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Abstract. We apply general Hardy type inequalities, recently obtained by the author. As a con-
sequence we obtain a family of Hardy–Poincaré inequalities with certain constants, contributing
to the question about precise constants in such inequalities posed in [3]. We confirm optimal-
ity of some constants obtained in [3] and [8]. Furthermore, we give constants for generalized
inequalities with the proof of their optimality.

1. Introduction. In this paper we derive Hardy–Poincaré inequalities having the form

C

∫
Rn
|ξ|p
[
(1 + |x|

p
p−1 )p−1]γ−1

dx ≤
∫
Rn
|∇ξ|p

[
(1 + |x|

p
p−1 )p−1]γ dx, (1)

where C > 0, 1 < p < ∞, γ ∈ R, valid for every Lipschitz function ξ with compact
support.

The version of this result, when p = 2,

C

∫
Rn
|ξ|2(1 + |x|2)γ−1 dx ≤

∫
Rn
|∇ξ|2(1 + |x|2)γ dx, (2)

is of special interest in many disciplines of analysis. Let us recall some applications of (2)
to the theory of nonlinear diffusions — evolution equations of a form ut = ∆um, which
are called fast diffusion equation (FDE) if m < 1 and porous media equation (PME) if
m > 1. In the theory of FDE, Hardy–Poincaré inequalities (2) with γ < 0 are the basic
tools to investigate the large-time asymptotic of solutions [1, 2, 4, 6]. For example, the
best constant in (2) is used in [3, 7] to show the fastest rate of convergence of solutions
of fast diffusion equation and to bring some information about spectral properties of the
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elliptic operator Lα,du := −h1−γ div(h−γ∇u), where hα = (1 + |x|2)α. We refer also to
[4, 5, 16, 17] for the related results.

We are interested in (1) with γ > 1, and we take into account all p ∈ (1,∞), not only
p = 2.

Our considerations are based on our recent result from [15], where we derived a one
parameter family of Hardy type inequalities having the form∫

Ω
|ξ|p µ1,β(dx) ≤

∫
Ω
|∇ξ|p µ2,β(dx),

where 1 < p < ∞, ξ : Ω → R is a compactly supported Lipschitz function, and Ω is an
open subset of Rn, not necessarily bounded. The involved measures µ1,β(dx), µ2,β(dx)
depend on a certain parameter β and on u — a nonnegative weak solution to the partial
differential inequality

−∆pu ≥ Φ in Ω, (3)

with a locally integrable function Φ (see Theorem 2.3). The proof in [15] is inspired
by the techniques from papers [10] and [14], dealing with the nonexistence of nontrivial
nonnegative weak solutions to nonlinear problems in Rn.

As a consequence, in [15] we retrieved the classical Hardy inequalities with optimal
constants and obtained various weighted Hardy inequalities, among them those with
radial measures.

In this paper we concentrate on (3) with uα(x) = (1 + |x|
p
p−1 )−α, α > 0, and prove

inequality (1) as well as optimality of the obtained constants for a range of parameters.
It appears that in some cases we improve the constants obtained by Blanchet, Bon-

forte, Dolbeault, Grillo and Vázquez in [3], as well as those by Ghoussoub and Moradifam
from [8]. In the case p = 2, γ = n, our constant is the same as in [3] and proven there
to be optimal. Moreover, we show that our constants are also optimal for p > 1, when
γ ≥ n+ 1− n

p , but we do not know if they are optimal for a wider range of parameters,
either in the case p = 2, or generally for p > 1. We finish this paper with a summary of
the known values of constants, and their optimality, in different cases.

2. Preliminaries. In the sequel we assume that p > 1 and that Ω is an arbitrary
open subset of Rn. By p-harmonic problems we mean those which involve the p-Laplace
operator ∆pu = div(|∇u|p−2∇u).

Definition 2.1 (Weighted Sobolev space). By W 1,p
v1,v2

(Rn), where nonnegative measur-
able functions v1, v2 are given, we mean the completion of the set of functions u ∈ C∞(Rn)
with

∫
Rn |u|

p v1dx <∞ and
∫
Rn |∇u|

p v2dx <∞, under the norm

‖u‖W 1,p
v1,v2 (Rn) :=

(∫
Rn
|u|p v1 dx+

∫
Rn
|∇u|p v2 dx

)1/p
.

In [15] we derived Hardy–Poincaré inequalities from differential inequalities defined
as follows.
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Definition 2.2. Let Ω be an open subset of Rn and let Φ be a locally integrable function
defined in Ω, such that for every nonnegative compactly supported w ∈W 1,p(Ω)∫

Ω
Φw dx > −∞. (4)

Let u ∈W 1,p
loc (Ω). We will say that

−∆pu ≥ Φ,
if for every nonnegative compactly supported w ∈W 1,p(Ω), we have

〈−∆pu,w〉 :=
∫

Ω
|∇u|p−2〈∇u,∇w〉 dx ≥

∫
Ω

Φw dx.

In [15] we obtained the following result.
Theorem 2.3 ([15], Theorem 4.1). Assume that 1 < p < ∞ and that u ∈ W 1,p

loc (Ω) is a
nonnegative solution to the PDI −∆pu ≥ Φ, in the sense of Definition 2.2, where Φ is
locally integrable and satisfies the condition
(Φ,p) σ0 := − inf

{
σ ∈ R : Φ · u+ σ|∇u|p ≥ 0 a.e. in {u > 0} ∩ Ω

}
∈ R,

where we set inf ∅ = −∞. Assume further that β and σ are arbitrary numbers such that
β > 0 and β > σ ≥ σ0.

Then, for every Lipschitz function ξ with compact support in Ω, we have∫
Ω
|ξ|p µ1(dx) ≤

∫
Ω
|∇ξ|p µ2(dx), (5)

where

µ1(dx) =
(β − σ
p− 1

)p−1[
Φ · u+ σ|∇u|p

]
· u−β−1χ{u>0} dx, (6)

µ2(dx) = up−β−1χ{|∇u|6=0} dx. (7)

3. Main result. Hardy–Poincaré inequalities with optimal constants. In this
part we show that application of Theorem 2.3 with a special function u, namely uα(x) =
(1 + |x|

p
p−1 )−α with α > 0, leads to the following theorem.

Theorem 3.1. Suppose p > 1 and γ > 1. Then, for every compactly supported function
ξ ∈ W 1,p

v1,v2
(Rn), where v1(x) =

(
1 + |x|

p
p−1
)(p−1)(γ−1), v2(x) =

(
1 + |x|

p
p−1
)(p−1)γ , we

have

C̄γ,n,p

∫
Rn
|ξ|p
[
(1 + |x|

p
p−1 )p−1]γ−1

dx ≤
∫
Rn
|∇ξ|p

[
(1 + |x|

p
p−1 )p−1]γ dx, (8)

with C̄γ,n,p = n
(p(γ−1)

p−1
)p−1. Moreover, for γ > n+ 1− n

p , the constant C̄γ,n,p is optimal
and it is achieved by the function ū(x) =

(
1 + |x|

p
p−1
)1−γ .

Proof. First we note that, by standard density argument, it suffices to prove (8) for every
compactly supported Lipschitz function ξ. Indeed, let ξ ∈W 1,p

v1,v2
(Rn) and

φ(x) =


1, |x| < 1,
−|x|+ 2, 1 ≤ |x| ≤ 2,
0, 2 < |x|.

φR(x) = φ
( x
R

)
, ξR(x) = ξ(x)φR(x).
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An easy verification shows that ξR → ξ in W 1,p
v1,v2

(Rn). A standard convolution argument
shows that every compactly supported function u ∈ W 1,p

v1,v2
(Rn) can be approximated in

W 1,p
v1,v2

(Rn) by compactly supported Lipschitz functions.
Let us consider the function uα(x) = (1 + |x|

p
p−1 )−α with α > 0. Now the proof

follows by steps.
Step 1. We recognize that uα ∈ W 1,p

loc (Rn) and that it is a nonnegative solution to
PDE

−∆p(uα) = d(1 + |x|
p
p−1 )α−αp−p(1 + κ|x|

p
p−1 ) =: Φ a.e. in Rn, (9)

where

d = d(n, α, p) =
( αp

p− 1

)p−1
n and κ = κ(n, α, p) = 1− α+ 1

n
p. (10)

Moreover, Φ satisfies (4). For the reader’s convenience the computations are carried out
in the Appendix.

Step 2. In our case condition (Φ,p) becomes

σ0 := − ess inf
( Φ · uα
|∇uα|p

)
= −p− 1

αp
(n− p(α+ 1)) ∈ R. (11)

Indeed, by the formulae (9) and (11), we have

σ0 = − inf
(
αp
p−1
)p−1(1 + |x|

p
p−1
)−p(α+1)(

n+ (n− (α+ 1)p)|x|
p
p−1
)

(
αp
p−1
)p(1 + |x|

p
p−1
)−p(α+1)|x|

p
p−1

= − inf n+ (n− (α+ 1)p)|x|
p
p−1(

αp
p−1
)
|x|

p
p−1

= −
(p− 1
αp

)[
inf n+ (n− (α+ 1)p)|x|

p
p−1

|x|
p
p−1

]
= − (p− 1)(n− (α+ 1)p)

αp
.

Step 3. For given α > −γ, define β = (p− 1)( γα + 1). We apply Theorem 2.3.
For this we require that β > 0 and that σ ∈ R is such that β > σ ≥ σ0. This is

equivalent to the condition γ > max{−α, 1 − n
p }, which obviously holds for all γ > 1,

α > 0.
We are going to compute the measure given by (6). Let b1 =

(
αp
p−1
)p ·σ. We note that

γ = α
(
β
p−1 − 1

)
and −p(α + 1) + α(β + 1) = (p− 1)(γ − 1)− 1 and recall that d and κ

are given in (10). Applying these formulae to (6), we obtain

µ1(dx) =
(β − σ
p− 1

)p−1[
Φ · uα + σ|∇uα|p

]
u−β−1
α dx

=
(β − σ
p− 1

)p−1
[

d
(
1 + κ|x|

p
p−1
)(

1 + |x|
p
p−1
)p(α+1) + b1|x|

p
p−1(

1 + |x|
p
p−1
)p(α+1)

]
·
(
1 + |x|

p
p−1
)α(β+1)

dx

=
( (β − σ)pα

(p− 1)2

)p−1{
n+

[
n− (α+ 1)p+ σαp

p− 1

]
|x|

p
p−1

}
×
(
1 + |x|

p
p−1
)−1 ·

[(
1 + |x|

p
p−1
)p−1]γ−1

dx,

(12)
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while after substitution of β = (p−1)(α+γ)
α , we obtain from (7)

µ2(dx) = up−β−1χ{|∇u|6=0} dx =
[(

1 + |x|
p
p−1
)−α]p−β−1

dx =
[(

1 + |x|
p
p−1
)p−1]γ

dx.

Step 4. We choose σ := (p−1)(α+1)
α and realize that

(p− 1)(α+ γ)
α

= β > σ > σ0 = (p− 1)(α+ 1− n/p)
α

,

because γ > 1. Then, in (12), the expression in curly brackets equals n(1 + |x|
p
p−1 ). This

leads to the inequality (8) with the constant as required.
Step 5. In this step we prove the optimality of the proposed constant under the

assumption γ > n+ 1− n
p . It suffices to show that both sides of (8), for uα := ū defined

below, are equal and finite.
We prove first that the function ū(x) = v(|x|) = (1 + |x|

p
p−1 )1−γ satisfies

−div(v2|∇ū|p−2∇ū) = C̄γ,n,pv1ū
p−1. (13)

For the reader’s convenience the computations are carried out in the Appendix.
Now we concentrate on (8). Simple computations show that ū ∈W 1,p

v1,v2
(Rn). It suffices

to prove equality in (8) for ū. Due to (13), we obtain

C̄γ,n,p

∫
Rn
|ū|p

(
1 + |x|

p
p−1
)(p−1)(γ−1)

dx = C̄γ,n,p

∫
Rn
ūp v1 dx

= −
∫
Rn

div(v2|∇ū|p−2∇ū) · ū dx = − lim
R→∞

∫
|x|<R

div(v2|∇ū|p−2∇ū) · ū dx =: L.

We apply Gauss–Ostrogradski Theorem and observe that for an outer normal vector
nx = x

|x| to ∂B(R) we have 〈∇ū, nx〉 = |∇ū|. This implies

L = lim
R→∞

(∫
|x|<R

v2|∇ū|p dx−
∫
|x|=R

v2|∇ū|p−1 · ū dS
)

= lim
R→∞

(A− B),

where dS denotes the surface measure on the sphere Sn−1(R). To deal with the limit we
require γ > n+ 1− n

p . Let us observe, that limR→∞ B = 0, because it is up to a constant
equal to

∫
|x|=R ū(x)|x| dS. Moreover, we notice that finiteness of the limit of A is ensured

by
1

C̄γ,n,p
A ≤

∫
Rn

(
1 + |x|

p
p−1
)−(γ−1)

dx ≤
∫
Rn

(1 + |x|)−
p(γ−1)
p−1 dx,

which is finite if the power of (1 + |x|) is smaller than −n, i.e. for γ > n+ 1− n
p .

This finishes the proof.

Remark 3.2. Careful analysis of the quotient

b(R)
a(R) :=

∫
Rn |∇uR|

p(1 + |x|
p
p−1 )(p−1)γ dx

C̄γ,n,p
∫
Rn |uR|p(1 + |x|

p
p−1 )(p−1)(γ−1) dx

, (14)

where ūR = φRū, leads to optimality result also in the case of γ = n + 1− n
p . We point

out that when γ = n+1− n
p the function ū does not belong to W 1,p

v1,v2
(Rn). We will prove

optimality in this case in another way in Corollary 4.3.
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4. Discussion on constants

4.1. Comparison with the classical Hardy inequality. We start with showing that
constants in Hardy–Poincaré inequalities are not smaller than in the classical Hardy
inequalities. At first let us recall the classical results. We refer to [9, 11, 12] for more
information on the best constants in various classical Hardy type inequalities.

Theorem 4.1 (Classical Hardy inequalities). Let 1 < p <∞.

1. Assume that γ 6= p−1 and ξ is an arbitrary Lipschitz function with compact support
in (0,∞). Then ∫ ∞

0

( |ξ|
x

)p
xγ dx ≤ Hγ,1,p

∫ ∞
0
|ξ′|pxγ dx, (15)

where the constant Hγ,1,p =
(

p
|p−1−γ|

)p is optimal.
2. Assume that γ 6= p−n and ξ is an arbitrary Lipschitz function with compact support

in Rn \ {0}. Then∫
Rn\{0}

|ξ|p|x|γ−p dx ≤ Hγ,n,p

∫
Rn\{0}

|∇ξ|p|x|γ dx, (16)

where the constant Hγ,n,p =
(

p
|p−n−γ|

)p is optimal.

Remark 4.2. The constant HPγ,n,p := 1/C̄γ,n,p, where C̄γ,n,p is the constant from
Hardy–Poincaré inequality (8), is not smaller than the constant Hpγ,n,p from Hardy
inequality (16), namely

Hpγ,n,p ≤ HPγ,n,p.

Proof. Let us consider (8) with function ξt(y) := ξ(ty)

C̄γ,n,p

∫
Rn
|ξ(ty)|p

[
(1 + |y|

p
p−1 )p−1]γ−1

dy ≤
∫
Rn
tp|∇ξ(ty)|p

[
(1 + |y|

p
p−1 )p−1]γ dy,

and realize that it is equivalent to

C̄γ,n,p

∫
Rn
|ξ(ty)|pt−p(γ−1)[(t p

p−1 + |ty|
p
p−1 )p−1]γ−1

dy

≤
∫
Rn
tp|∇ξ(ty)|pt−pγ

[
(t

p
p−1 + |ty|

p
p−1 )p−1]γ dy.

We multiply both sides by tp(γ−1) and substitute x = ty, getting

C̄γ,n,p

∫
Rn
|ξ(x)|p

[
(t

p
p−1 + |x|

p
p−1 )p−1]γ−1

dx ≤
∫
Rn
|∇ξ(x)|p

[
(t

p
p−1 + |x|

p
p−1 )p−1]γ dy.

It suffices to let t→ 0 and divide the inequality by C̄γ,n,p, to obtain∫
Rn
|ξ(x)|p|x|p(γ−1) dy ≤ HPγ,n,p

∫
Rn
|∇ξ(x)|p|x|pγ dy. (17)

We already know from Theorem 4.1 that the smallest possible constant is Hpγ,n,p.

Applying this observation, we obtain the following result.
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Corollary 4.3 (Optimal constant). Suppose that p > 1, n ≥ 1 and γ = n(1− 1/p) + 1.
Then, for every nonnegative Lipschitz function ξ with compact support, inequality (8)
holds with optimal constant C̄γ,n,p = np.

Proof. We first notice that HPγ,n,p = HPn(1−1/p)+1,n,p = 1
n

(
p−1

p(γ−1)
)p−1 = n−p =(

pγ
|pγ−n−γ|

)p = Hpγ,n,p (as pγ 6= p − n), and due to Remark 4.2 we recognize the op-
timality of this constant.

4.2. Hardy–Poincaré inequalities with improved constants. In this section we
concentrate on the classical case p = 2. We show that, for some values of parameters
γ and n, our results improve the previously known constant in the Hardy–Poincaré in-
equality (2).

Links with results by Blanchet, Bonforte, Dolbeault, Grillo and Vázquez in
[2, 3]. In [2], the authors apply inequality (2) with γ < 0 to investigate convergence of
solutions to fast diffusion equations. In [3], the following constants in (2) are established.

Remark 4.4 ([3]). For every v ∈ W 1,2
v1,v2

(Rn) where v1(x) = (1 + |x|2)γ−1, v2(x) =
(1 + |x|2)γ , the inequality

Λγ,n
∫
Rn
|v|2(1 + |x|2)γ−1 dx ≤

∫
Rn
|∇v|2(1 + |x|2)γ dx,

holds with Λγ,n defined below.

1. For n = 1 and γ < 0 the optimal constant is

Λγ,1 =
{

(γ − 1
2 )2 if γ ∈ [− 1

2 , 0),
−2γ if γ ∈ [−∞,− 1

2 ).
(18)

2. For n = 2 and γ < 0 the optimal constant is

Λγ,2 =
{
γ2 if γ ∈ [−2, 0),
−2γ if γ ∈ [−∞,−2).

(19)

3. For n ≥ 3

• and γ < 0 the optimal constant is

Λγ,n =


(n− 2 + 2γ)2/4 if γ ∈ [−n+2

2 , 0) \ {−n−2
2 },

−4γ − 2n if γ ∈ [−n,−n+2
2 ),

−2γ if γ ∈ [−∞,−n).
(20)

• and γ = n the optimal constant is Λn,n = 2n(n− 1),

• and γ ≥ n the constant is Λγ,n = n(n+ γ − 2),

• and n ≥ γ > 0 the constant is Λγ,n = γ(n+ γ − 2).

Remark 4.5. Here we compare our results with the above ones.

1. We preserve the optimal constant if n ≥ 3 and γ = n.
2. We extend the above optimality result for γ = n ≥ 3 also to the case γ = n = 2.

Indeed, we recall that Corollary 4.3 applied to p = 2 gives the optimal constant
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C̄(n+2)/2,n,2 = n2 when n ≥ 1. In particular, we obtain Λ2,2 = 2 · 2(2 − 1) =
C̄(2+2)/2,2,2.

3. In the case n ≥ 3, γ > 2, and n 6= γ, our constant C̄γ,n,2 = 2n(γ − 1) is better than
the constant in [3]:
• if γ > n then C̄γ,n,2 > Λγ,n = n(n+ γ − 2),
• if n > γ > 2 then C̄γ,n,2 > Λγ,n = γ(n+ γ − 2).

4. In the case n ≥ 3, 2 > γ > 1 our constant becomes worse than Λγ,n.

Links with results by Ghoussoub and Moradifam [8]. In a recent paper [8] by
Ghoussoub and Moradifam, some improvements to the results of [2] are obtained. In
particular, some new estimates for constants from [2] are proven. We can further improve
the constants from [8] for some range of parameters.

Among other results, one finds in [8] the following.
Theorem 4.6 ([8], Theorem 2.13, part II). If a, b, α, β > 0 and n ≥ 2, then there exists
a constant c such that for all ξ ∈ C∞0 (Rn)

c

∫
Rn

(a+ b|x|α)β− 2
α ξ2 dx ≤

∫
Rn

(a+ b|x|α)β |∇ξ|2 dx, (21)

and moreover
(
n−2

2
)2 =: c1 ≤ c ≤

(
n+αβ−2

2
)2.

A very special case of the above theorem (when a = b = 1, α = 2, and β = γ) covers
also our case, therefore we present it below and discuss the related constants.
Corollary 4.7. If γ > 0 and n ≥ 2, then there exists a constant c̄1 > 0 such that for
all ξ ∈ C∞0 (Rn)

c̄1

∫
Rn
|ξ|2(1 + |x|2)γ−1 dx ≤

∫
Rn
|∇ξ|2(1 + |x|2)γ dx, (22)

and moreover
(
n−2

2
)2 =: c1 ≤ c̄1 ≤

(
n+2γ−2

2
)2.

Note that we have already pointed out in Remark 4.2 that c̄1 ≤
(
n+2γ−2

2
)2. Therefore,

we may concentrate only on the lower bound.
Remark 4.8. Here we compare our results with the above one. The constant C̄γ,n,p is
the left-hand side constant derived in Theorem 3.1 for γ, p > 1, n ≥ 1 and it is proven to
be optimal for γ ≥ n + 1 − n

p . Let c1 be the constant from Corollary 4.7, where γ > 0,
p = 2, n ≥ 2. We may compare it only when γ > 1, p = 2, n ≥ 2. We have

Cγ,n,2 = 2n(γ − 1) >
(n− 2

2

)2
= c1, (23)

for every γ > max
{ (n+2)2

8n , 1
}
. This shows that for those γ’s Theorem 3.1 gives the

inequality (22) with the constant better than the one resulting from Corollary 4.7. Fur-
thermore, we notice that (23) holds also for γ ∈

( (n+2)2

8n , 1 + n
2
)
, when we do not have

the optimality of C̄γ,n,2. When γ = 1
2n
(
n+2

2
)2, we have c1 = C̄γ,n,2, but for such γ we do

not prove the optimality of C̄γ,n,2.
Comparison of the values of the constants C̄γ,n,2, Λγ,n, c1 under common assumptions,

in the case when C̄γ,n,2 is not proven to be optimal, is given in Remark 4.9.
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4.3. Summary of results and open questions. We collect here all the known infor-
mation about the constants in the Hardy–Poincaré inequality (1). We point out that we
consider the left-hand side constant, and so the biggest possible one is optimal.

Let us recall that the constants c1, Λγ,n and C̄γ,n,p:
i) c1 comes from [8], see Theorem 4.6 and Corollary 4.7,
ii) Λγ,n comes from [3], see Remark 4.4,
iii) C̄γ,n,p is derived in Theorem 3.1 for p, γ > 1, n ≥ 1, and proven to be optimal

– for γ > n
p (p− 1) + 1 in Theorem 3.1,

– for γ = n
p (p− 1) + 1 in Corollary 4.3.

For p = 2, we have C̄γ,n,2 = 2n(γ − 1), and moreover

n γ constant optimality see
n ≥ 1 γ > 1 C̄γ,n,2 for γ > n+2

2 , here Thm 3.1
n ≥ 1 γ = n+2

2 C̄γ,n,2 yes, here Cor. 4.3
n ≥ 1 γ < 0 Λγ,n yes, [3] Rem. 4.4
n = 2 γ = 2 C̄2,2,2 yes, here Rem. 4.5
n ≥ 3 γ = n C̄n,n,2 yes, [3] Rem. 4.4
n ≥ 3 γ > n C̄γ,n,2 ≥ Λγ,n > c1 yes, here Rem. 4.5
n = 2 0 < γ < 1 c1 ?? Cor. 4.7
n ≥ 3 γ ∈ (0,min{γc, 1}] c1 ≥ Λγ,n ?? Cor. 4.7
n ≥ 3 γc ≤ γ ≤ 1 Λγ,n ≥ c1 ?? Cor. 4.7
n ≥ 2 1 < γ ≤ γg c1 ≥ C̄γ,n,2 ?? Cor. 4.7
n ≥ 2 γ > γg C̄γ,n,2 > c1 for γ ≥ n+2

2 , here Rem. 4.8

where γc =
√

2−1
2 (n− 2), γg = (n+2)2

8n .
As we can see above, for sufficiently big values of γ (γ ≥ n+2

2 ) our constant is optimal,
thus C̄γ,n,2 ≥ max

{
Λγ,n, c1

}
. In the following remark we compare the values of the

constants in the case when all three of them are defined (namely p = 2, n ≥ 3, γ > 1)
and when γ < n+2

2 .
Remark 4.9. We compare all the mentioned constants under assumptions: p = 2, n ≥ 3,
and 1 < γ < n+2

2 . We note
i) c1 < Λγ,n if and only if γc < γ; c1 > Λγ,n if and only if γc > γ;
ii) C̄γ,n,2 < c1 if and only if γ < γg; C̄γ,n,2 > c1 if and only if γ > γg;
iii) C̄γ,n,2 < Λγ,n if and only if γ < 2; C̄γ,n,2 > Λγ,n if and only if γ > 2.

Therefore for p = 2, n ≥ 3, and n > γ > 1 we have γc < n+2
2 , 1 < γg <

n+2
2 , moreover

constants γ such γ exists for
C̄γ,n,2 > Λγ,n > c1 γ ∈ (max{2, γc}, n+2

2 ) n ≥ 3
C̄γ,n,2 > c1 > Λγ,n γ ∈ (γg, γc) n ≥ 12
Λγ,n > C̄γ,n,2 > c1 γ ∈ (γg, 2) n ∈ [3, 11]
Λγ,n > c1 > C̄γ,n,2 γ ∈ (max{1, γc}, γg) n ∈ [3, 11]
c1 > Λγ,n > C̄γ,n,2 γ ∈ (1,min{2, γc}) n ≥ 7
c1 > C̄γ,n,2 > Λγ,n γ ∈ (2, γg) n ≥ 12
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For p > 1, n ≥ 1, due to Theorem 3.1, we have C̄γ,n,p = n
(p(γ−1)

p−1
)p−1, and

γ constant optimality
γ ∈ (1, np (p− 1) + 1) C̄γ,n,p = n

(p(γ−1)
p−1

)p−1 ??
γ = n

p (p− 1) + 1 C̄γ,n,p = np Corollary 4.3
γ > n

p (p− 1) + 1 C̄γ,n,p = n
(p(γ−1)

p−1
)p−1 Theorem 3.1

Open questions

• We do not know the optimal constant in (22) for γ < n
2 + 1.

• We do not know the optimal constant in (8) for γ < n+ 1− n
p and our methods do

not give any estimates for the constant when γ < 1.

5. Appendix

Proof of Step 1 of Proposition 3.1. We recall uα(x) =
(
1 + |x|

p
p−1
)−α and compute first

everything which is needed to find its p-Laplacian.

∇uα(x) = −α
(
1 + |x|

p
p−1
)−α−1 p

p− 1 |x|
p
p−1−1 x

|x|

= −αp
p− 1

(
1 + |x|

p
p−1
)−α−1|x|

1
p−1

x

|x|
,

|∇uα(x)| =
∣∣∣ αp
p− 1

∣∣∣(1 + |x|
p
p−1
)−α−1|x|

1
p−1 ,

|∇uα(x)|p−2 =
∣∣∣ αp
p− 1

∣∣∣p−2(
1 + |x|

p
p−1
)−(α+1)(p−2)|x|

p−2
p−1 ,

|∇uα(x)|p−2∇uα(x) = − αp

p− 1

∣∣∣ αp
p− 1

∣∣∣p−2(
1 + |x|

p
p−1
)−(α+1)(p−1)

x = κ1xu(α+1)(p−1)(x),

where κ1 = −αp
p−1 |

αp
p−1 |

p−2.
Then (as α > 0) we have

∆p(uα(x)) = div
(
|∇uα(x)|p−2∇uα(x)

)
=
∑
i

∂(|∇uα(x)|p−2∇uα(x))
∂xi

= κ1
∑
i

∂
(
u(α+1)(p−1)(x)xi

)
∂xi

= κ1

(∑
i

∂
(
u(α+1)(p−1)(x)

)
∂xi

xi + u(α+1)(p−1)(x)
∑
i

∂xi
∂xi

)
= κ1

(−(α+ 1)(p− 1)p
p− 1

(
1 + |x|

p
p−1
)−(α+1)(p−1)−1|x|

1
p−1

∑
i x

2
i

|x|
+ nu(α+1)(p−1)(x)

)
= κ1

(
−(α+ 1)p

(
1 + |x|

p
p−1
)α−αp−p|x| p

p−1 + nu(α+1)(p−1)(x)
)

=
( αp

p− 1

)p−1(
1 + |x|

p
p−1
)α−αp−p((α+ 1)p|x|

p
p−1 − n(1 + |x|

p
p−1 )

)
.
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Therefore, our Φ has a form

Φ = −div(|∇uα(x)|p−2∇uα(x))

=
( αp

p− 1

)p−1
(1 + |x|

p
p−1 )α−αp−p

(
n+ (n− (α+ 1)p)|x|

p
p−1 )

)
.

Proof of (13) in Step 5 of Theorem 3.1. The proof follows from the technical lemmas
below (Lemmas 5.1, 5.2 and 5.3). They show that, under assumption of Theorem 3.1,
ū satisfies an equation equivalent to equation (13). Therefore ū satisfies (13) as well.

Lemma 5.1. Let ū(x) = v(|x|) ∈ C2(R \ {0}) be an arbitrary function, Φp(λ) = |λ|p−2λ,
v2(r) =

(
1 + r

p
p−1
)(p−1)γ then

i) ∇ū(x) = v′(|x|) x
|x| ,

ii) Φ′p(λ) = (p− 1)|λ|p−2,
iii) (Φp(∇ū(x))) = Φp(v′(|x|)) · x|x| ,
iv) div(Φp(∇ū)) = |v′(|x|)|p−2((p− 1)v′′(|x|) + (n− 1) v

′(|x|)
|x|

)
,

v) ∇v2(|x|) = γp(1 + |x|
p
p−1 )γ(p−1)−1|x|

1
p−1 x
|x| .

Proof. We reach the claims i)–iii) and v) by elementary calculations. Then applying i)–iii)
we prove claim iv) as follows

(Φp(∇ū)) = div
(
Φp(v′(|x|)) x

|x|
)

= ∇
(
Φp(v′(|x|))

)
· x|x| + Φp(v′(|x|)) div

(
x
|x|
)

= Φ′p(v′(|x|))∇v′(|x|) · x|x| + Φp(v′(|x|))n−1
|x|

= x
|x|Φ

′
p(v′(|x|))v′′(|x|) x

|x| + Φp(v′(|x|))n−1
|x|

= Φ′p(v′(|x|))v′′(|x|) + Φp(v′(|x|))n−1
|x|

= (p− 1)|v′(|x|)|p−2v′′(|x|) + |v′(|x|)|p−2v′(|x|)n−1
|x| .

Lemma 5.2. Equation (13), where ū(x) = v(|x|) ∈ C2(R \ {0}) is an arbitrary function,
v1(r) =

(
1 + r

p
p−1
)(p−1)(γ−1), v2(r) =

(
1 + r

p
p−1
)(p−1)γ , is equivalent to the equation

−A := −
{(

(γp+ n− 1)|x|
1
p−1 + n− 1

|x|

)
v′(|x|) + (p− 1)

(
1 + |x|

p
p−1
)
v′′(|x|)

}
= C̄γ,n,p

(
1 + |x|

p
p−1
)−p+2

vp−1(|x|)(v′(|x|))−(p−2) =: B. (24)

Proof. We concentrate first on the left-hand side of (13):

−LHS = div(v2 · Φp(∇ū)) = ∇v2 · Φp(∇ū) + v2 div(Φp(∇ū)) = I + II,

I = γp
(
1 + |x|

p
p−1
)γ(p−1)−1|x|

1
p−1

x

|x|
·
∣∣∣v′(|x|) x

|x|

∣∣∣p−2
v′(|x|) x

|x|

= γp
(
1 + |x|

p
p−1
)γ(p−1)−1|x|

1
p−1 |v′(|x|)|p−2

v′(|x|),

II =
(
1 + |x|

p
p−1
)γ(p−1)|v′(|x|)|p−2

(
(p− 1)v′′(|x|) + v′(|x|) n− 1

|x|

)
.
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Therefore,

− LHS = (1 + |x|
p
p−1 )γ(p−1)−1 |v′(|x|)|p−2

×
(

(γp+ n− 1)|x|
1
p−1 v′(|x|) + n− 1

|x|
v′(|x|) + (p− 1)(1 + |x|

p
p−1 )v′′(|x|)

)
,

while the right-hand side of (13) equals

RHS = C̄γ,n,p
(
1 + |x|

p
p−1
)(γ−1)(p−1)

vp−1(|x|).

As LHS = RHS, by multiplying this equation by (1 + |x|
p
p−1 )−γ(p−1)+1 |v′(|x|)|−(p−2),

we obtain (24).

Lemma 5.3. If α = 1− γ < 0, the function v(x) = (1 + |x|
p
p−1 )α satisfies (24).

Proof. We will need the following computations, where we identify v(x) with the one
variable function v(r)

v′ = αp

p− 1(1 + r
p
p−1 )α−1r

1
p−1 ,

v′′ = αp

p− 1

( (α− 1)p
p− 1 (1 + r

p
p−1 )α−2r

2
p−1 + 1

p− 1(1 + r
p
p−1 )α−1r−

p−2
p−1

)
= αp

(p− 1)2 (1 + r
p
p−1 )α−2((α− 1)pr

2
p−1 + (1 + r

p
p−1 )r−

p−2
p−1
)

= αp

(p− 1)2 (1 + r
p
p−1 )α−2(((α− 1)p+ 1)r

2
p−1 + r−

p−2
p−1
)

= αp

(p− 1)2 (1 + r
p
p−1 )α−2r−

p−2
p−1
(
1 + ((α− 1)p+ 1)r

p
p−1
)
,

vp−1

|v′|p−2 = (1 + r
p
p−1 )α(p−1)∣∣ αp

p−1
∣∣p−2(1 + r

p
p−1 )(α−1)(p−2)r

p−2
p−1

=
∣∣∣p− 1
αp

∣∣∣p−2
r−

p−2
p−1

(1 + r
p
p−1 )α(p−1)

(1 + r
p
p−1 )(α−1)(p−2)

=
∣∣∣p− 1
αp

∣∣∣p−2
r−

p−2
p−1 (1 + r

p
p−1 )α+p−2.

When we take into account the above results and substitute γ = −α+ 1, we have on the
first line of (24) the equality

−A =
(

(γp+ n− 1)|x|
1
p−1 + n− 1

|x|

)
v′(|x|) + (p− 1)(1 + |x|

p
p−1 )v′′(|x|)

=
(

(γp+ n− 1)|x|
1
p−1 + n− 1

|x|

) (1− γ)p
p− 1 (1 + |x|

p
p−1 )−γ |x|

1
p−1

+ (p− 1)(1 + |x|
p
p−1 ) (1− γ)p

(p− 1)2 (1 + |x|
p
p−1 )−γ−1|x|−

p−2
p−1
(
1 + (−γp+ 1)|x|

p
p−1
)

= (1− γ)p
p− 1 (1 + |x|

p
p−1 )−γ |x|−

p−2
p−1
(
(n− 1) + (γp+ n− 1)|x|

p
p−1
)

+ (1− γ)p
p− 1 (1 + |x|

p
p−1 )−γ |x|−

p−2
p−1
(
1 + (−γp+ 1)|x|

p
p−1
)

= n
(1− γ)p
p− 1 (1 + |x|

p
p−1 )−γ |x|−

p−2
p−1 (1 + |x|

p
p−1 ) = n

(1− γ)p
p− 1 (1 + |x|

p
p−1 )−γ+1|x|−

p−2
p−1
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and on the second line of (24)

B = C̄γ,n,p(1 + |x|
p
p−1 )−p+2 vp−1(|x|)

|v′(|x|)|p−2

= C̄γ,n,p(1 + |x|
p
p−1 )−p+2

( p− 1
(γ − 1)p

)p−2
|x|−

p−2
p−1 (1 + |x|

p
p−1 )−γ+1+p−2

= n
(p(γ − 1)

p− 1

)p−1( p− 1
(γ − 1)p

)p−2
(1 + |x|

p
p−1 )−γ+1|x|−

p−2
p−1

= n(γ − 1) p

p− 1(1 + |x|
p
p−1 )−γ+1|x|−

p−2
p−1 .

We recognize that −A = B for all γ > 1, n ≥ 1, p > 1.
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