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Abstract. We establish the Euler-Lagrange inclusion of a nonsmooth integral functional defined
on Orlicz—Sobolev spaces. This result is achieved through variational techniques in nonsmooth
analysis and an integral representation formula for the Clarke generalized gradient of locally
Lipschitz integral functionals defined on Orlicz spaces.

1. Introduction. This paper provides a first-order necessary condition for a general
problem in the calculus of variations that involves minimization of a functional defined
on Orlicz—Sobolev spaces where the Lagrangian function is Lipschitz continuous in the
last two arguments (see (3.1])). This condition has a form of the Euler-Lagrange partial
differential inclusion in Orlicz—Sobolev spaces (see Theorem . The methods used here
are based on nonsmooth variational techniques (see, e.g., [2,/6]) together with integral
representation formula for the Clarke generalized gradient of locally Lipschitz integral
functionals defined on Orlicz spaces (see [14L|15,[17]). Theorem [3.3]is a generalization of
the results of Clarke [3] (see also [4, Theorem 4.6.1]) and Papageorgiou—Papageorgiou |16,
Theorem 4.1] (see also [8, Theorem V.2.29]). For other results dealing with the Euler—
Lagrange inclusions in Sobolev spaces we refer the reader to, e.g., [9,{10}/13,/19].
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2. Preliminaries

2.1. Generalized gradient. Let U be an open subset of a Banach space E. By
Clarke [4], if f : U — R is Lipschitz continuous, then f has the generalized directional

derivative
fo(z;v) _ hHlSllp f(y+ )‘U) - f(y)

bl
y—x,A—01 A

veklE

and the set
dcf(x) ={C € E": ((v) < fasv) Yve E}
is called the generalized gradient of f at x, where E* is the dual space of the Banach

space E. It is a nonempty convex compact set in the weak star topology w* = o(E*, E).
Furthermore, if f is Fréchet differentiable, i.e., f € Ct, then dc f(z) = {f'(z)}.

2.2. Orlicz and Orlicz—Sobolev spaces. The terminology from Orlicz and Orlicz—
Sobolev spaces follows [5L[11L|12]. A function @ : [0,00) — [0, 00) is called an N -function
if it is continuous and convex with ®(¢f) = 0 < t = 0 and ®(¢)/t — 0 as ¢ — 0,
®(t)/t — oo as t — co. The N-function  is said to satisfy the As-condition, denoted by
® € Ao, if there exist k£ > 0 and T > 0 such that

d(2t) < kD) Vt>T.

The complementary function ®* to ® is defined by ®*(v) = sup{uv — ®(u) : u > 0} for
all v > 0. If ® is an N-function, then so is ®*.

Let © be an open subset of R” and let ® be an N-function. The Orlicz space Ly (€2, R)
is defined as the set of (equivalence classes of) real-valued measurable functions u on €
such that [, ®(Ju(z)|/)) dz < oo for some A > 0. Note that Lg (€2, R) is a Banach space
under the Luzemburg norm

L, = inf{A >0 /Q O(Ju(z)| /) dx < 1}.

Given a separable Banach space E and an Orlicz space Ly (2, R), the Orlicz—Bochner
space Ly (), E) is defined (see, e.g., [18]) as the normed space of (equivalence classes of)
strongly measurable E-valued functions u on §2 such that the function Q 3 z — |Ju(z)| g
belongs to L (2, R) with the norm

Hu||Lq>(Q,E) = H||U(')HEHL4,'
Recall that a function u : {2 — FE is said to be a strongly measurable function if there exists
a sequence (u,) of simple measurable functions such that lim, . ||un(z) — u(z)||g =0
for almost all x € Q.

The Orlicz—Sobolev space W' Lg (2, R?) is the space of all u € Lg(2,R?) such that
Du € Lg(92, M™*?), where Du is a vector function whose all components are distribu-
tional partial derivatives of u and M"™*? is the space of real n x d matrices. The space
W'Ls(Q,R?) is a Banach space under the norm

lullwize = llullze + [ DullLy-

Let ® € As. Recall that W'Le (2, RY) is defined as the norm-closure of C5° (€2, R%)
in W'Le(,RY) and W' Lg(Q,RY) := (W1Le (0, RY))*.
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3. The Euler—Lagrange condition. Let 2 C R" be a Lipschitz domain and @ be an
element of W!Lg (2, R?). Consider

mf{G(w) = /Qg(x,w(:n), Dw(z))dz :w € i+ W1L¢(Q,Rd)}, (3.1)

where g :  x R x M"*¢ — R is a Carathéodory function such that g(x,-,-) is locally
Lipschitz continuous for almost all z € Q. We will assume that one of the following
conditions is satisfied.

CoNDITIONS 3.1. Let ®,®* : [0,00) — [0,00) be a pair of complementary N-functions.

(EL1) ® € A, and for some R > 0 there exist positive constants bg,dr and a function
ar € L*(£,]0,00)) such that

u* € Ocg(z,u) = " (||u*||rexmrxa/dr) < ar(z) + brP (||u||rexynxa/R)
for almost all z € Q and for all v € R? x M"*<.
(EL2) ® € Ay and for some R > 0 there exist positive constants br,dr and functions
ar € LY(9,[0,00)), hr : Q x [0,00) — [0, 00) such that
|g(m,u) - g(x,v)| < hR(.’L', HuHRdXM"Xd + ||v||Rd><M"><d)||u - U”RdxM"Xd
for almost all z € Q and for all u,v € R? x M"*?, and
O* (hg(z,a)/dr) < ar(z) + br®(a/R)

for almost all € © and for all « € [0, 00).
(EL3) ® € Ay and there exists ¢ > 0 such that

u* € 0cg(s,u) = [[u" raxmnxa < c(1+ @(Jullrixrnxa))

for all u € R? x M"™*9, where ¢ is the right derivative of ®.

REMARK 3.2. Note that|(EL2)|implies|(EL1)| by [4, Proposition 2.1.2/(a)]. The condition
(EL3)| follows Pluciennik-Tian-Wang [17], but the conditions [(ELI)| follow [14].

THEOREM 3.3. Suppose that either one of the conditions [[EL1)|, [EL2)| or [[EL3)| holds
and g(-,0,0) € LY*(Q,R). If 0 € dcG(w) then there exists v* € Lo+ (Q,M"*?) such that
dive* € Le«(,R?) and

(divv*(z),v*(2)) € dcg(z,w(z), Dw(z)) a.e. (3.2)
Furthermore, if w € 4 + VT/IL@(Q,Rd) solves , then (3.2) holds for some v* from
Lo~ (9, MP*9).

Proof. Let A: W1Le(Q,RY) — Lo (Q,RY) x L (2, M™*%) be defined by
A(u) = (u, Du). (3.3)

Note that A is a continuous linear operator.
We show that A* : Lg« (2, RY) x L« (2, M%) — W~ Lg(Q, R?) has the form

A*(u*,v*) = u* — divo™. (3.4)
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In fact, by ® € Ay we have (L (2, R?) x Lg (2, M™¥4))* = Lg- (2, RY) x Lgx (2, M"*1).
Hence for y* = (u*,v*) with u* € Lg-(Q,R?) and v* € Lg-(Q, M"*?) we deduce that
(A" (u,v)](u) = (u, v")[Au] = ((u",v"), (u, Du))
=u"(u) + v*(Du) = v*(u) — divo*(u) = (u* = divo™)(u),
since C§° () is dense in Lg«(£2) (see [5, Lemma 2.1]) and

v*(Du):/Qg<aiiu,vi*>dx:—/gé<u, aixivi*>dx
/<u,i£vf>dx/(u,divv*)dmdivv*(u).
Qr 5 Y Q

Now, by (3.3) one can rewrite the functional G in the form
G(w) = (Fo A)(w), (3.5)
where F : Lg(Q,R?) x Lg (2, M"*4) — R is defined by

F(w, z) ::Lg(x,w(x)7z(x)) dzx.

By [14] Theorem 4.3] and Pluciennik-Tian-Wang [17, Theorem 2], the functional F is
Lipschitz continuous on each ball of Lg (2, R?) x Lg (2, M"*?). Hence, by (3.5), Aubin
[1, Proposition 2, p. 216] and Clarke [4, Theorem 2.3.10, Remark 2.3.11], we obtain

9o (F o A)(w) C A*0c(F)[A(w)].
So, if 0 € dcG(w) then there exists (w*,v*) € Lg« (2, RY) x L« (2, M™*9) such that
(w*,v*) € o (F)[A(w)] and A" (w*,v*) =0. (3.6)
By (3.4), we obtain w* = divv* € Lg~(Q,R?) for v* € Lg- (2, M™*%).

Next, either by |14, Theorem 4.3] under one of the conditions or by
Pluciennik-Tian-Wang [17, Theorem 2] under for the functional F defined on
Ly(Q,R? x M"*4) we infer that dc(F)[A(w)] contains measurable selections of the
multifunction  +— dcg(z,w(z), Dw(z)). By (3.6), it follows that (divev*(z),v*(z)) €
Ocg(xz,w(z), Dw(x)) a.e., and is proved.

Now suppose that w is a local minimizer for G. By Clarke [4, Proposition 2.3.2], we
obtain 0 € 9cG(w), and so w satisfies (3.2). m

REMARK 3.4. If g(z,-) : R? x M™*?¢ — R is a C'-class function, then dcg(w,u) =
{9,,(z,u)} due to Clarke |4 Proposition 2.3.6]. Hence (3.2]) implies the Euler-Lagrange
equation in Orlicz—Sobolev spaces (see Gossez and Mandsevich [7]).
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