

=
∥∥ϕl1 − ϕ̃1

∥∥
Lp

+
∥∥ϕl2 − ϕ̃2

∥∥
Lp

6 2
∥∥ϕl − ϕ̃∥∥

Lp(P,R2n) 6 2ek(b1+b2)∥∥ϕl − ϕ̃∥∥
k
,

the proof is completed.

4. Existence of an optimal solution of some optimal control problem con-
nected with the fractional Roesser model. Let us consider the following fractional
optimal control problem


(
Dα1
a1+,t1x1

)
(t) = A1(t)x1(t) +A2(t)x2(t) +B1(t)u(t)(

Dα2
a2+,t2x2

)
(t) = A3(t)x1(t) +A4(t)x2(t) +B2(t)u(t),

t = (t1, t2) ∈ P = [a1, b1]× [a2, b2] a.e.
(8.1)

{(
I1−α1
a1+,t1x1

)
(a1, t2) = 0, t2 ∈ [a2, b2] a.e.(

I1−α2
a2+,t2x2

)
(t1, a2) = 0, t1 ∈ [a1, b1] a.e.,

(8.2)

u(t) ∈M ⊂ Rm, t ∈ P,
J(x1, x2, u) =

∫
P
f0(t, x1(t), x2(t), u(t)) dt,

(8)

where Aj : P → Rn×n, j = 1, . . . , 4, Bk : P → Rn×m, k = 1, 2, f0 : P×Rn×Rn×M → R,
x = (x1, x2) and αi ∈ (0, 1) for i = 1, 2.

Let us fix p ∈ (1,∞) and let UM :=
{
u ∈ Lp(P,Rm) : u(t) ∈M, t ∈ P

}
.
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Definition 4.1. We say that a pair (x∗, u∗) ∈ Iαa+(Lp)(t1, t2)×UM is an optimal solution
of problem (8), if x∗ is a solution of system (8.1)–(8.2) corresponding to control u∗ and

J(x∗, u∗) 6 J(x, u)

for all pairs (x, u) ∈ Iαa+(Lp)(t1, t2)× UM satisfying (8.1), (8.2).

Remark 4.2. From Theorem 3.1 it follows that, if the functions Aj , Bk, j = 1, . . . , 4,
k = 1, 2, are essentially bounded, then there exists a unique solution xu to system (8.1)–
(8.2) corresponding to any control u.

In the next theorem, we shall use the following lemma (cf. [Maw]).

Lemma 4.3. Let U be a convex, closed and bounded subset of a reflexive Banach space.
If the functional F : U −→ R is convex and lower semicontinuous on U , then there exists
an element u∗ ∈ U such that

F (u∗) 6 F (u)

for any u ∈ U .

Now, we shall prove a theorem on the existence of an optimal solution to problem (8).

Theorem 4.4. Let assume that

1. the set M is convex and compact,
2. f0(·, x1, x2, u) is measurable on P for all x1, x2 ∈ Rn, u ∈M , f0(t, ·, ·, ·) is contin-

uous on Rn × Rn ×M for a.e. t ∈ P ,
3. f0(t, ·, ·, ·) is convex on Rn × Rn ×M for a.e. t ∈ P ,
4. the functions Aj, Bk, j = 1, . . . , 4, k = 1, 2, are essentially bounded,
5. there exist a function a ∈ L1(P,R) and a constant γ1 > 0 such that

|f0(t, x1, x2, u)| 6 a(t) + γ1
(
|x1|p + |x2|p

)
for a.e. t ∈ P and all x1, x2 ∈ Rn, u ∈M .

Then problem (8) possesses an optimal solution (x∗, u∗) ∈ Iαa+(Lp)(t1, t2)× UM .

Proof. Using the same arguments as in the proof of Theorem 3 in the paper [I1], we assert
that the existence of an optimal solution to problem (8) in the space Iαa+(Lp)(t1, t2)×UM
is equivalent to the existence of an optimal solution to system (8.1)–(8.2) with the cost
functional

J̃ : UM 3 u 7→
∫
P

f0
(
t, xu1 (t), xu2 , u(t)

)
dt,

in the space UM .
Moreover, analogously as in the mentioned paper, we obtain that UM is the convex,

closed and bounded subset of the reflexive Banach space Lp(P,Rm) and the functional J̃
is convex.

Finally, we shall prove that the functional J̃ is continuous on UM . Indeed, let
uk −→

k→∞
u0 in UM . Theorem 3.2 implies that xk −→

k→∞
x0 in Iαa+(Lp)(t1, t2). From Lemma

2.18 it follows that xk −→
k→∞

x0 in Lp(P,R2n). To show the convergence

f0
(
·, xk(·), uk(·)

)
−→
k→∞

f0
(
·, x0(·), u0(·)

)
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it suffices to use [IR, Theorem 2] with the spaces L1 = Lp(P,R2n), L2 = UM , L = L1×L2
and the functional f0

1. From [B, Theorem.4.9] and by assumption 5 it follows that f0
satisfies assumptions of Theorem 2 from paper [IR]. So, from this theorem it follows that

f0
(
·, xk(·), uk(·)

)
−→
k→∞

f0
(
·, x0(·), u0(·)

)
.

Consequently, from Lemma 4.3 we get the existence of an optimal solution (x∗, u∗) ∈
Iαa+(Lp)(t1, t2)× UM to problem (8).

5. Example
Example 5.1. Let us consider problem (8) with the following data:

A1 = A2 = A4 = 0, A3 = 1, B1 = 1, B2 = −1,
f0(t, x, u) = f0(t1, t2, x1, x2, u)

= x1 − 2x2 +
(

2
Γ(7/4)Γ(3/2) (1− t2)3/4(1− t1)1/2 − 2

Γ(7/4)(1− t2)3/4 − 1
Γ(1/2)

)
u,

M = [0, 1], P = [0, 1]× [0, 1], α1 = 1
2 , α2 = 3

4 , p = 2.

Let
Z =

{
t = (t1, t2) : 3

4 6 t1 6 1 and t2 ∈ [0, 1]
}
.

One can show (see [K1]) that (x∗, u∗), where

u∗(t) =
{

1, t ∈ Z
0, t ∈ P \ Z,

x∗(t) =
[
x∗1(t)
x∗2(t)

]
=




1

Γ(3/2)

(
t1 −

3
4

)1/2

1
Γ(3/2)Γ(7/4)

(
t1 −

3
4

)1/2
t
3/4
2 − 1

Γ(7/4) t
3/4
2

 , t ∈ Z

[
0
0

]
, t ∈ P \ Z.

for a.e. t ∈ P , is the only pair, which can be an optimal solution to problem (8). It is
easy to check that all assumptions of Theorem 4.4 are satisfied. Consequently, (x∗, u∗) is
an optimal solution to problem (8).
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