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Abstract. We consider second order semilinear hyperbolic functional differential equations
where the lower order terms contain functional dependence on the unknown function. Existence
and uniqueness of solutions for t ∈ (0, T ), existence for t ∈ (0, ∞) and some qualitative properties
of the solutions in (0, ∞) are shown.

1. Introduction. In the present paper we consider weak solutions of initial-boundary
value problems of the form

u′′(t) + Q̃(u(t)) + ϕ(x)h′(u(t)) +H(t, x;u) +G(t, x;u, u′) = F, t > 0, x ∈ Ω, (1)
u(0) = u0, u′(0) = u1, (2)

where Ω ⊂ Rn is a bounded domain and we use the notation u(t) = u(t, x), u′ = Dtu,
u′′ = D2

t u, Q̃ may be a linear second order symmetric elliptic differential operator in
the variable x; h is a C1 function having certain polynomial growth, H and G contain
nonlinear functional (non-local) dependence on u and u′, with some polynomial growth.

There are several papers on semilinear hyperbolic differential equations, see, e.g.,
[3], [4], [10], [13] and the references therein. Semilinear hyperbolic functional equations
were studied, e.g. in [5], [6], [7], with certain non-local terms, generally in the form of
particular integral operators containing the unknown function. First order quasilinear
evolution equations with non-local terms were considered, e.g., in [12] and [14], second
order quasilinear evolution equations with non-local terms were considered in [11], by
using the theory of monotone type operators (see [2], [9], [15]).

This paper was motivated by the classical work [9] of J.-L. Lions where the equation (1)
was considered in the particular case Q̃ = −4, ϕ = 1, h′(η) = η|η|λ, H = 0, G = 0

2010 Mathematics Subject Classification: Primary 35L71; Secondary 35R10.
Key words and phrases: Semilinear hyperbolic equations, partial functional equations, qualitative
properties of solutions.
The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc101-0-16 [207] c© Instytut Matematyczny PAN, 2014



208 L. SIMON

(semilinear hyperbolic differential equation). The proofs are based on Galerkin’s method
and imbedding theorems in Sobolev spaces. The aim of this work is to show that the
ideas of [9] can be applied to semilinear hyperbolic equations, containing non-local terms
of rather general form which may be of different types (integrals with respect to the space
or time variable or terms with discrete delay etc.).

In Section 2 the existence of weak solutions will be proved for t ∈ (0, T ) and in
Section 3 we shall prove existence and certain properties of solutions for t ∈ (0,∞),
finally, in Section 4 the uniqueness of the solution will be shown.

2. Existence in (0, T ). Denote by Ω ⊂ Rn a bounded domain having the uniform C1

regularity property (see [1]), QT = (0, T ) × Ω. Denote by W 1,2(Ω) the Sobolev space of
real valued functions with the norm

‖u‖ =
[∫

Ω

( n∑
j=1
|Dju|2 + |u|2

)
dx
]1/2

.

Further, let V ⊂ W 1,2(Ω) be a closed linear subspace of W 1,2(Ω) containing W 1,2
0 (Ω)

(the closure of C∞0 (Ω)), V ? the dual space of V , H = L2(Ω), the duality between V ?

and V will be denoted by 〈·, ·〉, the scalar product in H will be denoted by (·, ·). Denote
by L2(0, T ;V ) the Banach space of the set of measurable functions u : (0, T ) → V with
the norm

‖u‖L2(0,T ;V ) =
[∫ T

0
‖u(t)‖2V dt

]1/2
and by L∞(0, T ;V ), L∞(0, T ;H) the set of measurable functions u : (0, T ) → V ,
u : (0, T )→ H, respectively, with the L∞(0, T ) norm of the functions t 7→ ‖u(t)‖V ,
t 7→ ‖u(t)‖H , respectively.

Now we formulate the assumptions on the functions in (1).

(A1) Q̃ : V → V ? is a linear continuous operator such that

〈Q̃ũ, ṽ〉 = 〈Q̃ṽ, ũ〉, 〈Q̃ũ, ũ〉 ≥ c0‖ũ‖2V

for all ũ, ṽ ∈ V with some constant c0 > 0. Further we shall use the notation
(Qu)(t) = Q̃(u(t)).

(A2) ϕ : Ω→ R is a measurable function satisfying

c1 ≤ ϕ(x) ≤ c2 for a.a. x ∈ Ω

with some positive constants c1, c2.
(A3) h : R→ R is a continuously differentiable function satisfying

h(η) ≥ 0, |h′(η)| ≤ const |η|λ for |η| > 1

where 1 < λ ≤ λ0 = n

n− 2 if n ≥ 3, 1 < λ <∞ if n = 2.
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(A′3) h : R → R is a continuously differentiable function satisfying with some positive
constants c3, c4

h(η) ≥ 0, c3|η|λ ≤ |h′(η)| ≤ c4|η|λ for |η| > 1, n ≥ 3 where λ > λ0 = n

n− 2 ,

|h′(η)| ≤ c4|η|λ for |η| > 1, n = 2 where 1 < λ <∞.

(A4) H : QT × L2(QT )→ R is a function for which (t, x) 7→ H(t, x;u) is measurable for
all fixed u ∈ L2(Ω), H has the Volterra property, i.e. for all t ∈ [0, T ], H(t, x;u)
depends only on the restriction of u to (0, t); the following inequality holds for all
t ∈ [0, T ] and u ∈ L2(Ω):∫ t

0

∫
Ω
|H(τ, x;u)|2 dx dτ ≤ const

∫ t

0

∫
Ω
h(u(τ)) dx dτ.

Further, for any fixed functions w1, w2, . . . , wm ∈ V (if (A3) is satisfied) and
w1, w2, . . . , wm ∈ V ∩ Lλ+1(Ω) (if (A′3) holds), respectively, for every K > 0 there exists
ψK ∈ L1(0, T ) such that for |(c1, c2, . . . , cm)| ≤ K[∫

Ω

∣∣∣H(t, x;
m∑
k=1

ckwk

)∣∣∣2 dx]1/2
≤ ψK(t), t ∈ [0, T ].

Finally, (uk)→ u in L2(QT ) and (uk)→ u a.e. in QT imply

H(t, x;uk)→ H(t, x;u) for a.a. (t, x) ∈ QT .

(A5) G : QT×L2(QT )×L∞(0, T ;H)→ R is a function satisfying: (t, x) 7→ G(t, x;u,w) is
measurable for all fixed u ∈ L2(QT ), w ∈ L∞(0, T ;H), G has the Volterra property:
for all t ∈ [0, T ], G(t, x;u,w) depends only on the restriction of u,w to (0, t) and

|G(t, x;u,w)| ≤ c5|w(t)|+ c6

with some constants c5, c6.

Further, if

(uk)→ u in L2(QT ) and a.e. in QT , (wk)→ w weakly in L∞(0, T ;H)

in the sense that for all fixed g1 ∈ L1(0, T ;H)∫ T

0
〈g1(t), wk(t)〉 dt→

∫ T

0
〈g1(t), w(t)〉 dt,

then
G(t, x;uk, wk)→ G(t, x;u,w) weakly in L∞(0, T ;H).

Theorem 2.1. Assume (A1), (A2), (A3), (A4), (A5). Then for all F ∈ L2(0, T ;H),
u0 ∈ V , u1 ∈ H there exists u ∈ L∞(0, T ;V ) such that

u′ ∈ L∞(0, T ;H), u′′ ∈ L2(0, T ;V ?),
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u satisfies (1) in the sense: for a.a. t ∈ [0, T ], all v ∈ V

〈u′′(t), v〉+ 〈Q̃(u(t)), v〉+
∫

Ω
ϕ(x)h′(u(t))v dx+

∫
Ω
H(t, x;u)v dx

+
∫

Ω
G(t, x;u, u′)v dx = (F (t), v) (3)

and the initial condition (2) is fulfilled.
If (A1), (A2), (A′3), (A4), (A5) are satisfied then for all F ∈ L2(0, T ;H), u0 ∈ V ∩

Lλ+1(Ω), u1 ∈ H there exists u ∈ L∞(0, T ;V ∩ Lλ+1(Ω)) such that

u′ ∈ L∞(0, T ;H),

u′′ ∈ L2(0, T ;V ?) + L∞(0, T ;L(λ+1)/λ(Ω)) ⊂ L2(0, T ; [V ∩ Lλ+1(Ω)]?
)

and u satisfies (1) in the sense: for a.a. t ∈ [0, T ], all v ∈ V ∩Lλ+1(Ω) (3) holds, further,
the initial condition (2) is fulfilled.

Remark 2.2. u′′ ∈ L2(0, T ;V ?) + L∞(0, T ;L(λ+1)/λ(Ω)) means that for the distribu-
tional derivative u′′ = D2

t u we have

u′′ = u1 + u2 where u1 ∈ L2(0, T ;V ?) and u2 ∈ L∞(0, T ;L(λ+1)/λ(Ω)).

Since in this case

(u′)′ = u′′ ∈ L2(0, T ; [V ∩ Lλ+1(Ω)]?
)

and u′ ∈ L∞(0, T ;L2(Ω)) ⊂ L2(0, T ; [V ∩ Lλ+1(Ω)]?
)
,

by Lemma 1.2 in Chapter 1 of [9]

u′ ∈ C([0, T ]; [V ∩ Lλ+1(Ω)]?),

thus the initial condition u′(0) = u1 ∈ H makes sense since H ⊂ [V ∩ Lλ+1(Ω)]?.
Similarly, if (A3) is satisfied, by

u′′ ∈ L2(0, T ;V ?), u′ ∈ L∞(0, T ;L2(Ω)) ⊂ L2(0, T ;V ?),

we have u′ ∈ C([0, T ];V ?), so the initial condition u′(0) = u1 ∈ H makes sense.

Proof. We apply Galerkin’s method. Let w1, w2, . . . be a linearly independent system
in V if (A3) is satisfied and in V ∩ Lλ+1(Ω) if (A′3) is satisfied such that the linear
combinations are dense in V and V ∩ Lλ+1(Ω), respectively. We want to find the m-th
approximation of u in the form

um(t) =
m∑
l=1

glm(t)wl (4)

where glm ∈ W 2,2(0, T ) if (A3) is satisfied and glm ∈ W 2,2(0, T ) ∩ L∞(0, T ) if (A′3) is
fulfilled, further, for all j = 1, . . . ,m

〈u′′m(t), wj〉+ 〈Q̃(um(t)), wj〉+
∫

Ω
ϕ(x)h′(um(t))wj dx

+
∫

Ω
H(t, x;um)wj dx+

∫
Ω
G(t, x;um, u′m)wj dx = 〈F (t), wj〉, (5)

um(0) = um0, u′m(0) = um1 (6)
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where um0, um1 (m = 1, 2, . . . ) are linear combinations of w1, w2, . . . , wm satisfying

(um0)→ u0 in V and V ∩ Lλ+1(Ω), respectively, as m→∞ (7)
and (um1)→ u1 in H as m→∞. (8)

It is not difficult to show that all the conditions of the existence theorem for a system
of functional differential equations with Carathéodory conditions (see [8]) are satisfied.
Indeed, (A3), (A′3), (A4), (A5), imply that all the terms in (5) containing the coefficients
glm(t) are continuous with respect to glm(t) and they can be estimated by a Lebesgue
integrable function if the variables glm(t) and g′lm(t) are in a small neighbourhood.

Thus, by using the Volterra property of G and H, we obtain that there exists a
solution of (5), (6) in a neighbourhood of 0. Further, the maximal solution of (5), (6) is
defined in [0, T ]. Indeed, multiplying (5) by g′lm(t) and taking the sum with respect to j,
we obtain

〈u′′m(t), u′m(t)〉+ 〈Q̃(um(t)), u′m(t)〉+
∫

Ω
ϕ(x)h′(um(t))u′m(t) dx

+
∫

Ω
H(t, x;um)u′m(t) dx+

∫
Ω
G(t, x;um, u′m)u′m(t) dx = (F (t), u′m(t)). (9)

Integrating the above equality over (0, t) we find by Young’s inequality and by using the
formulas∫ t

0
〈Q̃(um(τ)), u′m(τ)〉 dτ = 1

2 〈Q̃(um(t)), um(t)〉 − 1
2 〈Q̃(um(0)), um(0)〉,∫ t

0
〈u′′m(τ), u′m(τ)〉 dτ = 1

2 ‖u
′
m(t)‖2H −

1
2 ‖u

′
m(0)‖2H

(see [15]):

1
2 ‖u

′
m(t)‖2H + 1

2 〈Q̃(um(t)), um(t)〉+
∫

Ω
ϕ(x)h(um(t)) dx

+
∫ t

0

[∫
Ω
H(τ, x;um)u′m(τ) dx

]
dτ +

∫ t

0

[∫
Ω
G(τ, x;um, u′m)u′m(τ) dx

]
dτ

=
∫ t

0
(F (τ), u′m(τ)) dτ + 1

2 ‖u
′
m(0)‖2H + 1

2 〈(Qum)(0), um(0)〉+
∫

Ω
ϕ(x)h(um(0)) dx

≤ 1
2

∫ T

0
‖F (τ)‖2H dτ + 1

2

∫ t

0
‖u′m(τ)‖2H dτ + const (10)

where the constant is not depending on m and t. Indeed, by (6)–(8), (um(0)) is bounded
in V and V ∩Lλ+1(Ω), respectively, and (u′m(0)) is bounded in H; (Qum)(0) is bounded
in V ? by (A1). Further, (h(um(0))) is bounded in L1(Ω) since by (A3)∫

Ω
h(um(0)) dx ≤ const

∫
Ω

[
1 + (um(0))λ+1] dx

≤ const
∫

Ω

[
1 + (um(0))(2n−2)/(n−2)] dx ≤ const

∫
Ω

[
1 + (um(0))2n/(n−2)] dx

and by Sobolev’s imbedding theoremW 1,2(Ω) is continuously imbedded into L2n/(n−2)(Ω)
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and if (A′3) is satisfied then∫
Ω
h(um(0)) dx ≤ const

∫
Ω

[
1 + (um(0))λ+1] dx ≤ const

because (um(0)) is bounded in Lλ+1(Ω).
By using (A2), (A4), (A5) and the Cauchy–Schwarz inequality, we obtain from (10)

1
2 ‖u

′
m(t)‖2H + 1

2 〈Q̃(um(t)), um(t)〉+ c1

∫
Ω
h(um(t)) dx

≤ 1
2

∫ T

0
‖F (τ)‖2H dτ + const

∫ t

0
‖u′m(τ)‖2H dτ + const

∫ t

0

[∫
Ω
h(um(τ)) dx

]
dτ + const

= const
∫ t

0

[
‖u′m(τ)‖2H +

∫
Ω
h(um(τ))dx

]
dτ + const. (11)

Consequently,

‖u′m(t)‖2H +
∫

Ω
h(um(t)) dx ≤ const

{
1 +

∫ t

0

[
‖u′m(τ)‖2H +

∫
Ω
h(um(τ)) dx

]
dτ

}
where the constant is not depending on t and m. Thus by Gronwall’s lemma

‖u′m(t)‖2H +
∫

Ω
h(um(t)) dx ≤ const. (12)

Hence by (11) and (A1) we obtain in a neighbourhood of 0

‖um(t)‖V ≤ const (13)

and the constant is not depending on t which implies that the maximal solution of (5),
(6) is defined in [0, T ]. Further, the estimates (12), (13) hold for all t ∈ [0, T ] and in the
case λ > λ0, n ≥ 3

‖um(t)‖V ∩Lλ+1(Ω) ≤ const, (14)

thus
‖um‖L∞(0,T ;V ∩Lλ+1(Ω)) ≤ const. (15)

By (12), (13), if (A3) is satisfied, there exist a subsequence of (um), again denoted by
(um) and u ∈ L∞(0, T ;V ) such that

(um)→ u weakly in L∞(0, T ;V ), (16)
(u′m)→ u′ weakly in L∞(0, T ;H) (17)

in the following sense: for any fixed g ∈ L1(0, T ;V ?) and g1 ∈ L1(0, T ;H)∫ T

0
〈g(t), um(t)〉 dt→

∫ T

0
〈g(t), u(t)〉 dt,∫ T

0
(g1(t), u′m(t)) dt→

∫ T

0
(g1(t), u′(t)) dt.

Similarly, in the case λ > λ0, n ≥ 3, there exist a subsequence of (um) and a function
u ∈ L∞(0, T ;V ) ∩ Lλ+1(Ω)) such that

(um)→ u weakly in L∞(0, T ;V ∩ Lλ+1(Ω)), (18)
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which means: for any fixed g ∈ L1(0, T ; (V ∩ Lλ+1(Ω))?)∫ T

0
〈g(t), um(t)〉 dt→

∫ T

0
〈g(t), u(t)〉 dt.

Since the imbedding W 1,2(Ω) into L2(Ω) is compact, by (16)–(18) we have for a
subsequence

(um)→ u in L2(0, T ;H) = L2(QT ) and a.e. in QT . (19)
As Q̃ : V → V ? is a linear and continuous operator, by (16) for all v ∈ V and

v ∈ V ∩ Lλ+1(Ω), respectively, we have
〈(Qum)(t), v〉 → 〈(Qu)(t), v〉 weakly in L∞(0, T ) (20)

and by (17)

〈u′′m(t), v〉 = d

dt
〈u′m(t), v〉 → 〈u′′(t), v〉 (21)

with respect to the weak convergence of the space of distributions D′(0, T ).
Further, by (19) and the continuity of h′

ϕ(x)h′(um(t))→ ϕ(x)h′(u(t)) for a.e. (t, x) ∈ QT .
Now we show that for any fixed

v ∈ L2(0, T ;V ), v ∈ L2(0, T ;V ) ∩ L1(0, T ;Lλ+1(Ω)),
respectively, the sequence of functions

ϕ(x)h′(um(t))v (22)
is equiintegrable in QT . Indeed, if (A3) is satisfied then by Sobolev’s imbedding theorem
and (13) for all t ∈ [0, T ]

‖ϕ(x)h′(um(t))‖2L2(Ω) ≤ const ‖h′(um(t))‖2L2(Ω)

≤ const
[
1 +

∫
Ω
|um(t)|2λ0 dx

]
≤ const

[
1 + ‖um(t)‖2λ0

V

]
≤ const,

thus the Cauchy–Schwarz inequality implies that the sequence of functions (22) is equi-
integrable in QT .

If (A′3) is satisfied then for all t ∈ [0, T ]∫
Ω
|ϕ(x)h′(um(t))|(λ+1)/λ dx ≤ const

∫
Ω

[h(um(t)) + 1] dx ≤ const

thus Hölder’s inequality implies that the sequence (22) is equiintegrable in QT . Conse-
quently, by Vitali’s theorem we obtain that for any fixed

v ∈ L2(0, T ;V ), v ∈ L2(0, T ;V ) ∩ L1(0, T ;Lλ+1(Ω)),
respectively,

lim
m→∞

∫
QT

ϕ(x)h′(um(t))v dt dx =
∫
QT

ϕ(x)h′(u(t))v dt dx (23)

and
ϕ(x)h′(u(t)) ∈ L2(0, T ;V ?), ϕ(x)h′(u(t)) ∈ L∞(0, T ;L(λ+1)/λ(Ω)) (24)

if (A3), (A′3) holds, respectively.
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Further, by (19) and (A4)

H(t, x;um)→ H(t, x;u) a.e. in QT (25)

and by (12) ∫
QT

|H(t, x;um)|2 dx dt ≤ const
∫
QT

h(um(t)) dx dt ≤ const,

hence, by the Cauchy–Schwarz inequality, for any fixed v ∈ L2(0, T ;V ), the sequence of
functions H(t, x;um)v is equiintegrable in QT , thus by (25) and Vitali’s theorem

lim
m→∞

∫
QT

H(t, x;um)v dt dx =
∫
QT

H(t, x;u)v dt dx (26)

and
H(t, x;u) ∈ L2(0, T ;V ?).

Similarly, (17), (19) and (A5) imply

G(t, x;um, u′m)→ G(t, x;u, u′) weakly in L∞(0, T ;H) (27)

and for arbitrary v ∈ L2(QT ) and, consequently, for all v ∈ L2(0, T ;V ) by (27)

lim
m→∞

∫
QT

G(t, x;um, u′m)v dt dx =
∫
QT

G(t, x;u, u′)v dt dx (28)

and
G(t, x;u, u′) ∈ L2(QT ) ⊂ L2(0, T ;V ?).

Now let
v ∈ V and ψ ∈ C∞0 (0, T )

be arbitrary functions. Further, let zN =
∑N
j=1 bjwj , bj ∈ R, be a sequence of functions

such that
(zN )→ v in V and V ∩ Lλ+1(Ω), (29)

respectively. Further, by (5) we have for all m ≥ N∫ T

0
〈−u′m(t), zN 〉ψ′(t) dt+

∫ T

0
〈Q̃(um(t)), zN 〉ψ(t) dt

+
∫ T

0

∫
Ω
ϕ(x)h′(um(t))zNψ(t) dt dx+

∫ T

0

∫
Ω
H(t, x;um)zNψ(t) dt dx

+
∫ T

0

∫
Ω
G(t, x;um, u′m)zNψ(t) dt dx =

∫ T

0
〈F (t), zN 〉ψ(t) dt. (30)

By (17), (20), (23), (26), (28) we obtain from (30) as m→∞

−
∫ T

0
〈u′(t), zN 〉ψ′(t) dt+

∫ T

0
〈Q̃(u(t)), zN 〉ψ(t) dt

+
∫ T

0

∫
Ω
ϕ(x)h′(u(t))zNψ(t) dt dx+

∫ T

0

∫
Ω
H(t, x;u)zNψ(t) dt dx

+
∫ T

0

∫
Ω
G(t, x;u, u′)zNψ(t) dt dx =

∫ T

0
〈F (t), zN 〉ψ(t) dt.
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From equality (30) we obtain as N →∞

−
∫ T

0
〈u′(t), v〉ψ′(t) dt+

∫ T

0
〈Q̃(u(t)), v〉ψ(t) dt

+
∫ T

0

∫
Ω
ϕ(x)h′(u(t))vψ(t) dt dx+

∫ T

0

∫
Ω
H(t, x;u)vψ(t) dt dx

+
∫ T

0

∫
Ω
G(t, x;u, u′)vψ(t) dt dx =

∫ T

0
〈F (t), 〉ψ(t) dt. (31)

Since v ∈ V and ψ ∈ C∞0 (0, T ) are arbitrary functions, (31) means that

u′′ ∈ L2(0, T ;V ?) and u′′ ∈ L2(0, T ; (V ∩ Lλ+1(Ω))?), (32)

respectively (see, e.g. [15]), and for a.a. t ∈ [0, T ]

u′′ +Qu+ ϕ(x)h′(u) +H(t, x;u) +G(t, x;u, u′) = F, (33)

i.e. we proved (1).
Now we show that the initial condition (2) holds. Since u ∈ L∞(0, T ;V ), u′ ∈

L∞(0, T ;H), we have u ∈ C([0, T ];H) and for arbitrary ψ ∈ C∞[0, T ] with the properties
ψ(0) = 1, ψ(T ) = 0, and all j∫ T

0
〈u′(t), wj〉ψ(t) dt = −(u(0), wj)H −

∫ T

0
〈u(t), wj〉ψ′(t) dt,∫ T

0
〈u′m(t), wj〉ψ(t) dt = −(um(0), wj)H −

∫ T

0
〈um(t), wj〉ψ′(t) dt.

Hence by (6), (7), (16), (17), we obtain as m→∞

(u0, wj)H = lim
m→∞

(um0, wj)H = lim
m→∞

(um(0), wj)H = (u(0), wj)H

for all j which implies u(0) = u0.
Similarly, since

u′ ∈ L∞(0, T ;H) and u′′ ∈ L2(0, T ;V ?) + L∞(0, T ;L(λ+1)/λ(Ω))

if (A′3) holds, we obtain by Remark 2.2 with a function ψ ∈ C∞[0, T ] with the properties
ψ(0) = 1, ψ(T ) = 0∫ T

0
〈u′′(t), wj〉ψ(t) dt =

∫ T

0

d

dt
〈u′(t), wj〉ψ(t) dt

= −(u′(0), wj)H −
∫ T

0
〈u′(t), wj〉ψ′(t) dt,∫ T

0
〈u′′m(t), wj〉ψ(t) dt = −(u′m(0), wj)H −

∫ T

0
〈u′m(t), wj〉ψ′(t) dt

whence by (6), (8), (17), (32), we obtain as m→∞

(u1, wj)H = lim
m→∞

(um1, wj)H = lim
m→∞

(u′m(0), wj)H = (u′(0), wj)H

for all j which implies u′(0) = u1. The case where (A3) holds is similar.
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Example 2.3. Let the operator Q̃ be defined by

〈Q̃ũ, ṽ〉 =
∫

Ω

[ n∑
j,l=1

ajl(x)(Dlũ)(Dj ṽ) + d(x)ũṽ
]
dx

+
n∑
j=1

∫
Ω

[
Dj ṽ(x)

∫
Ω
Kj(x, y)Dj ũ(y) dy

]
dx+

∫
Ω

[
ṽ(x)

∫
Ω
K0(x, y)ũ(y) dy

]
dx

where ajl, d ∈ L∞(Ω), ajl = alj ,
∑n
j,l=1 ajl(x)ξjξl ≥ c0|ξ|2, d ≥ c0 with some positive

constant c0 and the functions Kj ∈ L2(Ω× Ω) satisfy

Kj(x, y) = Kj(y, x) for a.a. x, y ∈ Ω and
∫

Ω×Ω
Kj(x, y)w(x)w(y) dx dy ≥ 0

for all w ∈ L2(Ω). (The last assumption means that the integral operators defined by the
kernels Kj are selfadjoint and positive.) Then, clearly, assumption (A1) is satisfied.

If h is a C1 function such that h(η) = |η|λ+1 if |η| > 1 then (A3), (A′3), respectively,
are satisfied.

Further, let h̃ : R→ R be a continuous function satisfying

const |η|(λ+1)/2 ≤ |h̃(η)| ≤ const |η|(λ+1)/2 for |η| > 1

with some positive constants. It is not difficult to show that the operators H defined by
one of the formulas

H(t, x;u) = χ(t, x)h̃
(∫

Qt

u(τ, ξ) dτ dξ
)
,

H(t, x;u) = χ(t, x)h̃
(∫ t

0
u(τ, x) dτ

)
,

H(t, x;u) = χ(t, x)h̃
(∫

Ω
u(t, ξ) dξ

)
,

H(t, x;u) = χ(t, x)h̃
(
u(τ(t), x)

)
where τ ∈ C1, 0 ≤ τ(t) ≤ t, τ ′(t) ≥ c1 > 0,

satisfy (A4) if χ ∈ L∞(QT ).
The operator G may have the form

G(t, x;u,w) = ψ1(t, x;u)w(t) + ψ2(t, x;u)

where the values of the operators (of Volterra type) ψ1, ψ2 : QT × L2(QT ) → R are
bounded,

(uk)→ u in L2(QT ) and a.e. in QT

imply ψj(t, x;uk)→ ψj(t, x;u) for a.a. (t, x) ∈ QT (j = 1, 2).

Then (A5) is fulfilled. The operators ψ1, ψ2 may have form similar to the above forms
of H with bounded continuous functions h̃.

Remark 2.4. Instead of
∫
Qt
u(τ, ξ) dτ dξ one may consider

∫
Qt
K(t, x; τ, ξ)u(τ, ξ) dτ dξ

with “sufficiently good” kernel K. Similar generalizations of
∫ t

0 u(τ, x) dτ and
∫

Ω u(t, ξ) dξ
can be considered.
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3. Solutions in (0, ∞). Now we formulate and prove existence of solutions for
t ∈ (0,∞). Denote by Lploc(0,∞;V ) the set of functions u : (0,∞) → V such that
for each fixed finite T > 0, their restrictions to (0, T ) satisfy u|(0,T ) ∈ Lp(0, T ;V ) and let
Q∞ = (0,∞)× Ω, Lαloc(Q∞) the set of functions u : Q∞ → R such that u|QT ∈ Lα(QT )
for any finite T .

Now we formulate assumptions on H and G.

(B4) The function H : Q∞ × L2
loc(Q∞)→ R is such that for all fixed u ∈ L2

loc(Q∞) the
function (t, x) 7→ H(t, x;u) is measurable, H has the Volterra property (see (A4))
and for each fixed finite T > 0, the restrictionHT ofH toQT×L2(QT ) satisfies (A4).

Remark 3.1. Since H has the Volterra property, the restriction HT is well defined by
the formula

HT (t, x; ũ) = H(t, x;u), (t, x) ∈ QT , ũ ∈ L2(QT )

where u ∈ L2
loc(Q∞) may be any function satisfying u(t, x) = ũ(t, x) for (t, x) ∈ QT .

(B5) The operator
G : Q∞ × L2

loc(Q∞)× L∞loc(0,∞;H)→ R

is such that for all fixed u ∈ L2
loc(Q∞), w ∈ L∞loc(0,∞;H) the function (t, x) 7→

G(t, x;u,w) is measurable, G has the Volterra property and for each fixed finite
T > 0, the restriction GT of G to QT × L2(QT )× L∞(0, T ;H) satisfies (A5).

Theorem 3.2. Assume (A1)–(A3), (B4), (B5). Then for all F ∈ L2
loc(0,∞;H), u0 ∈ V ,

u1 ∈ H there exists

u ∈ L∞loc(0,∞;V ) such that u′ ∈ L∞loc(0,∞;H), u′′ ∈ L2
loc(0,∞;V ?),

u satisfies (1) for a.a. t ∈ (0,∞) (in the sense formulated in Theorem 2.1) and the initial
condition (2).

If (A1), (A2), (A′3), (B4), (B5) are fulfilled then for all F ∈ L2
loc(0,∞;H), u0 ∈

V ∩ Lλ+1(Ω), u1 ∈ H there exists

u ∈ L∞loc(0,∞;V ∩ Lλ+1(Ω)) such that u′ ∈ L∞loc(0,∞;H),

u′′ ∈ L2
loc(0,∞;V ?) + L∞loc(0,∞;L(λ+1)/λ(Ω)) ⊂ L2

loc(0,∞; [V ∩ Lλ+1(Ω)]?),

u satisfies (1) for a.a. t ∈ (0,∞) (in the sense formulated in Theorem 2.1) and the initial
condition (2).

If there exists a finite T0 > 0 such that

for a.a. t > T0, F (t) = 0, G(t, x;u,w) = 0, (34)
for a.a. t > T0, H(t, x;u) = 0 (35)

then for the above solution u we have

u ∈ L∞(0,∞;V ), u ∈ L∞(0,∞;V ∩ Lλ+1(Ω)), respectively, (36)
and u′ ∈ L∞(0,∞;H). (37)

Further, if instead of (34) the condition

F − F∞ ∈ L2(0,∞;H) and G(t, x;u, u′)u′(t) ≥ c̃u′(t)2 (38)
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holds with some constant c̃ > 0 and with some F∞ ∈ H such that there exists u∞ ∈ V
satisfying Q̃u∞ = F∞ then

‖u′(t)‖H ≤ const e−c̃t, t ∈ (0,∞) (39)

and there exists w0 ∈ H such that

u(T )→ w0 in H as T →∞, ‖u(T )− w0‖H ≤ const e−c̃T . (40)

Proof. Similarly to the proof of Theorem 2.1, we apply Galerkin’s method and we want
to find the m-th approximation of solution u for t ∈ (0,∞) in the form (see (4)).

um(t) =
m∑
l=1

glm(t)wl

where glm ∈ W 2,2
loc (0,∞) if (A3) is satisfied and glm ∈ W 2,2

loc (0,∞) ∩ L∞loc(0,∞) if (A′3) is
satisfied. Here W 2,2

loc (0,∞) and L∞loc(0,∞) denote the set of functions g : (0,∞)→ R such
that the restriction of g to (0, T ) belongs to W 2,2(0, T ), L∞(0, T ), respectively.

According to the arguments in the proof of Theorem 2.1, there exists a solution of
(5), (6) in a neighbourhood of t = 0. Further, we obtain estimates (12)–(13) and (14)–(15),
respectively, for t ∈ [0, T ] with sufficiently small T where on the right hand side are finite
constants (depending on T ). Consequently, the maximal solutions of (5), (6) are defined
in (0,∞) and the estimates (12)–(15) hold for all finite T > 0 (if t ∈ [0, T ]), the constants
on the right hand sides are depending only on T .

Let (Tk)k∈N be a monotone increasing sequence, converging to +∞. According to the
arguments in the proof of Theorem 2.1, there is a subsequence (um1) of (um) for which
(16), (17) and (18) hold, respectively, with T = T1. Further, there is a subsequence (um2)
of (um1) for which (16), (17) and (18) hold, respectively, with T = T2, etc. By a diagonal
process we obtain a sequence (umm)m∈N such that (16), (17), (18) hold for every fixed
T > 0; further,

u ∈ L∞loc(0,∞;V ), u′ ∈ L∞loc(0,∞;H), u′′ ∈ L2
loc(0,∞;V ?)

and u ∈ L∞loc(0,∞;V ∩ Lλ+1(Ω)), u′ ∈ L∞loc(0,∞;H),

u′′ ∈ L2
loc(0,∞;V ?) + L∞loc(0,∞;L(λ+1)/λ(Ω)),

respectively.
Now we consider the case where (34) holds. Then by (10) we obtain for all t > 0

1
2 ‖u

′
m(t)‖2H + 1

2 〈(Qum)(t), um(t)〉+ c1

∫
Ω
h(um(t)) dx

≤ ‖F‖L2(0,T0;H)‖u′m‖L2(0,T0;H) + 1
2 ‖u

′
m(0)‖2H

+ 1
2 〈(Qum)(0), um(0)〉+ c2

∫
Ω
h(um(0)) dx

+ const
∫ T0

0

∫
Ω
h(um(τ)) dx dτ + const

[
‖u′m‖2L2(0,T0;H) + 1

]
.

Since the right hand side of this inequality can be estimated by a constant not depending
on m and t > 0, we obtain (36) and (37).
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If (38) holds instead of (34), we find (39) from (10) in a similar way. By (9), Q̃u∞=F∞,
(38) we obtain for wm = um − u∞ (since w′m = u′m):

〈w′′m(t)w′m(t)〉+ 〈(Qwm)(t), w′m(t)〉+
∫

Ω
ϕ(x)h′(um)u′m(t) dx

+
∫

Ω
H(t, x;um)w′m(t) dx+

∫
Ω
G(t, x;um, u′m)w′m(t) dx = 〈F (t)− F∞, w′m(t)〉. (41)

Integrating over [0, t] we find (similarly to (10))

1
2 ‖w

′
m(t)‖2H + 1

2 〈Q̃(wm(t)), wm(t)〉+
∫

Ω
ϕ(x)h(um(t)) dx+ c̃

∫ t

0

[∫
Ω
|w′m(τ)|2 dx

]
dτ

≤ ε
∫ t

0

[∫
Ω
|w′m(τ)|2 dx

]
dτ + C(ε)

∫ t

0
‖F (τ)− F∞‖2H dτ

+ 1
2 ‖u

′
m(0)‖2H + 1

2 〈(Qum)(0), um(0)〉+ c2

∫
Ω
h(um(0)) dx

+ const
{∫ T0

0

[∫
Ω
h(um(τ)) dx

]
dτ

}1/2
‖w′m‖L2(0,T0;H). (42)

Choosing ε = c̃/2 we obtain ∫ t

0

[∫
Ω
|w′m(τ)|2 dx

]
dτ ≤ const (43)

for all t > 0, m which implies u′ ∈ L2(0,∞;H) because for every finite T > 0

w′m = u′m → u′ weakly in L∞(0, T ;H).

Further, from (42), (43) we obtain

‖u′m(t)‖2H + c̃

∫ t

0
‖u′m(τ)‖2H dτ ≤ c?

with some positive constant c? not depending on m and t. Thus by Gronwall’s lemma we
find

‖u′m(t)‖2H = ‖w′m(t)‖2H ≤ c?e−c̃t, t > 0,

which implies (39).
Further, for arbitrary T1 < T2

‖u(T2)− u(T1)‖2H = (u(T2), u(T2)− u(T1))H − (u(T1), u(T2)− u(T1))H

=
∫ T2

T1

〈u′(t), u(T2)− u(T1)〉 dt =
∫ T2

T1

(u′(t), u(T2)− u(T1))H dt

≤ ‖u(T2)− u(T1)‖H
∫ T2

T1

‖u′(t)‖H dt

which implies

‖u(T2)− u(T1)‖H ≤
∫ T2

T1

‖u′(t)‖H dt. (44)

Hence by (39)
‖u(T2)− u(T1)‖H → 0 as T1, T2 →∞
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which implies (40) and by (44), (39) we obtain

‖u(T )− w0‖H ≤
∫ ∞
T

‖u′(t)‖H dt ≤ const e−c̃T .

4. Uniqueness of the solution

Theorem 4.1. Assume that the conditions (A1)–(A5) are fulfilled such that
G(t, x;u, u′) = ψ̃(x)u′(t)

where ψ̃ is measurable and
0 ≤ ψ̃(x) ≤ const, (45)

h is twice continuously differentiable and
|h′′(η)| ≤ const |η|λ−1 for |η| > 1. (46)

Further, for all t ∈ [0, T ]∫ t

0

[∫
Ω
|H(τ, x;u1)−H(τ, x;u2)|2 dx

]
dτ ≤M(K)

∫ t

0

[∫
Ω
|u1 − u2|2 dx

]
dτ

if uj ∈ L∞(0, T ;V ) and ‖uj‖L∞(0,T ;V ) ≤ K, (47)
where M(K) is a constant depending on K.

Then the solution of (1), (2) (formulated in Theorem 2.1) is unique. Further, if uj is
a solution of (1), (2) with F = Fj, u0 = uj0, u1 = uj1 (j = 1, 2) then for

w = u1 − u2 and w1(s) =
∫ s

0
[u1(τ)− u2(τ)] dτ

we have
‖w(s)‖2H +‖w1(s)‖2V ≤ χ0(Fj , uj0, u

j
1)es

[
‖f1−f2‖2L2(Qs) +‖u1

0−u2
0‖2V +‖u1

1−u2
1‖2H

]
(48)

where χ0 is a function whose values are bounded if ‖Fj‖L2(QT ), ‖uj0‖V , uj1‖H are bounded
and

fj(t) =
∫ t

0
Fj(τ) dτ.

Proof. Assume that uj is a solution of (1), (2) with F = Fj , u0 = uj0, u1 = uj1 (j = 1, 2).
Let s ∈ [0, T ] be an arbitrary fixed number and apply (3) (with uj) to v defined by

v(t) =
∫ s

t

[u1(τ)− u2(τ)] dτ if 0 ≤ t ≤ s and v(t) = 0 if s < t ≤ T.

It is not difficult to show that v ∈ L2(0, T ;V ) thus we may apply (3) to v, further,
v ∈ C(0, T ;V ), v′ ∈ L∞(0, T ;V ), (49)

v′(t) = −w(t) = u2(t)− u1(t) if t < s and v′(t) = 0 if s < t

and thus

〈w′′(t), v(t)〉+ 〈Qw(t), v(t)〉+
∫

Ω
ϕ(x)[h′(u1)− h′(u2)], v(t) dx

+
∫

Ω
[H(t, x;u1)−H(t, x;u2)]v(t) dx+

∫
Ω
ψ̃(x)w′(t)v(t) dx = 〈F1(t)− F2(t), v(t)〉.
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Integrating over (0, s), by (49) we obtain∫ s

0
〈w′′(t), v(t)〉 dt+

∫ s

0
〈Qw(t), v(t)〉 dt+

∫ s

0

[∫
Ω
ψ̃(x)w′(t)v(t) dx

]
dt

+
∫ s

0
〈F1(t)− F2(t), v(t)〉 dt−

∫ s

0

[∫
Ω
ϕ(x)[h′(u1)− h′(u2)], v(t) dx

]
dt

−
∫ s

0

[∫
Ω

[H(t, x;u1)−H(t, x;u2)]v(t) dx
]
dt. (50)

Since
w ∈ L∞(0, T ;V ), w′ ∈ L∞(0, T ;H), w′′ ∈ L2(0, T ;V ?), (51)

by (49) and Remark 2.2 we obtain∫ s

0
〈w′′(t), v(t)〉 dt =

∫ s

0
〈w′(t), w(t)〉 dt− 〈w′(0), v(0)〉

= 1
2 ‖w(s)‖2H −

1
2 ‖w(0)‖2H − 〈w′(0), v(0)〉. (52)

It is not difficult to show (see, e.g. [15], [12]) that by (A1)∫ s

0
〈Qw(t), v(t)〉 dt = −

∫ s

0
〈Qv′(t), v(t)〉 dt = −1

2 〈Qv(s), v(s)〉+ 1
2 〈Qv(0), v(0)〉. (53)

Consequently, since v(s) = 0, integrating by parts, from (50), (52), (53) we get

1
2 ‖w(s)‖2H + 1

2 〈Qv(0), v(0)〉+
∫ s

0

[∫
Ω
ψ̃(x)w2(t) dx

]
dt

=
∫ s

0
〈F1(t)− F2(t), v(t)〉 dt+

∫
Ω
w′(0)v(0) dx+

∫
Ω
ψ̃(x)w(0)v(0) dx

+ 1
2 ‖w(0)‖2H −

∫ s

0

[∫
Ω
ϕ(x)[h′(u1)− h′(u2)]v(t) dx

]
dt

−
∫ s

0

[∫
Ω

[H(t, x;u1)−H(t, x;u2)]v(t) dx
]
dt. (54)

By using the definition of v, w and the notation w1(s) =
∫ s

0 w(τ) dτ we have

v(0) =
∫ s

0
w(τ) dτ = w1(s) (55)

and by (A1)
〈Qv(0), v(0)〉 ≥ c0‖v(0)‖2V = c0‖w1(s)‖2V . (56)

Further, by using the notation fj(t) =
∫ t

0 Fj(τ) dτ , integrating by parts, we obtain by
Young’s inequality∣∣∣∣∫ s

0
〈F1(t)− F2(t), v(t)〉 dt

∣∣∣∣ =
∣∣∣∣∫

Ω

{∫ s

0
[f ′1(t)− f ′2(t)]v(t) dt

}
dx

∣∣∣∣
=
∣∣∣∣∫

Ω

{∫ s

0
[f1(t)− f2(t)]w(t) dt

}
dx

∣∣∣∣ ≤ 1
2

∫ s

0
‖w(t)‖2H dt+ 1

2 ‖f1 − f2‖2L2(Qs). (57)

Similarly, by (55) ∣∣∣∣∫
Ω
w′(0)v(0) dx

∣∣∣∣ ≤ ε‖w1(s)‖2V + C1(ε)‖w′(0)‖2H (58)
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and by (45) ∣∣∣∣∫
Ω
ψ̃(x)w(0)v(0) dx

∣∣∣∣ ≤ ε‖w1(s)‖2V + C2(ε)‖w(0)‖2H . (59)

(Cj(ε) denote constants depending on ε.)
The first nonlinear term on the right hand side of (54) can be estimated as follows:

by (A2) and (46)∣∣∣∣∫ s

0

[∫
Ω
ϕ(x)[h′(u1)− h′(u2)]v(t) dx

]
dt

∣∣∣∣
≤ const

∣∣∣∣∫ s

0

[∫
Ω

sup{|h′′(η)| : η ∈ (a, b)}|u1(t)− u2(t)||v(t)| dx
]
dt

∣∣∣∣
≤ const

∫ s

0

[∫
Ω

(
|u1(t)|λ0−1 + |u2(t)|λ0−1 + 1

)
|u1(t)− u2(t)||v(t)| dx

]
dt (60)

where
a = min{u1(t), u2(t)}, b = max{u1(t), u2(t)}

since
|h′′(η)| ≤ const |η|λ0−1 = const |η|2/(n−2) if |η| > 1

(for n = 2, λ0 may be any positive number).
Since V is continuously imbedded into Lq(Ω) where q = 2n

n−2 = n(λ0 − 1), we may
apply Hölder’s inequality by 1

n + 1
2 + 1

q = 1:∫ s

0

[∫
Ω

(
|u1(t)|λ0−1 + |u2(t)|λ0−1 + 1

)
|u1(t)− u2(t)||v(t)| dx

]
dt

≤ const
∫ s

0

[
‖|u1(t)|λ0−1‖Ln(Ω) + ‖|u2(t)|λ0−1‖Ln(Ω) + 1

]
‖w(t)‖H‖v(t)‖Lq(Ω) dt

≤ const
∫ s

0

[
‖u1(t)‖λ0−1

V + ‖u2(t)‖λ0−1
V + 1

]
‖w(t)‖H‖v(t)‖V dt. (61)

Since u1, u2 are solutions of (1), (2), by using arguments in the proof of Theorem 2.1, one
can show that the L∞(0, T ;V ) norm of uj can be estimated by a function of ‖Fj‖L2(QT ),
‖uj0‖V , ‖uj1‖H , the values of which are bounded if ‖Fj‖L2(QT ), ‖uj0‖V , ‖uj1‖H are bounded.
(See the proof of (12)–(15).) Therefore, since

v(t) = w1(s)− w1(t) for t ≤ s,

we obtain from (60), (61)∣∣∣∣∫ s

0

[∫
Ω
ϕ(x)[h′(u1)− h′(u2)]v(t) dx

]
dt

∣∣∣∣ ≤ χ(Fj , uj0, u
j
1)
∫ s

0
‖w(t)‖H‖v(t)‖V dt

≤ χ(Fj , uj0, u
j
1)
∫ s

0
‖w(t)‖H [‖w1(t)‖V + ‖w1(s)‖V ] dt

≤ χ(Fj , uj0, u
j
1)
[
ε‖w1(s)‖2V + C(ε)

∫ s

0

(
‖w(t)‖2H + ‖w1(t)‖2V

)
dt
]

(62)

where χ(Fj , uj0, u
j
1) is bounded if ‖Fj‖L2(QT ), ‖uj0‖V , ‖uj1‖H are bounded.
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For the last term on the right hand side of (54) we have, by using the notation

χj(t) =
∫ t

0
H(τ, x;uj) dτ, j = 1, 2,∣∣∣∣∫ s

0

[∫
Ω

(H(t, x;u1)−H(t, x;u2))v(t) dx
]
dt

∣∣∣∣
=
∣∣∣∣∫

Ω

[∫ s

0
(χ′1(t)− χ′2(t))v(t) dt

]
dx

∣∣∣∣ =
∣∣∣∣∫

Ω

[∫ s

0
(χ1(t)− χ2(t))w(t) dt

]
dx

∣∣∣∣
≤
{∫

Ω

[∫ s

0
|χ1(t)− χ2(t)|2 dt

]
dx

}1/2{∫ s

0
‖w(t)‖2H dt

}1/2
. (63)

The assumption (47) implies∫
Ω

[∫ s

0
|χ1(t)− χ2(t)|2 dt

]
dx

=
∫

Ω

[∫ s

0

∣∣∣∫ t

0
[H(τ, x;u1)−H(τ, x;u2)] dτ

∣∣∣2 dt] dx
≤ const

∫
Ω

[∫ s

0
|H(τ, x;u1)−H(τ, x;u2)|2 dτ

]
dx ≤ M̃(K)

∫ s

0
‖w(τ‖2H dτ (64)

if ‖uj‖L∞(0,T ;V ) ≤ K where M̃(K) is a constant depending on K.
Choosing sufficiently small ε > 0, we obtain from (54), (56)–(59), (62)–(64)

‖w(s)‖2H + ‖w1(s)‖2V ≤ χ̃(Fj , uj0, u
j
1)
∫ s

0
[‖w(t)‖2H + ‖w1(t)‖2V ] dt

+ const
[
‖f1 − f2‖2L2(Qs) + ‖w(0)‖2V + ‖w′(0)‖2H

]
.

Hence by Gronwall’s lemma we obtain (48).

Remark 4.2. By using Examples in Section 2 it is not difficult to formulate examples
satisfying the assumptions of Theorem 4.1.

Remark 4.3. By a usual argument (Cantor’s trick) one obtains: if the solution is unique
(by the above theorem) then not only a subsequence but also the original sequence
(um) obtained by Galerkin’s method converges to the solution u weakly in L∞(0, T ;V ),
strongly in L2(QT ) and (u′m)→ u′ weakly in L∞(0, T ;H).
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