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Abstract. We show a relation between products of knots, which are generalized from the theory
of isolated singularities of complex hypersurfaces, and local moves on knots in all dimensions.
We discuss the following problem. Let K be a 1-knot which is obtained from another 1-knot J
by a single crossing change (resp. pass-move). For a given knot A, what kind of relation do the
products of knots, K ⊗ A and J ⊗ A, have? We characterize these kinds of relation between
K ⊗A and J ⊗A by using local moves on high dimensional knots. We also discuss a connection
between local moves and knot invariants. We show a new form of identities for knot polynomials
associated with a local move.
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1. Introduction. Let f : Cn −→ C be a (complex) polynomial mapping with an iso-
lated singularity at the origin of Cn. That is, f(0) = 0 and the complex gradient df
has an isolated zero at the origin. The link of this singularity is defined by the formula
L(f) = V (f) ∩ S2n−1. Here the symbol V (f) denotes the variety of f , and S2n−1 is a
sufficiently small sphere about the origin of Cn.

Given another polynomial g : Cm −→ C, form f + g with domain Cn+m = Cn ×Cm
and consider L(f + g) ⊂ S2n+2m+1.

We use a topological construction for L(f + g) ⊂ S2n+2m+1 in terms of L(f) ⊂ S2n+1

and L(g) ⊂ S2m+1. The construction generalizes the algebraic situation. Given nice (to be
specified below) codimension-two embeddings K ⊂ Sn and L ⊂ Sm, we form a product
K ⊗ L ⊂ Sn+m+1. Then L(f)⊗ L(−g) ∼= L(f + g).

We will recall and use in this paper a product operation on knots in all dimensions
that generalizes this result about singularities [8, 9, 10]. We will also associate geometric
equivalence relations, crossing changes and pass equivalence [9] of classical knots, with
local moves on high dimensional knots and links, which were defined and have been
researched in [20, 21, 22, 23, 24, 25, 26], and relate this to the knot product construction
and to the Arf invariant, the signature, and knot polynomials in higher dimensions. Knot
products allow us to consider low dimensional knots and high dimensional knots together
(see Section 2.5 and Note 8.13.(2)).

Furthermore we show a new form of identities for knot polynomials associated with
a local move: The form is

∆(K+)−∆(K−) =
{

(t− 1) ·∆(K0) for some pairs (n, l)
(t+ 1) ·∆(K0) for the other pairs (n, l),

where ∆( ) is an l-Alexander polynomial of an n-dimensional oriented closed submani-
fold ⊂ Sn+2 (see Theorem 9.2 for detail).

Note 1.1. Local moves on high dimensional knots which we discuss are twist-moves and
high dimensional pass-moves. We will show examples of twist-moves after Theorem 7.1
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in Section 7, after Theorem 9.1 in Section 9, and after Theorem 9.2 in Section 9. We will
show examples of pass-moves on high dimensional knots in Section 3.1.

We will review knot products and local moves on classical knots and on high dimen-
sional knots before we state our main results in Section 4.

2. Products of knots

2.1. Construction of products. In this subsection and the next, we describe the re-
sults in references [8, 10, 9]. All manifolds will be smooth. Each ambient sphere Sn comes
equipped with an orientation. A knot in Sn is any closed oriented codimension-two sub-
manifold K. Given a knot K ⊂ Sn we may write Sn = EK ∪ (K × D2) where EK is
a manifold with boundary equal to K × S1. If n is larger than 3, we assume that K is
connected. Thus, by Alexander duality, H1(EK) ∼= Z. One may choose φ : EK −→ S1

representing the generator of H1(EK) so that φ is differentiable and φ|∂EK is a projection
on the second factor. If n = 3, then K may consist of a collection of disjointly embedded
circles. A choice of orientations for these circles determines φ so that φ−1 applied to a
regular value is an oriented spanning surface for K which induces the chosen orientations
on each component.

A knot K is said to be spherical if it is PL homeomorphic to the standard sphere Sn.1
A knot is said to be fibered if there is a choice of φ as above so that φ : EK −→ S1 is a
locally trivial smooth fibration.

Now suppose that we are given knots K ⊂ Sn and L ⊂ Sm and corresponding maps
φ : EK −→ S1 and ψ : EL −→ S1. If one knot is fibered, then

EK ×S1 EL = {(x, y) ∈ EK × EL |φ(x) = ψ(y)}
is a well-defined smooth manifold with boundary. Henceforth, when dealing with a pair
of knots, we shall assume that at least one knot is fibered. We now define a manifold
K ⊗ L and, using its properties, obtain the product knot K ⊗ L ⊂ Sn+m+1.
Definition. Given knots K and L as above, we define the manifold

K ⊗ L = (K ×Dm+1) ∪ (EK ×S1 EL) ∪ (Dn+1 × L).
These three pieces are attached according to the following description: Note that

∂(EK ×S1 EL) = (K × EL) ∪ (EK × L)
and

∂(K ×Dm+1) = (K ×D2 × L) ∪ (K × EL),
∂(Dn+1 × L) = (K ×D2 × L) ∪ (EK × L).

Using these boundary identifications, glue the three pieces together to form a closed
manifold. The manifold K ⊗L is independent of the choices of maps φ and ψ used in its
construction.

Now given φ : EL −→ S1, there is an embedding φ̂ : EL −→ Dm+1 × S1 given
essentially by φ̂(x) = (x, φ(x)). This induces an embedding K⊗L ⊂ K⊗Sm ∼= Sn+m+1.

1Let K be homeomorphic to Sn. Then K is diffeomorphic to Sn if n 5 3 and K is PL
homeomorphic to Sn if n = 5.
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This embedding is well-defined up to ambient isotopy and commutative in K and L. In
this way, we obtain a differential topological generalization of the link of the sum of two
isolated singularities. In the next section we will make clear how this generalizes the links
of singularities.

2.2. The pullback description for knot products. In the previous section we gave
a description of the knot product construction in terms of the map φ : EK −→ S1 to the
circle associated with the complement of the tubular neighborhood of a knot. In the case
of fibered knots this map is a fibration over the circle. For an arbitrary knot we will call φ
the classifying map for the knot K ⊂ Sn. In this section we use the classifying maps to
construct maps of balls to the 2-disk that can participate in a pull-back construction for
the knot product.

Given any map f : Sn −→ D2, we can extend it to a map, the cone on f ,
cf : Dn+1 = CSn = {tu |0 ≤ t ≤ 1, u ∈ Sn} −→ D2

defined by the formula cf(tu) = tf(u) where 0 ≤ t ≤ 1 and u is a unit vector in Rn+1.
Let φ : EK −→ S1 be a classifying map for the knot K ⊂ Sn. Extend φ to a map

φ1 : Sn = EK ∪ (K×D2) −→ D2 by defining it on K×D2 to be the cartesian projection
to D2. Now extend φ1 to the cone and call this map φ̂K , the cone map for K.

φ̂K = cφ1 : Dn+1 −→ D2.

The point about the construction of the cone map for a given knot K ⊂ Sn is that
it produces a differential topological analog of an algebraic singularity whose link is this
knot. In particular, we have φ̂−1

K (0) = CK ⊂ Dn+1 = CSn, and this mimics the topology
of an isolated singularity. See Fig. 2.2.1.

Fig. 2.2.1. Cone on K

Let φ : EK −→ S1 and ψ : EL −→ S1 be classifying maps for the knots K ⊂ Sn

and L ⊂ Sm. Assume that ψ is a fibration over the circle, giving a fibered structure for
L ⊂ Sm. Let X[K,L] ⊂ Dn ×Dm be the pull-back as shown below.

X[K,L] j−−−−→ Dm+1

i

y ψ̂L

y
Dn+1 φ̂K−−−−→ D2
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The pull-back X[K,L] is the following subset of Dn+1 ×Dm+1 :

X[K,L] = {(x, y) ∈ Dn+1 ×Dm+1 | φ̂K(x)− ψ̂L(y) = 0}.

Thus X[K,L] is the differential topological analog of the variety of the sum or difference
of two polynomials. Just as with a variety with an isolated singularity, X[K,L] has a
singularity at the origin, but the boundary

∂X[K,L] ⊂ ∂(Dn+1 ×Dm+1) ∼= Sn+m+1

is a smooth submanifold of the n+m+ 1-sphere and this embedding

∂X[K,L] ⊂ Sn+m+1

is the same as the knot product defined in the previous section. That is, we have

∂X[K,L] ∼= K ⊗ L

and the embeddings are equivalent. It is by way of this pull-back construction that one
can prove that indeed the knot product does generalize the link of the sum of isolated
complex hypersurface singularities.

The simplest example of the pull-back construction is given by the following diagram.

X[a, b] j−−−−→ D2

i

y [b]
y

D2 [a]−−−−→ D2

In this diagram we have indicated the knot product construction in its lowest dimen-
sional case. The maps on the disks are of the form [n] : D2 −→ D2 where [n](z) = zn,
n is a natural number and z is a complex variable. We take D2 as the unit disk in the
complex plane. Then the maps on spheres in this case are maps of degree a and degree b
from circles to themselves. The individual knots are empty and the spanning manifolds
consist in a and b points respectively. We refer to [a] and [b] (regarding the restriction to
the circles as defining the maps) as the empty knots of degree a and degree b. We see that

∂(X[a, b]) = [a]⊗ [b] ⊂ S3

is the corresponding knot product and it is easy to see that [a]⊗ [b] is a torus link of type
(a, b). Continuing in this vein one discovers that the Brieskorn manifolds [9] the links of
singularities

Σ(a1, . . . , an) = L(za1
1 + . . .+ zan

n ) ⊂ S2n−1,

are given by the formula

Σ(a1, . . . , an) = [a1]⊗ . . .⊗ [an] ⊂ S2n−1.

in other words the Brieskorn manifolds and their embeddings in spheres are constructed
as products of empty knots of chosen degrees. This completes our description of the
elements of the knot product construction.

2.3. The empty knots and the Hopf link. Let A⊗µB mean A⊗B⊗ . . .⊗B, which
is composed of one copy of A and µ copies of B, where µ ∈ N ∪ {0}. Let ⊗µB mean
B ⊗ . . .⊗B, which is composed of µ copies of B, where µ ∈ N ∪ {0}.
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Definition 2.3.1 ([8, 10]). Let n ∈ N. The empty knot [n] is the smooth map S1 → S1

such that θ 7→ nθ, where S1 = {e2πiθ | θ ∈ R}.

We regard a Seifert hypersurface of the empty knot [n] as a set of n points ⊂ S1. We
can regard the empty knot [n] as a fibred knot. In [8, 10] is defined a knot product of the
empty knot and an n-dimensional closed oriented submanifold ⊂ Sn+2.

The positive Hopf link or the linking number +1 Hopf link is as shown below on the
left. The negative Hopf link or the linking number −1 Hopf link is as shown below on the
right. In this paper the Hopf link means the negative Hopf link.

Theorem 2.3.2 ([8, 10]). Let [n] denote the empty knot of degree n. Then we have

[2]⊗ [2] = the negative Hopf link.

For µ ∈ N, we have
⊗2µ[2] = ⊗µ (the negative Hopf link).

For any n-dimensional closed oriented submanifold K ⊂ Sn+2,

K ⊗2µ [2] = K ⊗µ (the negative Hopf link).

Note. See line −12 of page 389 and line 18 of page 391 of [10].

2.4. Passing bands in low and high dimensions. In three dimensions a bandpass is
a replacement of one band crossing over another band by that band crossing underneath
the other band. See the following figure for an illustration.

Fig. 2.4.1. Band pass

We usually assume that the bands are part of oriented surfaces spanning a link. This
means that the local orientation on the two edges of each band are in opposite direc-
tions. We say that two oriented knots or links are pass equivalent if one can be obtained
from another by a sequence of ambient isotopies and band passes. It is not necessary
to construct spanning surfaces for the links in order to perform the band passes, since
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this is a local operation on the diagrams. The surface interpretation is useful for proving
facts about pass equivalence. One can show that any classical knot is pass equivalent to
either the unknot or the trefoil knot. One can also show that two classical knots are pass
equivalent if and only if they have the same Arf invariant. See Theorem 2.4.1 and [9] for
more information on this topic.

In this paper we will relate crossing changes and pass equivalence to local moves on
higher dimensional knots and links and interrelate them with the knot product. Further-
more we show a connection between the local moves and invariants and polynomials of
high dimensional knots.

We review the following theorem.

Theorem 2.4.1 ([9, 19]). Let L1 = (K1,1, . . . ,K1,l) and L2 = (K2,1, . . . ,K2,l) be
l-component 1-links (l ∈ N). Then L1 and L2 are pass-move-equivalent if and only if
L1 and L2 satisfy one of the following conditions (1) and (2).
(1) Both L1 and L2 are proper links, and

Arf(L1) = Arf(L2).

(2) Neither L1 nor L2 is a proper link, and

lk(K1j , L1 −K1j) ≡ lk(K2j , L2 −K2j) mod 2 for all j.

In [20] a result is shown on a relation between high dimensional pass-moves and knot
invariants.

We end this subsection with an example in Fig. 2.4.2. This example is given in more
detail in [9] but here we can point to our results in this paper that make the low dimen-
sional band-passing that we are about to discuss, actual high dimensional band-passing
that accomplishes these results in high dimensional manifolds. The result is an 8-fold
periodicity in the list of Brieskorn manifolds Σ(k, 2, 2, 2, . . . , 2) where there are an odd
number of 2’s. Let Σ4n+1

k denote such a Brieskorn manifold with 2n + 1 symbols that
are 2’s. Then Σ4n+1

k bounds a handle-body whose structure is analogous to the spanning
surface for a (2, k) torus link, and the operation of band-exchange results in a diffeomor-
phism of this handle-body, hence a diffeomorphism of its boundary. See Fig. 2.4.2 for an
illustration of the (2, k) torus links, here called Kk and the banded surfaces that bound
these links. In [9] we exploit this relationship with the low dimensional topology to prove
by band-passing that Kk+8 is pass-equivalent to Kk, and so prove, up to diffeomorphism,
that the list of manifolds Σ4n+1

k is periodic of period 8 in k. By applying the results of
this paper, we can make this conclusion directly by using the higher dimensional versions
of pass-moves. (Outline of the proof: A (4n+1)-submanifold Kk = Kk⊗n (the Hopf link)
in S4n+3 is diffeomorphic to Σ4n+1

k . Kk is high dimensional pass-move-equivalent to J
with the following properties: A Seifert matrix associated with a Seifert hypersurface VJ
for J is the same as a Seifert matrix associated with a Seifert hypersurface VKk+8 for
Kk+8. VJ and VKk+8 consist of a (4n+ 2)-dimensional 0-handle and (4n+ 2)-dimensional
(2n + 1)-handles. Of course VJ and VKk+8 are compact oriented parallelizable and have
the same intersection matrix on the (2n+ 1)-th homology groups. Therefore, by surgery
theory, Σ4n+1

k is diffeomorphic to Σ4n+1
k+8 .)
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Fig. 2.4.2. The (2, k) torus knots in band representation

The details of this band exchange, illustrated in three-dimensions are interesting,
and we refer the reader to [9] for more about this aspect of the example. We could
investigate Σ(a, b, 2, 2, 2, . . . , 2), where there are an even number of 2’s, by using high
dimensional pass-moves because the (a, b) torus knots are classified by pass-equivalence.
Recall Note 1.1.

2.5. The main problem. It is natural to consider the following problem: Let K be
a 1-knot which is obtained from another 1-knot J by a single crossing change (resp.
pass-move). For a given knot A, what kind of relation do K ⊗A and J ⊗A have? In this
paper we characterize these kinds of relation between K ⊗ A and J ⊗ A by using local
moves on high dimensional knots.

By considering this problem of the effect on higher dimensional knots of changes
from lower dimensions, via knot products, we raise many questions that deserve further
investigations.

3. Local moves on high dimensional knots

3.1. Examples. Local moves on high dimensional knots were defined and have been
researched in [20, 21, 22, 23, 24, 25, 26]. We review the definition of local moves on high
dimensional knots after showing an example. Recall Note 1.1.
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Lemma. Letting Bp denote a p-dimensional ball, we can write

Sp = Bpu ∪B
p
d

Sp × Sq = (Bpu ∪B
p
d)× (Bqu ∪B

q
d).

Thus

Sp × Sq = (Bpu ×Bqu) ∪ (Bpu ×B
q
d) ∪ (Bpd ×B

q
u) ∪ (Bpd ×B

q
d).

Proof. Use the fact (X ∪ Y )× Z = (X × Z) ∪ (Y × Z).

Now let

F = (Sp × Sq)− Int(Bpu ×Bqu).

We indicate F in the figure below and abbreviate B]? to B?.

S
p

S
q

( )- ( )S
p

S
q

Bd Bd

Bu Bd Bu Bu

Bd BuBd

Bd

Bu

Bu

Bu Bd

Bd Bd Bd Bu

Bu BuInt

F is drawn in another way as below. Note that we can bend the corner of Bpu × Bqu
and change it into the (p + q)-dimensional ball. Let p + q = n + 1. Hence the boundary
of F is Sn.

Bd BdF= S
p

S
q

B
p+ q

Bu Bd Bd Bu

( )- Int
Fig. 3.1.1. (Sp × Sq) − IntBp+q

We can regard Bpd × Bqd as a (p + q)-dimensional 0-handle, Bpu × Bqd as a (p + q)-
dimensional p-handle, and Bpd ×Bqu as a (p+ q)-dimensional q-handle.

Let F ⊂ Sp × Sq ⊂ Sn+2. This is indicated in Fig. 3.1.2 below. The boundary of F
in Sn+2 is an n-knot. Furthermore it is the trivial n-knot.

Carry out a ‘local move’ on this n-knot in an (n + 2)-ball, which is denoted by a
dotted circle in Fig. 3.1.3.
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Fig. 3.1.2. A trivial n-knot Fig. 3.1.3. A local move will be carried out
in the dotted (n+ 2)-ball. The resulting

n-knot is a nontrivial n-knot

Fig. 3.1.4. A nontrivial n-knot

Fig. 3.1.5. Sp and Sq in F whose
boundary is the n-knot

We can prove that the knot in Fig. 3.1.4 is nontrivial by using Seifert matrices and the
Alexander polynomial. We use the fact that Sp and Sq can be ‘linked’ in Sp+q+1. Recall
that p+ q + 1 = n+ 2. Note that Sq and Sp are included in F as shown in Fig. 3.1.5.

Note that the above operation is done only in an (n + 2)-ball. This operation is an
example of (p, q)-pass-moves.

Local moves on high dimensional submanifolds are exciting ways of explicit construc-
tion of high dimensional figures. They are also generalization of local moves on 1-links.
They are useful to research link cobordism, knot cobordism, and the intersection of sub-
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manifolds (see [20]) etc. There remain many exciting problems. Some of them are proper
in high dimension and others are analogous to one-dimensional case. For example, we do
not know a local move on high dimensional knots which is an unknotting operation.

3.2. (p, q)-pass-moves. We review (p, q)-pass-moves on n-knots (p, q ∈ N, p+q = n+1)
on high dimensional knots. [20, 22, 24] defined them. See also [23, 25, 26]. Confirm that,
if (p, q) = (1, 1), (p, q)-pass-moves are pass-moves on 1-links.

We first define (p, q)-pass-moves on n-knots (p, q ∈ N, p + q = n + 1). Let K+,
K−, K0 be n-dimensional closed oriented submanifolds ⊂ Sn+2 (n ∈ N). Let B be an
(n + 2)-ball trivially embedded in Sn+2. Suppose that K+ coincides with K−, K0 in
Sn+2 −B.

Take an (n + 1)-dimensional p-handle hp∗ (∗ = +,−) and an (n + 1)-dimensional
(n+ 1− p)-handle hn+1−p in B with the following properties.
(1) hp∗ ∩ ∂B is the attaching part of hp∗, hn+1−p ∩ ∂B is the attaching part of hn+1−p.
(2) hp∗ (resp. hn+1−p) is embedded trivially in B.
(3) hp∗ ∩ hn+1−p = ∅.
(4) The attaching part of hp+ coincides with that of hp−. The linking number (in B) of

[hp+ ∪ (−hp−)] and [hn+1−p whose attaching part is fixed in ∂B]

is one if an orientation is given.
Let K∗ (∗ = +,−) satisfy K∗ ∩ IntB = (∂hp∗ − ∂B) ∪ (∂hn+1−p − ∂B). Note the

following. When we define K+, h+ exists in B and h− does not exist in B. When we
define K−, h− exists in B and h+ does not exist in B.

Let

P = K+ ∩ (Sn+2 − IntB), Q = hp+ ∩ ∂B, R = hn+1−p ∩ ∂B,
T = P ∪Q ∪R.

Then T is an n-dimensional oriented closed submanifold ⊂ (Sn+2 − IntB) ⊂ Sn+2. Let
K0 be T ⊂ Sn+2. Then we say that (K+, K−, K0) is related by a single (p, n + 1 − p)-
pass-move in B. We also say that (K+, K−, K0) is a (p, n+ 1− p)-pass-move-triple. We
say that K+ and K− differ by a single (p, n+1−p)-pass-move in B. We showed examples
of pass-moves on high dimensional knots in Section 3.1.

If (K+,K−,K0) is a (p, n+1−p)-pass-move-triple, then we also say that (K−,K+,K0)
is a (p, n+1−p)-pass-move-triple. If K+ and K− differ by a single (p, n+1−p)-pass-move
in B, then we also say that K− and K+ differ by a single (p, n+ 1− p)-pass-move in B.

Let (K+,K−,K0) be related by a single (p, n+ 1− p)-pass-move in B. Then there is
a Seifert hypersurface V∗ for K∗ (∗ = +,−, 0) with the following properties.

V] = V0 ∪ hp] ∪ h
n+1−p(] = +,−).(1)

V] ∩B = hp] ∪ h
n+1−p.

V0 ∩ IntB = ∅.(2)
V0 ∩ ∂B is the attaching part of hp] ∪ h

n+1−p.

(The idea of the proof is the Thom–Pontrjagin construction.)
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Then the ordered set (V+, V−, V0) is called a (p, n+ 1− p)-pass-move-triple of Seifert
hypersurfaces for (K+,K−,K0). We say that an ordered set (V+, V−, V0) is related by
a single (p, n + 1 − p)-pass-move in B. We say that V− (resp. V+) is obtained from V+
(resp. V−) by a single (p, n+ 1− p)-pass-move in B.

Fig. 3.2.1 is a diagram of a (p, q)-pass-move.

Sp−1 ×Dn+1−p

Sn−p ×Dp

= ∂hn+1−p − ∂B

B ∩K+
B ∩K−

= ∂hp
+ − ∂B

Fig. 3.2.1. A (p, n+ 1 − p)-pass-move on an n-dimensional submanifold ⊂ Sn+2

Note B = Bn+2 = Dn+2 ⊂ Sn+2. The left (resp. right) figure includes hp+ (resp. hp−)
and hn+1−p.

Note. When we construct K− and K0 from K+, we make a change only in B and we
do not impose any requirement on diffeomorphism type or homeomorphism type of K−,
K0 other than the change only in B. In this sense, we use the word ‘local’ in the above
definition.

Fig. 3.2.2. (1) A (p, n+ 1 − p)-pass-move-triple
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Fig. 3.2.2.
(2) A (p, n+ 1 − p)-pass-move-triple Fig. 3.2.2. (3) A (p, n+ 1 − p)-pass-move-triple

Fig. 3.2.2, which consists of the three figures (1), (2) and (3), is a diagram of a
(p, q)-pass-move-triple.

t = −0.5 t = 0 t = 0.5

−→y
−→x

−→y
−→x

K+

Fig. 3.2.3. (1) A (1,2)-pass-move-triple
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t = −0.5 t = 0 t = 0.5

−→x−→y

−→x
−→y

K−

Fig. 3.2.3. (2) A (1,2)-pass-move-triple

t = −0.5 t = 0 t = 0.5

−→y
−→x

−→y
−→x

K0

Fig. 3.2.3. (3) A (1,2)-pass-move-triple
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In Fig. 3.2.3, which consists of the three figures (1), (2) and (3), we draw a (1, 2)-
pass-move-triple (the p = 1 and n = 2 case). Since (K+,K−,K0) is related by a single
(1, 2)-pass-move in B, B has the following properties. We regard B as (2-disc)×[0, 1] ×
{t | − 1 5 t 5 1}.

(i) K+ −B, K− −B, and K0 −B coincide each other.
(ii) B ∩K+, B ∩K−, B ∩K0 are shown as above.

In the above figures we draw B−0.5 ∩K∗, B0 ∩K∗, B0.5 ∩K∗, where Bt0 = (2-disc)×
[0, 1] × {t | t = t0}. We suppose that each vector −→x , −→y in the above figures is a tangent
vector of each disc at a point. (Note that we use −→x (resp. −→y ) for different vectors.) The
orientation of each disc in the above figures is determined by the each set {−→x ,−→y }. In [22],
near Figures 4.1 and 4.2, more explanation of the structure of B∩K+ and that of B∩K−
are given.

In [22] one more local move was discussed, which is called the ‘ribbon-move’, and
the following results were proved. Let K and K ′ be two-dimensional closed oriented
submanifolds ⊂ S4. The following conditions (1) and (2) are equivalent.
(1) K is (1,2)-pass-move-equivalent to K ′.
(2) K is ribbon-move-equivalent to K ′.

Furthermore, if K is obtained from K ′ by a single ribbon-move, then K is obtained
from K ′ by a single (1,2)-pass-move.

3.3. Twist-moves. We next review twist-moves on high dimensional knots, which are
defined in [24]. Let K+, K−, K0 be (2p + 1)-dimensional closed oriented submanifold
⊂ S2p+3 (p ∈ N∪{0}). Let B be a (2p+3)-ball trivially embedded in S2p+3. Suppose that
K+ coincides with K−, K0 in S2p+3 −B. Take a single (2p+2)-dimensional (p+1)-handle
h+ (resp. h−) embedded in B such that

[the handle] ∩ ∂B is the attaching part of the handle.

Note. [4, 5, 32, 33] etc. imply that the core of h+ (resp. h−) is trivially embedded in B
under the above condition.

Suppose that (h+ − its attaching part) ∩ (h− − its attaching part) = ∅. Suppose that
their attaching parts coincide. Thus we can suppose that we regard h+∪h− as an oriented
(2p + 2)-submanifold ⊂ S2p+1 if we give the opposite orientation to h−. Then we can
define a (p+1)-Seifert matrix for the (2p+2)-submanifold h+∪h−. We can suppose that
the Seifert matrix is the matrix (1).

Let K∗ (∗ = +,−) satisfy K∗ ∩ IntB = (∂h∗ − ∂B). Note the following. When we
define K+, h+ exists in B and h− does not exist in B. When we define K−, h− exists
in B and h+ does not exist in B. Let P = K+ ∩ (S2p+3 − IntB). Let Q = h+ ∩ ∂B. Let
T = P∪Q. Then T is an (2p+1)-dimensional oriented closed submanifold in S2p+3−IntB.
Let K0 be T in S2p+3. Then we say that an ordered set (K+, K−, K0) is related by a
single twist-move. (K+, K−, K0) is called a twist-move-triple. We say that K+ and K−
differ by a single twist-move in B. If (K+, K−, K0) is a twist-move-triple, then we also
say that (K−, K+, K0) is a twist-move-triple. If K+ and K− differ by a single twist-move
in B, we also say that K− and K+ differ by a single twist-move in B. Recall Note 1.1.



174 L. H. KAUFFMAN AND E. OGASA

Note. The XXII-move in [24] is the twist-move in the ‘p = even’ case.

Note. Suppose that p is an odd natural number, put p = 2k + 1. The twist-move for
(4k + 3)-submanifolds ⊂ S4k+5 (4k + 3 ∈ N, k ∈ N ∪ {0}) has the following property:
Suppose that K+ is made into K− by the twist-move. Then K− is a nonspherical knot in
general even if K+ is a spherical knot. Furthermore the H∗(K−;Z) is not congruent to
H∗(K+;Z) in general. Example: A Seifert hypersurface V∗ for a 3-knot K∗ (∗ = +,−).
Framed link representation of V+ is the Hopf link such that the framing of one component
is zero and that of the other is two. Framed link representation of V− is the Hopf link
such that the framing of each component is two.

Let (K+,K−,K0) be related by a single twist-move in B. Then there is a Seifert
hypersurface V∗ for K∗ (∗ = +,−, 0) with the following properties.

V] = V0 ∪ h] (] = +,−), V] ∩B = h].(1)
V0 ∩ IntB = ∅.(2)

V0 ∩ ∂B is the attaching part of hp] .

(The idea of the proof is the Thom–Pontrjagin construction.)
The ordered set (V+, V−, V0) is called a twist-move-triple of Seifert hypersurfaces for

(K+,K−,K0). We say that V− (resp. V+) is obtained from V+ (resp. V−) by a single
twist-move in B.

Fig. 3.3.1, which consists of the three figures (1), (2) and (3), is a diagram of a
twist-move-triple. The upper half of Fig. 3.3.2 is another diagram of a twist-move triple.
Compare the upper half of Fig. 3.3.2 and the lower half. If p = 0 (hence n = 2p+ 1 = 1),
the left figure in the upper half and that in the lower half are the same. That is, if p = 0
(hence n = 2p + 1 = 1), a twist-move-triple is a crossing-change-triple of 1-links. Note
that we move B ∩ K0 by isotopy in the right B in the upper half of Fig. 3.3.2. Recall
Note 1.1.

Fig. 3.3.1. (1) A twist-move-triple

b

Fig. 3.3.1. (2) A twist-move-triple
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Fig. 3.3.1. (3) A twist-move-triple
2p+3

2p+3
2p+3

33 3

The triple of three makes a crossing-change-triple of a 1-dimensional link.

Fig. 3.3.2. A twist-move-triple of 1-links is a crossing-change-triple of 1-links
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3.4. An overview of the main results. One of our main theorems is the following.
If a 1-link K is obtained from a 1-link K ′ by a single crossing-change, then the knot
product, K ⊗ (the Hopf link), is obtained from the knot product, K ′ ⊗ (the Hopf link),
by a single twist-move (see Theorems 4.1 and 7.1). Other results in this paper are as
follows: If a 1-knot K is obtained from a 1-knot K ′ by a single pass-move, then the knot
product, K⊗(the Hopf link), is obtained from the knot product, K ′⊗(the Hopf link), by
a single (3, 3)-pass-move (see Theorem 8.1). Let K and K ′ be 1-knots. The 1-knot K is
pass-move-equivalent to the 1-knotK ′ if and only if the knot product,K⊗(the Hopf link),
is (3, 3)-pass-move-equivalent to the knot product, K ′ ⊗ (the Hopf link) (see Theorems
8.1 and 8.10). Of course we show more results in other high dimensional cases.

4. Main results — technical statements. We work in the smooth category. Let
L = (K1, . . . ,Km) be an m-component n-(dimensional) oriented ordered submanifold
⊂ Sn+2. If m = 1 and if L is PL homeomorphic to the standard sphere, then L is
called an n-dimensional spherical knot. (Note the footnote in Section 2.1.) If each Ki is
a spherical knot, then L is called an n-dimensional spherical link. Let id : Sn+2 → Sn+2

be the identity map. We say that n-submanifolds L and L′ are identical if id(L) =
L′ and id |L : L → L′ is an orientation and order preserving identity map. We say
that n-submanifolds L and L′ are equivalent if there exists an orientation preserving
diffeomorphism f : Sn+2 → Sn+2 such that f(L) = L′ and f |L : L→ L′ is an orientation
and order preserving diffeomorphism. An m-component n-submanifold L = (L1, . . . , Lm)
is called a trivial (n-)link if each Li bounds an (n+1)-ball Bi trivially embedded in Sn+2

and if Bi ∩Bj = ∅ (i 6= j). If m = 1, then L is called a trivial (n-)knot.
The following theorems are special cases of our results. We first prove relations between

the crossing-change on 1-links and the twist-move on high dimensional knots.

Theorem 4.1. Suppose that two 1-links J and K differ by a single crossing-change.
Then the knot products, J ⊗µ (the Hopf link) and K⊗µ (the Hopf link), differ by a single
twist-move, where µ ∈ N ∪ {0}.

Note.
(1) The fact that the two knots differ means that the two knots are not identical. There
are two cases that the two knots are not equivalent and that the two knots are equivalent.
(2) The above Theorem 4.1 follows from the following Theorem 7.1 by Theorem 2.3.2.
(3) In Section 7 we will show an example of the phenomenon which Theorems 4.1 and
7.1 assert.

Theorem 7.1. Let m ∈ N∪{0}. Suppose that two (not necessarily connected) (2m+ 1)-
dimensional closed oriented submanifolds ⊂ S2m+3, J and K, differ by a single twist-
move. Then the (2m + 2ν + 1)-submanifolds ⊂ S2m+2ν+3, J ⊗ν [2] and K ⊗ν [2], differ
by a single twist-move.

Theorem 7.3. Let k ∈ N. Let K (resp. J) be (4k + 5)-dimensional smooth submanifold
⊂ S4k+7. Suppose that K and J differ by a single twist-move and are nonequivalent.
Suppose that K is equivalent to A ⊗k+1 (the Hopf link) for a 1-knot A. Then there is
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a unique equivalence class of simple (4k + 1)-knots for K (resp. J) with the following
properties.

(i) There is a representative element K ′ of the above equivalence class for K such that
K is equivalent to K ′ ⊗ (the Hopf link).

(ii) There is a representative element J ′ of the above equivalence class for J such that
J is equivalent to J ′ ⊗ (the Hopf link).

(iii) K ′ and J ′ differ by a single twist-move and are nonequivalent.

Note. Let K be an n-dimensional spherical knot ⊂ Sn+2. If π1(Sn+2 −K) = Z and if
πi(Sn+2 −K) = 0 (2 5 i < n

2 , i ∈ N), then we call K a simple knot. See [16].

Note. Let p ∈ N ∪ {0}. There are countably infinitely many nonequivalent (2p + 5)-
dimensional spherical knots which are not the product of any (2p+1)-dimensional closed
oriented submanifold ⊂ S2p+3 and the Hopf link by [8, 10].

Note. If k = 0, we have a different situation: By Theorem 7.2 there are nonequivalent
1-knots K ′ and J ′ with the following properties.
(1) K ′ and J ′ differ by two crossing-changes not by a single crossing-change.
(2) Let µ ∈ N. K ′⊗µ(the Hopf link) and J ′⊗µ(the Hopf link) differ by a single twist-move
and are nonequivalent. (Recall that the twist-move on 1-links is the crossing-change on
1-links. See Fig. 3.3.2.)

We also prove relations between the pass-move on 1-knots and the (p, q)-pass-move
on high dimensional knots.

Theorem 8.1. Suppose that two 1-knots J and K differ by a single pass-move.
Let µ ∈ N ∪ {0}. Then the (4µ + 1)-submanifolds ⊂ S4µ+3, J ⊗µ (the Hopf link) and
K ⊗µ (the Hopf link), differ by a single (2µ+ 1, 2µ+ 1)-pass-move.

Theorem 8.5. Let l ∈ N. Let J,K be simple (2l + 1)-knots. Suppose that J and K

differ by a single (l + 1, l + 1)-pass-move. Let µ ∈ N ∪ {0}. Then the (2l + 4µ + 1)-
submanifolds ⊂ S2l+4µ+3, J ⊗µ (the Hopf link) and K ⊗µ (the Hopf link), differ by a
single (l + 2µ+ 1, l + 2µ+ 1)-pass-move.

Theorem 8.10. Let µ ∈ N. Let K (resp. J) be a (4µ + 1)-submanifold ⊂ S4µ+3.
Let K and J be (2µ + 1, 2µ + 1)-pass-move-equivalent. Suppose that K is equivalent to
K ′⊗µ (the Hopf link) for a 1-knot K ′. Then there is a 1-knot J ′ with the following prop-
erties.

(i) J is equivalent to J ′ ⊗µ (the Hopf link).
(ii) K ′ and J ′ are pass-move-equivalent.

Note. In the above theorem, if such K ′ exists, there are countably infinitely many
different pairs ([P ], [Q]) of different equivalence-classes of 1-knots such that
P ⊗µ (the Hopf link) (resp. Q ⊗µ (the Hopf link)) is equivalent to K (resp. J) and that
P and Q are pass-move-equivalent, where [A] is the equivalence class of a 1-knot A. We
prove this in Section 12.
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Theorem 8.11. Let p ∈ N. Let K and J be (2p + 5)-dimensional smooth submanifolds
⊂ S2p+7. Suppose that K and J differ by a single (p + 3, p + 3)-pass-move and are
nonequivalent. Suppose that K is equivalent to

A⊗p/2+1 (the Hopf link) for a 1-knot A if p is even
A⊗ (the Hopf link) for a simple 3-knot A if p = 1 (and hence 2p+ 5 = 7)
A⊗(p−1)/2 (the Hopf link) for a simple 7-knot A if p is odd and p 6= 1.

Then there is a unique equivalence class of simple (2p+ 1)-knots for K (resp. J) with the
following properties.

(i) There is a representative element K ′ of the above equivalence class for K such that
K is equivalent to K ′ ⊗ (the Hopf link).

(ii) There is a representative element J ′ of the above equivalence class for J such that
J is equivalent to J ′ ⊗ (the Hopf link).

(iii) K ′ and J ′ differ by a single (p+ 1, p+ 1)-pass-move and are nonequivalent.

Next we discuss a relation between polynomial invariants of 1-links and those of high
dimensional knots related by knot products.

Suppose that 1-links K+,K−,K0 differ only in a 3-ball B as shown below.

K+ K− K0

Then the ordered set (K+,K−,K0) is called a crossing-change-triple. We also say that
the ordered set (K+,K−,K0) is related by a single crossing-change in B.

Let A(K) be the Alexander–Conway polynomial of 1-links K. It is well-known that

A(K+)−A(K−) = (t− 1) ·A(K0).

Note that there is another kind of setting of the variable. Here, we have the following.

Theorem 9.1. Let K+,K−,K0 be as above.
(1) Let µ ∈ N ∪ {0}. There is a polynomial ∆2µ+1(K∗ ⊗µ (the Hopf link)) ∈ Q[t, t−1]

whose Q[t, t−1]-balanced class is the (2µ + 1)-Q[t, t−1]-Alexander polynomial
A2µ+1(K∗ ⊗µ (the Hopf link)) (∗ = +,−, 0) such that

∆2µ+1(K+ ⊗µ (the Hopf link))−∆2µ+1(K− ⊗µ (the Hopf link))
= (t− 1) ·∆2µ+1(K0 ⊗µ (the Hopf link)).
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(2) Let ν ∈ N ∪ {0}. There is a polynomial ∆ν+1(K∗ ⊗ν [2]) ∈ Q[t, t−1] whose Q[t, t−1]-
balanced class is the (ν + 1)-Q[t, t−1]-Alexander polynomial Aν+1(K∗ ⊗ν [2])
(∗ = +,−, 0) such that

∆ν+1(K+ ⊗ν [2])−∆ν+1(K− ⊗ν [2]) = (t+ (−1)ν+1) ·∆ν+1(K0 ⊗ν [2]),

where [2] denotes the empty knot of degree two.

Part (1) of Theorem 9.1 follows from part (2) by Theorem 2.3.2.

Note.
(1) We review the p-Q[t, t−1]-Alexander polynomial Ap for n-dimensional closed oriented
submanifolds ⊂ Sn+2 in Section 5.
(2) We will show an example of Theorem 9.1.(2) in Section 9.

The above Theorem 9.1.(2) is related to the following Theorem 9.2. Compare the
example of Theorem 9.1.(2) and that of Theorem 9.2. (Both examples are in Section 9.)
The ‘l = even’ case of Theorem 9.2 is proved in [24]. In this paper we prove the ‘l = odd’
case of Theorem 9.2.

Theorem 9.2. Let l ∈ N∪{0}. Let K+ be a (2l+1)-dimensional spherical knot ⊂ S2l+3.
Let K−, K0 be (2l+ 1)-dimensional submanifolds ⊂ S2l+3. Let (K+,K−,K0) be a twist-
move-triple.

Then there is a polynomial ∆l+1(K∗) ∈ Q[t, t−1] whose Q[t, t−1]-balanced class is the
(l + 1)-Q[t, t−1]-Alexander polynomial Al+1(K∗) (∗ = +,−, 0) and

∆l+1(K+)−∆l+1(K−) = (t+ (−1)l+1) ·∆l+1(K0).

Note.
(1) We defined the twist-move-triple in Section 3.
(2) We will show an example of Theorem 9.2 in Section 9.
(3) The identity in Theorem 9.2 (resp. Theorem 9.1.(2)) has a periodicity in dimensions.
The identity in the ‘l = odd’ case of Theorem 9.2 (resp. Theorem 9.1.(2)) has a different
form from the identities in the ‘l = even’ case of Theorem 9.2 (resp. Theorem 9.1.(2)), in
Theorem 6.1, in Theorem 6.2 and in the well-known case of classical links that is quoted
above.

5. Review of the Q[t, t−1]-Alexander polynomials for n-knots and n-dimen-
sional closed oriented submanifolds. We review the Q[t, t−1]-Alexander polynomials
for n-knots and n-links and n-dimensional closed oriented submanifolds, Seifert matrices,
Alexander matrices, etc. See [1, 14, 15, 16].

Let K = (K1, . . . ,Kξ) be an n-dimensional closed oriented submanifold of Sn+2

(n ∈ N). Let each Ki be connected. It is known that any tubular neighborhood of K is
diffeomorphic to K ×D2 (see pages 49, 50 of [13]). Let X = Sn+2 −K ×D2. By using
the orientation of Sn+2 and that of K, we can determine an orientation of ∂D2. Take a
homomorphism α : H1(X;Z) → Z to carry all [∂D2] with the orientations to +1. Take
the infinite cyclic covering π : X̃ → X associated with α. X̃ is called the canonical cyclic
covering space of K. We can regard Hp(X̃;Z) as a Z[t, t−1]-module by using the covering
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translation X̃ → X̃ defined by α. It is called the Z[t, t−1]-p-Alexander module. We can
also regard Hp(X̃;Q) as a Q[t, t−1]-module. It is called the Q[t, t−1]-p-Alexander module.

According to module theory, it holds that any Q[t, t−1]-module is congruent to

(Q[t, t−1]/λ1)⊕ . . .⊕ (Q[t, t−1]/λl)⊕ (⊕kQ[t, t−1]),

where
(1) λ∗ ∈ Q[t, t−1] is not zero,
(2) λ∗ is not the Q[t, t−1]-balanced class of 1,
(3) k is the rank of the free part.

Two polynomials f(t), g(t) ∈ Q[t, t−1] are said to be Q[t, t−1]-balanced if there is an
integer n and a nonzero rational number r such that f(t) = r · tn · g(t).

Let Hp(X̃;Q) be as above. Then the Q[t, t−1]-p-Alexander polynomial is
the Q[t, t−1]-balanced class

of the product λ1 · · ·λl if k = 0 and Hp(X̃;Q) is nontrivial
0 if k 6= 0
1 if Hp(X̃;Q) ∼= 0.

A Seifert hypersurface for an n-dimensional oriented closed submanifold K in Sn+2 is
an (n+1)-dimensional oriented connected compact submanifold in Sn+2 whose boundary
is K (n ∈ N). Note that there are two cases that K is not connected and that K is
connected.

Let V be a Seifert hypersurface for the above n-submanifold K. Note that the ori-
entation of V is compatible with that of K. Recall that Seifert hypersurfaces are con-
nected by the definition (see Section 2.3). Let x1, . . . , xµ be p-cycles in V which are
basis of Hp(V ;Z)/Tor. Let y1, . . . , yν be (n + 1 − p)-cycles in V which are basis of
Hn+1−p(V ;Z)/Tor. Push yi to the positive direction of the normal bundle of V . Call it y+

i .
Push yi to the negative direction of the normal bundle of V . Call it y−i . A (p, n+ 1− p)-
positive Seifert matrix for the above submanifold K associated with V represented by an
ordered basis {x1, . . . , xµ} and an ordered basis {y1, . . . , yν}, is a (µ× ν)-matrix

S = (sij) = (lk(xi, y+
j )).

We sometimes abbreviate (p, n+ 1− p)-positive Seifert matrix to p-Seifert matrix if it is
clear from the context. We sometimes let Sp(K) denote a positive p-Seifert matrix for a
closed oriented submanifold K and V and {xi} and {yj} if we know what V and {xi}
and {yj} are.

A (p, n+1−p)-negative Seifert matrix for the above submanifold K associated with V
represented by an ordered basis {x1, . . . , xµ} and an ordered basis {y1, . . . , yν}, is a matrix

N = (nij) = (lk(xi, y−j )).

We sometimes let Np(V ) denote a negative p-Seifert matrix for a closed oriented subman-
ifold K and V and {xi} and {yj} if we know what K and {xi} and {yj} are. Let Sp and
Np be as above. Then we have the following. Sp−Np represents the map {Hp(V ;Z)/Tor}×
{Hn+1−p(V ;Z)/Tor} → Z, which is defined by the intersection
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product. We call t ·Sp−Np the p-Alexander matrix for K associated with V represented
by an ordered basis {x1, . . . , xµ} and an ordered basis {y1, . . . , yν}.

Note that we sometimes define it to be Sp − t · Np. The difference of both is only
setting the variables because we mainly discuss Q[t, t−1]-balanced-classes as follows. All
we have to do is to change t with t−1.

Proposition 5.1. Let K be an n-dimensional oriented closed submanifold ⊂ Sn+2.
Let Sp be a (p, n+ 1− p)-positive Seifert matrix for K associated with V represented by
an ordered basis {x1, . . . , xµ} and an ordered basis {y1, . . . , yν}.
Let Np be a (p, n+ 1− p)-negative Seifert matrix for K associated with V represented by
an ordered basis {x1, . . . , xµ} and an ordered basis {y1, . . . , yν}.
Suppose µ = ν. Suppose that the linear map defined by a (p − 1)-Alexander matrix is
injective.

Then the p-Q[t, t−1]-Alexander polynomial is the Q[t, t−1]-balanced class of ‘the deter-
minant of p-Alexander matrix’

det(t · Sp −Np).

Note. Of course µ 6= ν in general.

Proof. Take the above X = Sn+2 −K ×D2, X̃, V . Let V × [−1, 1] be the tubular
neighborhood of V in X. Let Y = X − V . Consider the Meyer–Vietoris exact sequence:

H\(q∞−∞V × [−1, 1];Q)→ H\(q∞−∞Y ;Q)→ H\(X̃;Q),

where q∞−∞V × [−1, 1] is the lift of V × [−1, 1], and q∞−∞Y is the lift of Y . This completes
the proof.

Let Np be a (p, n+1−p)-negative Seifert matrix for K associated with V represented
by an ordered basis {x1, . . . , xµ} and an ordered basis {y1, . . . , yν}. Let Sn+1−p be a
(n+ 1− p, p)-positive Seifert matrix for K associated with V represented by an ordered
basis {y1, . . . , yν} and an ordered basis {x1, . . . , xµ}. By the definition of x+

i and y−i ,
lk(yi, x+

j ) = lk(y−i , xj). By page 541 of [14], lk(y−i , xj) = (−1)p(n+1−p)+1lk(xj , y−i ). Hence

Np = (−1)p·n+1Sn+1−p

(note that p(1− p) is an even number).

Proposition 5.2. Let K be a (2m + 1)-dimensional closed oriented submanifold ⊂
S2m+3. Let S be an (m+ 1,m+ 1)-Seifert matrix. We have

S = (−1)m · tS.

The signature σ(K) for a (2p+1)-dimensional closed oriented submanifold K ⊂ S2p+3

(p ∈ N∪ {0}) is the signature of the matrix Sp+1(K) + tSp+1(K). Therefore, we have the
following.

Claim 5.3. Let K be a (4k + 3)-dimensional closed oriented submanifold ⊂ S4k+5

(k ∈ N ∪ {0}). Let V be a Seifert hypersurface for K. Then the signature of K coin-
cides with the signature of V .

Let K be a (4k+ 1)-dimensional spherical knot (4k+ 1 ≥ 1, k ∈ N∪ {0}). We regard
naturally (H2k+1(V ;Z)/Tor) ⊗ Z2 as a subgroup of H2k+1(V ;Z2). Then we can take
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basis x1, . . . , xν , y1, . . . , yν of (H2k+1(V ;Z)/Tor) ⊗ Z2 such that xi · xj = 0, yi · yj = 0,
xi · yj = δij for any pair (i, j), where · denotes the Z2-intersection product. The Arf
invariant of K is ( ν∑

i=1
lk(xi, x+

i ) · lk(yi, y+
i )
)

mod 2.

Let L = (L1, . . . , Lµ) be a (4k+ 1)-link (4k+ 1 ≥ 1, k ∈ N∪{0}, µ ∈ N−{1}). We define
the Arf invariant of L. There are two cases.
(1) Let 4k + 1 ≥ 5. The Arf invariant of L is defined in the same manner as the knot

case.
(2) Let 4k + 1 = 1. See Appendix of [13] and Note right above Note 1.2.1 of [21].

We use the following proposition.

Proposition 5.4. Let K be an n-dimensional closed oriented submanifold ⊂ Sn+2. Then

Sp+1(K ⊗ [2]) = (−1)(n−p)Sp(K)⊗ S0([2]),(1)

Np+1(K ⊗ [2]) = (−1)(n−p)Np(K)⊗N0([2]),(2)
S0([2]) = (1),(3)
N0([2]) = (−1),(4)

Sν−1(⊗ν [2]) = (−1)(ν−1)ν/2(5)
(note that ⊗ν [2] is a (2ν − 3)-submanifold ⊂ S2ν−1),

Sp+ν(K ⊗ν [2]) = (−1)(n−p)ν+ν(ν−1)/2 Sp(K),(6)
Sp+2µ(K ⊗µ (the Hopf link)) = (−1)µSp(K)(7)

(Let ν = 2µ in (6). We obtain (7).),
if α, β are disjoint cycles of dimension p and q in Sp+q+1, then(8)

lk(α, β) = (−1)pq+1lk(β, α).

Proof. Section 6 of [10] implies (1)–(7). Page 541 of [14] implies (8).

6. Some results on invariants of n-knots and local moves on n-knots

Theorem 6.1 ([24]). Let K+, K− be spherical n-knots ⊂ Sn+2 (n ∈ N). Let K0 be an
n-submanifold ⊂ Sn+2. Suppose that (K+, K−, K0) is related by a (p, n+1−p)-pass-move.
Let p 6= n+1−p. Then there is a polynomial ∆p(K∗) ∈ Q[t, t−1] whose Q[t, t−1]-balanced
class is the p-Q[t, t−1]-Alexander polynomial Ap(K∗) for the submanifold K∗ (∗ = +,−, 0)
such that

∆p(K+)−∆p(K−) = (t− 1) ·∆p(K0).

Theorem 6.2 ([24]). Let K+, K− be spherical (4k+1)-knots (4k+1 ∈ N, k ∈ N∪{0}). Let
K0 be a (4k+ 1)-submanifold ⊂ S4k+3. Suppose that (K+, K−, K0) is related by a single
twist-move. Then there is a polynomial ∆2k+1(K∗) ∈ Q[t, t−1] whose Q[t, t−1]-balanced
class is the (2k + 1)-Q[t, t−1]-Alexander polynomial A2k+1(K∗) (∗ = +,−, 0) such that

∆2k+1(K+)−∆2k+1(K−) = (t− 1) ·∆2k+1(K0).
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Recall the two sentences right before Theorem 9.2 in Section 4. The ‘l = even’ case
of Theorem 9.2 is the above Theorem 6.2.

Theorem 6.3 ([24]). Let K+, K−, K0 be as in Theorem 6.2. Let k ∈ N∪{0}. Let bP4k+2
be the bP -subgroup ⊂ Θ4k+1. Suppose that bP4k+2 is not congruent to the trivial group.
Then

Arf K+ −Arf K− = {|bP4k+2 ∩ I(K0)|+ 1}mod 2,

where I(K0) is the inertia group of an oriented smooth manifold which is orientation
preserving diffeomorphic to K0 and the symbol | | denotes the order of a group.

Note. See Section 5 and [12, 13, 14] for the Arf invariant. See [12] for the homotopy
sphere group Θ? and the bP -subgroup ⊂ Θ?. See [2, 11] for the inertia group.

We state a problem.

Problem 6.4. Let K+ be an n-dimensional spherical knot. Suppose that (K+,K−,K0)
is a twist-move-triple (resp. (p, n + 1 − p)-pass-move-triple, where p 6= n + 1 − p). Let
α(K) be an invariant of K as a submanifold and be a Q[t, t−1]-balanced class. Suppose
that there are f+, f−, f0 ∈ Q[t, t−1] such that the Q[t, t−1]-balanced class of f∗ is α(K∗)
(∗ = +,−, 0) and that{
f+ − f− = (t− 1) · f0 in the other cases than the following
f+ − f− = (t+ 1) · f0 if n = 4k + 3, k ∈ N ∪ {0} and if we consider the twist-move.

Then is α(K) the Q[t, t−1]-Alexander polynomial or what is determined by the Q[t, t−1]-
Alexander polynomial?

Note. It is well-known that the Alexander–Conway polynomial (resp. the Jones polyno-
mial, the HOMFLY polynomial) of 1-links is essentially characterized by the well-known
local move identity and the fact that it is trivial for the trivial knot.

7. Theorems on relations between crossing-changes and knot products
Theorem 7.1. Let m ∈ N ∪ {0}. Suppose that two (not
necessarily connected) (2m + 1)-dimensional closed ori-
ented submanifolds ⊂ S2m+3, J and K, differ by a sin-
gle twist-move. Then the (2m + 2ν + 1)-submanifolds
⊂ S2m+2ν+3, J ⊗ν [2] and K ⊗ν [2], differ by a single
twist-move, where [2] denotes the empty knot of degree
two.

We show an example of the phenomenon in the
‘m = 0 and ν = 1 case’ of Theorem 7.1. The following
knot T is the 1-dimensional trivial knot.

Carry out a crossing-change in the 3-ball which is represented by the dotted circle in
the following figure. We obtain a new knot K. Note that K is the trefoil knot.
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Note that this crossing-change is the same as the twist-move in the 3-ball which is rep-
resented by the dotted circle in the following figure.

Take T ⊗ [2] and K ⊗ [2] in S5. By [8, 10] we can determine the embedding type of
T ⊗ [2] (resp. K⊗ [2]). A Seifert hypersurface for T ⊗ [2] is diffeomorphic to the following
4-manifold (on the left) and its associated Seifert matrix is

( 0 −1
0 −1

)
by Proposition 5.4.

A Seifert hypersurface for K ⊗ [2] is diffeomorphic to the following 4-manifold (on the
right) and its associated Seifert matrix is

(−1 −1
0 −1

)
by Proposition 5.4.

0 −2 −2−2

K⊗[2] is obtained from T⊗[2] by a single twist-move in the 5-ball which is represented
by the dotted circle in the following figure. (The readers should not mind the twisting or
the framing there so much.)
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Note that K ⊗ [2] is not homeomorphic to T ⊗ [2]. Twist moves of (4k + 3)-knots
(k ∈ N ∪ {0}) change the homeomorphism types of submanifolds in general but we can
determine the new embedding types which we obtain by twist-moves.

We show an example of ‘m = 0 and ν = 2µ’ case of Theorem 7.1. Let T and K

be as above. K ⊗2µ [2] = K ⊗µ (the Hopf link) in S4µ+3 is obtained from T ⊗2µ [2] =
T ⊗µ (the Hopf link) in S4µ+3 by a single twist-move in the (4µ + 3)-ball which is rep-
resented by the dotted circle in the following figure. (The readers should not mind the
twisting or the framing there so much.)

Note that a Seifert hypersurface for T⊗µ(the Hopf link) is diffeomorphic to the plumb-
ing of the trivial D2µ+1-bundle over S2µ+1 and the D2µ+1-bundle over S2µ+1 associated
with the tangent bundle.

Note that a Seifert hypersurface for K ⊗µ (the Hopf link) is diffeomorphic to the
plumbing of two copies of the D2µ+1-bundle over S2µ+1 associated with the tangent
bundle.
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For some µ, K ⊗µ (the Hopf link) is not diffeomorphic but homeomorphic to
T ⊗µ (the Hopf link). Then K ⊗µ (the Hopf link) is an exotic sphere. For other µ,
K ⊗µ (the Hopf link) is diffeomorphic to T ⊗µ (the Hopf link). Recall the discussion as-
sociated with the bP -subgroup in [12].

Theorem 7.2.
(1) There is a nontrivial 1-knot K which is obtained from the trivial knot by a sin-

gle crossing-change with the following property. Let ν ∈ N, ν = 2. The (2ν + 1)-
submanifold ⊂ S2ν+3, K ⊗ν [2], is equivalent to the trivial (2ν + 1)-knot.

(2) There is a nontrivial 1-knot P which is obtained from the trivial knot by two crossing-
changes not by a single crossing-change with the following property. Let ν ∈ N, ν = 2.
The (2ν+ 1)-submanifold ⊂ S2ν+3, P ⊗ν [2], is equivalent to the trivial (2ν+ 1)-knot.

(3) There are nontrivial 1-knots P and Q with the following properties.
(i) P and Q differ by a single crossing-change and are nonequivalent.
(ii) Let ν ∈ N and ν = 2. The (2ν + 1)-submanifolds ⊂ S2ν+3, P ⊗ν [2] and Q ⊗ν [2],

are equivalent spherical knots.
(4) There is a nontrivial 1-knot P with the following properties.

(i) P is obtained from the trivial 1-knot by two crossing-changes not by a single
crossing-change.

(ii) Let µ ∈ N. The (4µ + 1)-submanifold ⊂ S4µ+3, P ⊗µ (the Hopf link) is obtained
from the trivial knot by a single twist-move and is a nontrivial knot.

(5) There are nontrivial 1-knots P and Q with the following properties.
(i) P and Q differ by a single crossing-change and are nonequivalent.
(ii) Let µ ∈ N. The (4µ + 1)-submanifolds ⊂ S4µ+3, P ⊗µ (the Hopf link) and

Q⊗µ (the Hopf link) are equivalent spherical knots and nontrivial knots.

Note. Recall that, if a 1-knot K is obtained from a nonequivalent 1-knot J by a single
crossing-change, then the 1-knot K is obtained from the nonequivalent knot J by a single
twist-move. Thus we can say that the ‘twist-move-unknotting-number’ changes by a knot
product. A ‘non-twist-move-equivalent pair’ is changed into a ‘twist-move-equivalent pair’
by knot product.

Theorem 7.3. Let k ∈ N. Let K (resp. J) be (4k + 5)-dimensional smooth submanifold
⊂ S4k+7. Suppose that K and J differ by a single twist-move and are nonequivalent.
Suppose that K is equivalent to A⊗k+1 (the Hopf link) for a 1-knot A.

Then there is a unique equivalence class of simple (4k+ 1)-knots for K (resp. J) with
the following properties.

(i) There is a representative element K ′ of the above equivalence class for K such that
K is equivalent to K ′ ⊗ (the Hopf link).

(ii) There is a representative element J ′ of the above equivalence class for J such that
J is equivalent to J ′ ⊗ (the Hopf link).

(iii) K ′ and J ′ differ by a single twist-move and are nonequivalent.

Note. If k = 0 in Theorem 7.3, we have a different result. See Theorem 7.2.
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8. Theorems on relations between pass-moves and knot products

Theorem 8.1. Suppose that two 1-knots J and K differ by a single pass-move.
Let µ ∈ N ∪ {0}. Then the (4µ + 1)-submanifolds ⊂ S4µ+3, J ⊗µ (the Hopf link) and
K ⊗µ (the Hopf link), differ by a single (2µ+ 1, 2µ+ 1)-pass-move.

Note 8.2. Recall Theorem 2.3.2. Let n ∈ N and µ ∈ N ∪ {0}. For any n-dimensional
closed oriented submanifold A ⊂ Sn+2, A⊗µ (the negative Hopf link) = A⊗2µ [2].

Compare the above Theorem 8.1 and Note 8.2 with the following Theorem 8.3.

Theorem 8.3. Take the same J,K in Theorem 8.1. Then the (4µ + 3)-submanifolds
⊂ S4µ+5 (µ ∈ N∪{0}), J ⊗(2µ+1) [2] and K⊗(2µ+1) [2], are not homeomorphic in general
and, therefore, are NOT (2µ+ 2, 2µ+ 2)-pass-move-equivalent in general.

Problem 8.4. In the above Theorem 8.3, of course, if J and K are trivial knots, then the
above two (4µ+ 3)-submanifolds are pass-move-equivalent. What kind of pair, J and K,
in Theorem 8.3 satisfies the condition that the above two (4µ + 3)-submanifolds are
(2µ+ 2, 2µ+ 2)-pass-move-equivalent?

The ‘ν = odd’ case of Theorem 8.8 and Note to the proof of Theorem 8.8 give partial
solutions to Problem 8.4.

Theorem 8.5. Let l ∈ N. Let J,K be simple (2l + 1)-knots. Suppose that J and K

differ by a single (l + 1, l + 1)-pass-move. Let µ ∈ N ∪ {0}. Then the (2l + 4µ + 1)-
submanifolds ⊂ S2l+4µ+3, J ⊗µ (the Hopf link) and K ⊗µ (the Hopf link), differ by a
single (l + 2µ+ 1, l + 2µ+ 1)-pass-move.

Problem 8.6. If we do NOT suppose that J,K are simple knots in Theorem 8.5, do the
above (2l + 4µ + 1)-submanifolds differ by a single pass-move? Or, are they pass-move-
equivalent?

The above problem is really a problem of high dimensional knots. The following one
is also such a problem.

Problem 8.7 (A generalization of Problem 8.6).
(1) Suppose that spherical n-knots (resp. n-dimensional closed oriented submanifolds
⊂ Sn+2) J and K differ by a single (p, n + 1 − p)-pass-move, where n ∈ N and
p ∈ N. Then do the (n+ 4µ+ 1)-submanifolds ⊂ Sn+4µ+3, J ⊗µ (the Hopf link) and
K⊗µ(the Hopf link), differ by a single pass-move? Or, are they pass-move-equivalent?

(2) How about the case where J and K are even dimensional simple 2m-knots and where
p = m? Here, m ∈ N.

(3) Of course there is a problem in the case of the product with odd times copies of the
empty knot [2]. (Note Theorem 8.3 and its proof.)

Theorem 8.8. There is a nontrivial 1-knot K which is obtained from the trivial knot by
a single pass-move with the following property: Let ν = 2, ν ∈ N. K ⊗ν [2] is the trivial
(2ν + 1)-knot.

Note 8.9. By Theorem 8.8, we have the following. Let T be the trivial 1-knot. The
two 1-knots, K and T , differ by a single pass-move and are nonequivalent. However the
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(2ν + 1)-dimensional spherical knot, K ⊗ν [2], is equivalent to the (2ν + 1)-dimensional
trivial knot, T ⊗ν [2]. Recall ν = 2 and ν ∈ N. That is, they differ by ZERO times of
pass-moves. Thus we can say that the ‘pass-move-unknotting-number’ changes by knot
products.

Theorem 8.10. Let µ ∈ N. Let K (resp. J) be a (4µ + 1)-submanifold ⊂ S4µ+3. Let
K and J be (2µ + 1, 2µ + 1)-pass-move-equivalent. Suppose that K is equivalent to
K ′ ⊗µ (the Hopf link) for a 1-knot K ′. Then there is a 1-knot J ′ with the properties:

(i) J is equivalent to J ′ ⊗µ (the Hopf link).
(ii) K ′ and J ′ are pass-move-equivalent.

Note. See Note under Theorem 8.10 in Section 4.

Theorem 8.11. Let p ∈ N. Let K and J be (2p + 5)-dimensional smooth submanifolds
⊂ S2p+7. Suppose that K and J differ by a single (p + 3, p + 3)-pass-move and are
nonequivalent. Suppose that K is equivalent to

A⊗p/2+1 (the Hopf link) for a 1-knot A if p is even
A⊗ (the Hopf link) for a simple 3-knot A if p = 1 (and 2p+ 5 = 7)
A⊗(p−1)/2 (the Hopf link) for a simple 7-knot A if p is odd and p 6= 1.

Then there is a unique equivalence class of simple (2p+ 1)-knots for K (resp. J) with the
following properties:

(i) There is a representative element K ′ of the above equivalence class for K such that
K is equivalent to K ′ ⊗ (the Hopf link).

(ii) There is a representative element J ′ of the above equivalence class for J such that
J is equivalent to J ′ ⊗ (the Hopf link).

(iii) K ′ and J ′ differ by a single (p+ 1, p+ 1)-pass-move and are nonequivalent.

Let P be the 5-twist spun knot of the trefoil knot. Note that P is a 2-knot. Note
that Proposition 4.3 of [22] and the last line of Section 7 in page 684 of [22] imply the
following.
(1) P is NOT ribbon-move-equivalent to T .
(2) P is NOT (1,2)-pass-move-equivalent to T .

Theorem 8.12. Let T be the trivial 2-knot. Let P be as above. Although P is NOT
(1, 2)-pass-move-equivalent to T , we have the following. Let ν = 2 and ν ∈ N. The
(2ν + 2)-submanifold, P ⊗ν [2], is equivalent to the trivial (2ν + 2)-knot, T ⊗ν [2], and
therefore, is (ν + 1, ν + 2)-pass-move-equivalent to the trivial knot.

Note 8.13.
(1) Thus we can say that a knot product makes a ‘non-pass-move-equivalent pair’ into a
‘pass-move-equivalent pair’.
(2) Knot products can let us discuss ribbon-moves on 2-knots and high dimensional pass-
moves on high dimensional knots on time. This way will make the problem of classification
of 2-knots by ribbon-moves easier.
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9. Theorems on relations between local move identities of a knot polyno-
mial and knot products. Let (K+,K−,K0) be a crossing-change-triple of 1-links. (See
crossing-change-triples in Section 4.) Let A(K) be the Alexander–Conway polynomial of
1-links K. It is well-known that

A(K+)−A(K−) = (t− 1) ·A(K0).

Here, we have the following theorems.

Theorem 9.1. Let K+,K−,K0 be as above.
(1) Let µ ∈ N∪{0}. There is a polynomial ∆2µ+1(K∗⊗µ(the Hopf link)) ∈ Q[t, t−1] whose

Q[t, t−1]-balanced class is the (2µ + 1)-Q[t, t−1]-Alexander polynomial
A2µ+1(K∗ ⊗µ (the Hopf link)) (∗ = +,−, 0) such that

∆2µ+1(K+ ⊗µ (the Hopf link))−∆2µ+1(K− ⊗µ (the Hopf link))
= (t− 1) ·∆2µ+1(K0 ⊗µ (the Hopf link)).

(2) Let ν ∈ N ∪ {0}. There is a polynomial ∆ν+1(K∗ ⊗ν [2]) ∈ Q[t, t−1] whose Q[t, t−1]-
balanced class is the (ν + 1)-Q[t, t−1]-Alexander polynomial Aν+1(K∗ ⊗ν [2]) (∗ =
+,−, 0) such that

∆ν+1(K+ ⊗ν [2])−∆ν+1(K− ⊗ν [2]) = (t+ (−1)ν+1) ·∆ν+1(K0 ⊗ν [2]),

where [2] denotes the empty knot of degree two.

Note. After taking knot product, A( ) is changed into A2µ+1( ) (resp. Aν+1( )).
By Theorem 2.3.2, Theorem 9.1.(1) follows from Theorem 9.1.(2).

If ν is odd, then K+ ⊗ν [2] is not homeomorphic to K− ⊗ν [2] in general. However
Theorem 9.1.(2) is true. We show an example of the ‘ν = odd’ case of Theorem 9.1.(2).

Let K+ be the trivial 1-knot, K− the trefoil knot, and K0 the Hopf link as shown
below. Note that these K+, K− and K0 makes a crossing-change-triple (K+,K−,K0).

Take K∗⊗ [2] (∗ = +,−, 0). By [8, 10] and Proposition 5.4 we have the following. We
can determine the embedding type of K∗⊗ [2] (∗ = +,−, 0). A Seifert matrix for K+⊗ [2]
is
( 0 −1

0 −1
)
, for K− ⊗ [2] is

(−1 −1
0 −1

)
, for K0 ⊗ [2] is (−1).
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Hence the 2-Alexander polynomial is the Q[t, t−1]-balanced class of

det
{
t

(
0 −1
0 −1

)
+
(

0 0
−1 −1

)}
= −t for K+ ⊗ [2]

det
{
t

(
−1 −1
0 −1

)
+
(
−1 0
−1 −1

)}
= t2 + t+ 1 for K− ⊗ [2]

det{t(−1) + (−1)} = −t− 1 for K0 ⊗ [2].

Since −t − (t2 + t + 1) = (t + 1)(−t − 1), the identity in Theorem 9.1.(2) holds for the
triple (K+ ⊗ [2],K− ⊗ [2],K0 ⊗ [2]).

Recall the last paragraph before Theorem 9.2 in Section 4.

Theorem 9.2. Let l ∈ N∪{0}. Let K+ be a (2l+1)-dimensional spherical knot ⊂ S2l+3.
Let K−, K0 be (2l+ 1)-dimensional submanifolds ⊂ S2l+3. Let (K+,K−,K0) be a twist-
move-triple. Then there is a polynomial ∆l+1(K∗) ∈ Q[t, t−1] whose Q[t, t−1]-balanced
class is the (l + 1)-Q[t, t−1]-Alexander polynomial Al+1(K∗) (∗ = +,−, 0) and

∆l+1(K+)−∆l+1(K−) = (t+ (−1)l+1) ·∆l+1(K0).

We show an example of Theorem 9.2. Take the same K∗ (∗ = +,−, 0) in the examples
of Theorem 9.1.(2). Note that (K+,K−,K0) is a twist-move triple in the 3-ball which is
represented by the dotted circle in the following figure.

Let J∗ be K∗ ⊗ [2] (∗ = +,−, 0). By [8, 10] a Seifert hypersurface for J∗ is diffeomorphic
to the following 4-manifold.

−20 −2 −2 −2

A Seifert hypersurface for J+ A Seifert hypersurface for J− A Seifert hypersurface for J0

(J+, J−, J0) is a twist-move triple in the 5-ball which is represented by the dotted circle
in the following figure. (The readers should not mind the twisting or the framing there
so much.)
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By the calculus in the example of Theorem 9.1.(2), the identity in Theorem 9.2 holds for
the triple (J+, J−, J0).

Theorem 9.3. Let ν ∈ N ∪ {0}. Let K+, K−, K0 be as in Theorem 9.2. There is a
polynomial ∆l+1+ν(K∗⊗ν [2]) ∈ Q[t, t−1] whose Q[t, t−1]-balanced class is the (l+ 1 + ν)-
Q[t, t−1]-Alexander polynomial Al+1+ν(K∗ ⊗ν [2]) (∗ = +,−, 0) such that

∆l+1+ν(K+ ⊗ν [2])−∆l+1+ν(K− ⊗ν [2]) = (t+ (−1)l+1+ν) ·∆l+1+ν(K0 ⊗ν [2]).

Theorem 9.4. Let k ∈ N ∪ {0}. Let K+ be a (4k + 1)-dimensional spherical knot. Let
(K+,K−,K0) be a twist-move-triple. Let µ ∈ N∪ {0}. Let bP4k+2+4µ be the bP -subgroup
⊂ Θ4k+1+4µ. Suppose that bP4k+2+4µ is not congruent to the trivial group. Then

Arf(K+ ⊗µ (the Hopf link))−Arf(K− ⊗µ (the Hopf link))
=
{
|bP4k+2+4µ ∩ I(K0 ⊗µ (the Hopf link))|+ 1

}
mod 2,

where I(K0⊗µ (the Hopf link)) is the inertia group of an oriented smooth manifold which
is orientation preserving diffeomorphic to K0⊗µ(the Hopf link) and the symbol | | denotes
the order of a group.

LetK+ andK− be n-dimensional spherical knots⊂ Sn+2. LetK0 be an n-submanifold
⊂ Sn+2. Let (K+,K−,K0) be related by a single (p, q)-pass-move in Bn+2. Let p + q =
n+ 1. Let p 6= q. Recall that we have the following by [24]. (It is quoted in Theorem 6.1
in this paper.)

There is a polynomial ∆p(K∗) ∈ Q[t, t−1] whose Q[t, t−1]-balanced class is the
p-Q[t, t−1]-Alexander polynomial Ap(K∗) for the submanifold K∗ (∗ = +,−, 0) such that

∆p(K+)−∆p(K−) = (t− 1) ·∆p(K0).

Theorem 9.5. Let ν ∈ N ∪ {0}. Let K+, K−, K0 be as above. There is a polynomial
∆p+ν(K∗⊗ν [2]) ∈ Q[t, t−1] whose Q[t, t−1]-balanced class is the (p+ν)-Q[t, t−1]-Alexander
polynomial Ap+ν(K∗ ⊗ν [2]) (∗ = +,−, 0) such that

∆p+ν(K+ ⊗ν [2])−∆p+ν(K− ⊗ν [2]) = (t+ (−1)ν+1) ·∆p+ν(K0 ⊗ν [2]).

10. A remark on the Z[t, t−1]-case. Some of our results on polynomial invariants
could be extended to the case where the word, ‘Q[t, t−1]-balanced class,’ is replaced with
the word, ‘(Z[t, t−1]-balanced class of) an element of Z[t, t−1]’. However we must take care
of the following Theorem 10.1.
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Two polynomials f(t), g(t) ∈ Z[t, t−1] are said to be Z[t, t−1]-balanced if there is an
integer n such that f(t) = ±tn · g(t).

Theorem 10.1. For a natural number n there is a smooth oriented codimension two
closed submanifold K ⊂ Sn+2 with the following properties.
(1) Let 1 5 p 5 n. Any Seifert hypersurface for K satisfies the condition that, for any p,

the p-th Betti number is equal to the (n+ 1− p)-th Betti number.
(2) There are Seifert hypersurfaces V and W for K such that, for a nonnegative integer p,

the Z[t, t−1]-balanced class of the determinant of a p-Alexander matrix of V and that
of W are different although the linear map defined by a (p − 1)-Alexander matrix
associated with V (resp. W ) is injective.

Proof. Let K be a closed oriented smooth 3-dimensional submanifold ⊂ S5 such that the
diffeomorphism type of K is represented by the following framed link: Take the (2, 2a)-
torus link ⊂ S3 (a ∈ N − {1}). It is a 2-component 1-link with the linking number a.
Suppose that the framing of each component is zero. Then K is diffeomorphic to a
homology sphere and, therefore, any Seifert hypersurface for K satisfies condition (1) in
Theorem 10.1. The following framed link is the a = 2 case of K.

0 0    

We make two kinds of Seifert hypersurfaces V , W for K as follows.
The first. Regard R5 = R4 × {t ∈ R}. Regard the above framed link which represents K
as a 4-manifold. This 4-manifold has a handle decomposition

(a 4-dimensional 0-handle) ∪ (a 4-dimensional 2-handle) ∪ (a 4-dimensional 2-handle),

which is defined by the framed link representation. Suppose that the diffeomorphism type
of a Seifert hypersurface V is this 4-manifold. Suppose that V in R5 satisfies:
(1) The 4-dimensional 0-handle is embedded in R4 × {t = 0}.
(2) One of the 4-dimensional 2-handles is embedded in R4 × {t = 0}, call it h2.
(3) The other of the 4-dimensional 2-handles is embedded in R4 × {t 5 0}. Only the

attached part is embedded in R4 × {t = 0}. We can do this because the framing is
zero.
Thus we obtain a Seifert hypersurface V for K. Then we can suppose the following:

a positive 2-Seifert matrix associated with V is
( 0 a

0 0
)
. The negative 2-Seifert matrix

associated with the positive 2-Seifert matrix is
( 0 0
−a 0

)
. Hence the 2-Alexander matrix

associated with these two matrices is
( 0 at
a 0

)
. Its determinant is −a2t.

Note that the linear map defined by a 1-Alexander matrix associated with V is injective.
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The second. Take the above Seifert hypersurface V . Suppose that a 5-dimensional
3-handle k3 is embedded in R4 × {t = 0}. Attach k3 along the 2-sphere embedded in V

which makes the above 4-dimensional 2-handle h2 into a 4-dimensional 1-handle as shown
below by the framed link representation. Suppose that only the attach part is embedded
in R4×{t = 0}. By this surgery by k3, V is changed into another Seifert hypersurface W
for K. Then the framed link representation of W is as follows: Take the (2, 2a)-torus link
⊂ S3. The framing of one component is zero. The other component is the dot circle (see
[13] for the dot circle). Then W is a rational homology ball. The following framed link is
the a = 2 case of W .

W

0

Hence the following holds: the positive 2-Seifert matrix associated with W is ‘empty’.
The negative 2-Seifert matrix associated with W is ‘empty’. Hence the 2-Alexander matrix
associated with W is ‘empty’. Note that the Z[t, t−1]-balanced class of the determinant
of the 2-Alexander matrix ‘empty’ is that of 1. Note that the linear map defined by a
1-Alexander matrix associated with W is injective. Note that the Z[t, t−1]-balanced class
of the determinant of the 2-Alexander matrix ‘empty’ is NOT that of a2t. (Recall that
we define a ∈ N− {1}.) This completes the proof of Theorem 10.1.

11. Proof of theorems in Section 7

Proof of Theorem 7.1. By induction it suffices to prove the ν = 1 case. Take
(2m + 1)-dimensional oriented closed submanifolds K+,K− ⊂ S2m+3 = ∂B2m+4 ⊂
B2m+4. Suppose that the (2m + 1)-dimensional oriented closed submanifolds, K+,K−,
differ by only one twist-move in a (2m+ 3)-ball A trivially embedded in S2m+3. See the
left two figures in the upper half of Fig. 3.3.2.

Take a Seifert hypersurface V+ (resp. V−) for the (2m+1)-dimensional oriented closed
submanifold K+ (resp. K−) such that the submanifolds, V+, V−, differ by only one twist-
move in the (2m + 3)-ball A ⊂ S2m+3 and that V∗ ∩ A is the (2m + 2)-dimensional
(m+ 1)-handle h∗(∗ = +,−). See the definition of twist-moves in Section 3.3.

Take the collar neighborhood A × [0, 1] of B2m+4. Note that B2m+4 − (A× [0, 1])
and A × [0, 1] are diffeomorphic to the (2m + 4)-ball, where Q denotes the closure of
Q in B2m+4 if Q ⊂ B2m+4. Note that the intersection of the two (2m + 4)-balls is
(∂A× [0, 1]) ∪ (A× {1}) and is diffeomorphic to the (2m+ 3)-ball.

Push V+ (resp. V−) into B2m+4, fixing ∂V+ = K+ (resp. ∂V− = K−), call the sub-
manifold ⊂ B2m+4, V ′+ (resp. V ′−). Suppose that the submanifolds V ′+, V ′− differ only in
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the (2m+ 4)-ball A× [0, 1] ⊂ B2m+4. Suppose that V ′∗ ∩ (A× [0, 1]) is(
((∂V∗) ∩A)× [0, 1

2 ]
)
∪
(
(V∗ ∩A)× { 1

2}
)

(∗ = +,−).

Let B2 = {(x, y) ∈ R2 |x2 + y2 5 1}. Then there are smooth maps f+ : B2m+4 → B2

and f− : B2m+4 → B2 with the following properties. (Reason: Use the Thom–Pontrjagin
construction.)

(i) The submanifold f−1
+ ((0, 0)) ⊂ B2m+4 is V ′+. The submanifold f−1

− ((0, 0)) ⊂ B2m+4

is V ′−.
(ii) f+ and f− coincide on B2m+4 − (A× [0, 1]) .

The knot product K∗ ⊗ (the empty knot [2]) is defined as follows (∗ = +,−). See
Section 2.3 and [8, 10] for knot products. Take a smooth map g : B2 → B2 such that
(r cos θ, r sin θ) 7→ (r cos 2θ, r sin 2θ), where we use the standard polar coordinate. Recall
that g|∂B2=S1 : S1 → S1 is the empty knot of degree two.

Let M∗ = {(x, y) ∈ B2m+4 ×B2 | f∗(x)− g(y) = (0, 0) ∈ B2}.
The (2m+ 3)-dimensional closed oriented submanifold ∂M∗ ⊂ ∂(B2m+4 ×B2) is the

knot product K∗ ⊗ [2] in the standard (2m+ 5)-sphere. Note that ∂(B2m+4 ×B2) is the
standard (2m+ 5)-sphere.
∂
(
(A× [0, 1])×B2) ∩ ∂(B2m+4 ×B2) is the (2m+ 5)-ball, call it Ǎ.

∂
(
B2m+4 − (A× [0, 1]) ×B2) ∩ ∂(B2m+4 ×B2) is also the (2m+ 5)-ball.

It is (∂(B2m+4 ×B2))− Int Ǎ.
By [8, 10] we have the following.

(1) ∂M∗ is the double branched covering space of ∂B2m+4 along K∗.
(2) A Seifert hypersurface for ∂M∗ is the double branched covering space of B2m+4

along V ′∗ .
By (ii) several lines above here, there is a diffeomorphism map

α : ∂(B2m+4 ×B2)→ ∂(B2m+4 ×B2)

with the following properties:

α|(∂(B2m+4×B2))−Int Ǎ is the identity map.(1)

α|(∂(B2m+4×B2))−Int Ǎ
(
(∂M+)− Int Ǎ

)
= (∂M−)− Int Ǎ.(2)

α|(∂(B2m+4×B2))−Int Ǎ
(
(the Seifert hypersurface for ∂M+)− Int Ǎ

)
(3)

= (the Seifert hypersurface for ∂M−)− Int Ǎ.

By [8, 10] we have the following.
(1) Ǎ∩∂M∗ is the double branched covering space of A along A∩K∗ and is Sm+1×Dm+2.

Note that A ∩K∗ is Sm ×Dm+1.
(2) Ǎ ∩ (the Seifert hypersurface for ∂M∗) is the double branched covering space of

A× [0, 1] along (A× [0, 1]) ∩ V ′∗ and is Dm+2 ×Dm+2. Note that (A× [0, 1]) ∩ V ′∗ is
Dm+1 ×Dm+1.
Hence the intersection of Ǎ ∩ (the Seifert hypersurface for ∂M∗), which is Dm+2 ×

Dm+2, and the standard (m + 4)-sphere ∂Ǎ is Sm+1 ×Dm+2, which is Ǎ ∩ ∂M∗. Thus
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we can regard this Dm+2 ×Dm+2 as a (2m + 4)-dimensional (m + 2)-handle embedded
in the standard (2m+ 5)-ball Ǎ which is attached to the standard (2m+ 4)-sphere ∂Ǎ.

Since K+ and K− differ by only one twist-move, we can suppose that there is a
(m + 1)-Seifert matrix X∗ = (x∗i,j) for K∗ with the following property, where ∗ = +,−
(if necessary, change Seifert hypersurface by using embedded handles):{

x+
11 = 1, x−11 = 0
x+
ij = x−ij if (i, j) 6= (1, 1), i, j 5 ν, i, j ∈ N.

Here, x∗11 is derived from A ∩ V∗ (∗ = +,−).
By [8, 10] and Proposition 5.4, we can suppose that the ν × ν-matrix −X∗ = (−x∗i,j)

is a (m+ 2)-Seifert matrix for K∗ ⊗ [2]. Here, −x∗11 is derived from

Ǎ ∩ (the Seifert hypersurface for ∂M∗) (∗ = +,−).

Recall the definition of twist-moves in Section 3. By the above two paragraphs,K+⊗[2]
and K− ⊗ [2] differ by a single twist-move. This completes the proof of Theorem 7.1.

Here, we prove the following Proposition 11.1, which is used in the proof of Theorem
9.4 in Section 13.

Suppose that two (2m + 1)-dimensional oriented closed submanifolds ⊂ S2m+3,
K+ and K−, differ by a single twist-move as in the proof of Theorem 7.1. By Theo-
rem 7.1, the (2m + 2ν + 1)-submanifolds ⊂ S2m+2ν+3, K+ ⊗ν [2] and K− ⊗ν [2], differ
by a single twist-move in a (2m+ 2ν + 3)-ball Ǎ. Then there is a unique closed oriented
(2m+2ν+1)-submanifold K⊗0 ⊂ S2m+2ν+3 such that a triple (K+⊗ν [2],K−⊗ν [2],K⊗0 )
is related by a single twist-move in Ǎ. Note that the equivalence class of the submanifold
K⊗0 ⊂ S2m+2ν+3 is determined uniquely. Note that we have the following. Take the Seifert
hypersurface for ∂M∗ in the (2m+ 2ν + 1) case of the proof of Theorem 7.1 (∗ = +,−).
Then ∂

(
(the Seifert hypersurface for ∂M∗) − Int Ǎ

)
in S2m+2ν+3 is K⊗0 ⊂ S2m+2ν+3

(∗ = +,−). Make K0 from K+ as defined in Section 3.3. Then we have the following.

Proposition 11.1. The (2m+ 2ν + 1)-submanifolds ⊂ S2m+2ν+3, K⊗0 and
K0 ⊗ν (the empty knot [2]) are equivalent.

Proof. By induction it suffices to prove the ν = 1 case.
Take V ′+ and V ′− as in the proof of Theorem 7.1. The submanifolds

V ′+ ∩ B2m+4 − (A× [0, 1]) in B2m+4 − (A× [0, 1])

and V ′− ∩ B2m+4 − (A× [0, 1]) in B2m+4 − (A× [0, 1])
are equivalent. Furthermore, the submanifold

∂(V ′+ ∩ B2m+4 − (A× [0, 1]) ) in ∂( B2m+4 − (A× [0, 1]) ) (∗ = +,−)

is equivalent to K0 in the standard (2m+ 3)-sphere.
Take M∗∩

(
B2m+4 − (A× [0, 1]) ×B2) (∗ = +,−). By the construction, the subman-

ifold ∂(M∗ ∩
(
B2m+4 − (A× [0, 1]) × B2) in ∂

(
B2m+4 − (A× [0, 1]) × B2) (∗ = +,−)

is K⊗0 and K0 ⊗ν [2] in the standard (2m+ 2ν + 3)-sphere.
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Proof of Theorem 7.2, part (1). Take the 1-knot K in Fig. 11.1.

Fig. 11.1. A 1-knot: Twist in the shaded part so that its Seifert matrix is
( 1 1

0 0

)
By [34], K is a nontrivial knot. Note that the unknotting number of K is one.
By [8, 10] and Proposition 5.4, the (2ν + 1)-submanifold K ⊗ν [2] ⊂ S2ν+3 has a

Seifert hypersurface V with the following conditions.

(i) V has a handle decomposition

(a (2ν + 2)-dimensional 0-handle) ∪ ((2ν + 2)-dimensional (ν + 1)-handles),

where there may be no (2ν + 2)-dimensional (ν + 1)-handle.
(ii) A Seifert matrix S associated with V is

( 1 1
0 0
)

or
(−1 −1

0 0
)
.

Note that S + (−1)ν+1(tS) represents the intersection product of Hν+1(V ;Z)/(Tor).
Recall ν = 2. By (i), TorHν+1(V ;Z) ∼= 0. Since the determinant of S + (−1)ν+1(tS)
is +1 or −1, ∂V = K ⊗ν [2] is a homology sphere. By (i), π1∂V = 1. By [30], ∂V is
homeomorphic to the standard sphere. Hence the (2ν + 1)-submanifold K ⊗ν [2] is a
spherical knot. By (i), K ⊗ν [2] is a simple knot.

Recall that the trivial (2ν + 1)-knot has Seifert matrices,
( 1 1

0 0
)

and
(−1 −1

0 0
)
. By (ii)

and [16], K ⊗ν [2] is equivalent to the trivial knot.

Note. For the above K the diffeomorphism type of K ⊗ [2] is the 3-manifold which is
the double branched covering space of S3 along K (see [8, 10]). It is not homeomorphic
to the standard 3-sphere (see [18, 31]).

Proof of Theorem 7.2, part (2). Take the above nontrivial 1-knot K. Take the knot-
sum K]K. By [6, 27] and the van Kampen’s theorem, K]K is nontrivial. By [29], the
unknotting number of K]K is two.

Note (K]K)⊗ν [2] is the trivial knot (recall ν = 2).
K]K is an example which we want.

Proof of Theorem 7.2, part (3). The pair of K and K]K is an example which we want.
Reason: K is a prime knot and K]K is not. Hence K is not equivalent to K]K. K ⊗ν [2]
and (K]K)⊗ν [2] are trivial knots and hence equivalent spherical knots.
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Proof of Theorem 7.2, part (4). Let A be the trefoil knot (and hence a nontrivial 1-knot).
By [6, 27] and the van Kampen’s theorem, A]K is nontrivial. By [29], the unknotting num-
ber of A]K is two. By [8, 10] and [16], (A]K)⊗µ (the Hopf link) and A⊗µ (the Hopf link)
are equivalent and nontrivial. By Theorem 7.1, A⊗µ (the Hopf link) is obtained from the
trivial knot by a single twist-move. Hence (A]K)⊗µ (the Hopf link) is obtained from the
trivial knot by a single twist-move. Hence A]K is an example which we want.

Proof of Theorem 7.2, part (5). The pair of A and A]K is an example which we want.

In order to prove Theorem 7.3, we prove some propositions and a theorem.

Proposition 11.2. Let l ∈ N. Let K be a simple (2l+1)-knot. Then K⊗ (the Hopf link)
is a simple knot.

Proof. By [8, 10] and Proposition 5.4, K ⊗ (the Hopf link) satisfies the following.
(1) A Seifert hypersurface has a handle decomposition of one (2l+6)-dimensional 0-handle
and (2l + 6)-dimensional (l + 3)-handles, where there may not be (2l + 6)-dimensional
(l + 3)-handles.
(2) A (l + 3)-Seifert matrix Y associated with the above Seifert hypersurface is

(−1)× (a (l + 1)-Seifert matrix of K).

By (2) and the fact that K is PL homeomorphic to the single sphere, det(Y −tY )
is ±1. By this fact and the above (1) (2) and [30], K⊗ (the Hopf link) is a spherical knot
and a simple knot.

Proposition 11.3. Let p ∈ N. Suppose that K is a simple (2p + 5)-knot and that, if
2p + 5 = 7, the signature of K is a multiple of 16. Then there is a simple (2p + 1)-knot
A with the following properties.

(i) K is equivalent to A⊗ (the Hopf link).
(ii) If X is a (p+ 3)-Seifert matrix of K, then −X is a (p+ 1)-Seifert matrix of A.
(iii) The equivalence class of such a simple knot is unique.

Proof. Take a (p+3)-Seifert matrix X of K. By [16] and Proposition 5.4, there is a simple
(2p+ 1)-knot A such that a (p+ 1)-Seifert matrix is the matrix −X. By Propositions 5.4
and 11.2, A⊗ (the Hopf link) is a simple (2p+ 5)-knot such that a (p+ 2)-Seifert matrix
is the matrix X. By [16], A⊗ (the Hopf link) is equivalent to K. By [16], (iii) holds.

Proposition 11.4. Let K be a 1-knot. Let µ ∈ N. Then K ⊗µ (the Hopf link) is a
(4µ+ 1)-dimensional simple knot (and hence a spherical knot).

Proof. By [8, 10] and Proposition 5.4, K ⊗µ (the Hopf link) satisfies the following.
(1) A Seifert hypersurface has a handle decomposition of one (4µ + 2)-dimensional
0-handle and (4µ + 2)-dimensional (2µ + 1)-handles, where there may not be (2µ + 1)-
handles.
(2) Let Y be a Seifert matrix of K. A Seifert matrix associated with the above Seifert
hypersurface is Y or −Y .
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By (2) and the fact that K is diffeomorphic to the single circle, det(Y −tY ) is ±1.
By this fact and the above (1) (2) and [30], K ⊗µ (the Hopf link) is a spherical knot and
a simple knot.

Proposition 11.5. Let K be a simple 5-knot. Then there is a 1-knot A such that K is
equivalent to A⊗ (the Hopf link).

Proof. Take a 3-Seifert matrix X of K. By using a Seifert surface, there is a 1-knot A
such that a Seifert matrix is −X. By Propositions 5.4 and 11.4, A⊗ (the Hopf link) is a
simple 5-knot such that a 3-Seifert matrix is X. By [16], A⊗ (the Hopf link) is equivalent
to K.

Note. The equivalence class of A is not unique. There are countably infinitely many
equivalence classes of 1-knots with this property. Reason: Use the nontrivial knot K in
the proof of Theorem 7.2. Take knot-sums as many time as we need.

Proposition 11.6. Let k ∈ N. Let K be a simple (4k + 1)-knot. Let J be a (4k + 1)-
submanifold in S4k+3 such that J is obtained from K by a single twist-move. Then J is
a simple knot.

Proof. By the definition of twist-moves, there is a (4k + 3)-ball B trivially embedded in
S4k+3 in which this twist-move is carried out.

By using the Thom–Pontrjagin construction, we can prove that there is a Seifert
hypersurface VK for K and VJ for J with the following properties.
(1) VK ∩B (resp. VJ ∩B) is a (4k+ 2)-dimensional (2k+ 1)-handle h that is attached to
∂B as explained in the definition of the twist-moves in Section 3.3.
(2) VK ∩ (S4k+3 − IntB) = VJ ∩ (S4k+3 − IntB).

We can suppose that the handle h makes an order zero (2k+1)-cycle in VK (resp. VJ).
The intersection product between an order zero (2k + 1)-cycle and itself in a compact
oriented (4k+ 2)-manifold is zero. By using this fact, the Meyer–Vietoris exact sequence
and the van Kampen’s theorem, J is homeomorphic to the standard sphere.

Let N(J) (resp. N(K)) be the tubular neighborhood of J (resp. K) in S4k+3. Then
we have
S4k+3−IntN(K) = (S4k+3−IntN(K)−IntB)∪(a (4k+3)-dimensional (2k+2)-handle).
S4k+3− IntN(J) = (S4k+3− IntN(J)− IntB)∪(a (4k+3)-dimensional (2k+2)-handle).

By the definition of twist-moves, S4k+3−IntN(K)−IntB = S4k+3−IntN(J)−IntB.
Since K is a simple knot, π1(S4k+3− IntN(K)) = Z. Use the van Kampen’s theorem

for the above unions. Hence π1(S4k+3 − IntN(J)) = Z.
Let i ∈ N and i 5 2k. There is an i-Seifert matrix XiK (resp. XiJ) for K (resp. J)

such that XiK = XiJ . (Reason: Use VK and VJ .) Consider the homology groups, the
homotopy groups, and the fundamental group of the infinite cyclic covering space for K
(resp. J). Hence J is a simple knot.

We prove the following theorem.
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Theorem 11.7. Let n ∈ N∪{0}. Let K be an n-dimensional closed oriented submanifold
⊂ Sn+2. Take a map

K 7→ K ⊗ (the Hopf link)

from the set of n-dimensional closed oriented submanifolds ⊂ Sn+2 to the set of (n+ 4)-
dimensional closed oriented submanifolds ⊂ Sn+6. Then we have the following.
(1) Let K be a simple (2l + 1)-knot (l = 2, l ∈ N). That is, suppose that the domain of

the map is the set of simple (2l + 1)-knots. Then the image of the map is the set of
simple (2l + 5)-knots. Furthermore the map

{simple (2l + 1)-knots} → {simple (2l + 5)-knots} : K 7→ K ⊗ (the Hopf link)

is a one-to-one map.
(2) Let K be a simple 3-knot. That is, suppose that the domain of the map is the set of

simple 3-knots. Then the image of the map is included in the set of simple 7-knots.
Furthermore the map

{simple 3-knots} → {simple 7-knots} : K 7→ K ⊗ (the Hopf link)

is injective but not onto.
(3) Let K be a 1-knot. That is, suppose that the domain of the map is the set of 1-knots.

Then the image of the map is the set of simple 5-knots. Furthermore the map

{1-knots} → {simple 5-knots} : K 7→ K ⊗ (the Hopf link)

is onto but not injective. The inverse image of any element by this map is an infinite
set.

Problem 11.8. What happens if we define the domain is another set in Theorem 11.7?

Proof of Theorem 11.7. Propositions 11.2 and 11.3 imply part (1).
There is a simple 7-knot with the following property:

The signature is a multiple of 8 but not a multiple of 16.(∗)

There is not a simple 3-knot with the above property (∗). See [16].
By these facts and Propositions 11.2 and 11.3, part (2) holds.
Part (3) follows from Propositions 11.4 and 11.5, Note to Proposition 11.5, and The-

orem 7.2.

Proof of Theorem 7.3. By the definition of the twist-move in Section 3.3 there is a (2k+3)-
Seifert matrix X (resp. Y ) for J (resp. K) with the following properties.
(1) X and Y are c× c matrices for a natural number c.
(2) Let xij denote (i, j)-element of X. Let yij denote (i, j)-element of Y . There is a
natural number a 5 c such that{

xij = yij − 1 if (i, j) = (a, a)
xij = yij if (i, j) 6= (a, a).

(3) X and Y are not S-equivalent. See [16] for S-equivalent.
Note that we can take Seifert matrices which satisfy the above conditions. If necessary,

carry out surgeries on a Seifert hypersurface by handles embedded in S4k+7.
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By Theorem 11.7, K is a simple knot. By Proposition 11.6, J is a simple knot.
By Proposition 5.4 and Theorem 11.7, there is a simple (4k + 1)-knot K ′ (resp. J ′)

with the following properties.
(i) J is equivalent to J ′ ⊗ (the Hopf link). −X is a (2k + 1)-Seifert matrix for J ′.

(ii) K is equivalent to K ′ ⊗ (the Hopf link). −Y is a (2k + 1)-Seifert matrix for K ′.
(iii) The equivalence class of such a simple knot is unique.

Therefore we can make a (4k + 1)-dimensional simple knot J̄ (resp. K̄) with the
following properties.
(I) A handle decomposition of a Seifert hypersurface is a set of a (4k + 2)-dimensional
0-handle and (4k + 2)-dimensional (2k + 1)-handles, where there may not be a (4k + 2)-
dimensional (2k + 1)-handle.
(II) A Seifert matrix associated with this Seifert hypersurface is −X (resp. −Y ).
(III) J̄ and K̄ differ by a single twist-move and are nonequivalent.

Reason: Since J (resp. K) is homeomorphic to the standard sphere, we can realize
(I), (II) and (III) by using (2k + 1, 2k + 1)-pass-moves and twist-moves.

By [16], a simple (4k + 1)-dimensional spherical knot J̄ (resp. K̄) is equivalent to J ′
(resp. K ′). This completes the proof.
Note.
(1) Let p ∈ {0} ∪ N. There are countably infinitely many different pairs ([J ], [K]) of
different equivalence-classes of (2p+5)-dimensional closed oriented submanifolds ⊂ S2p+7

with the following properties: J is a spherical knot. J is obtained from K by a single
twist-move. Neither K or J is the product of any (2p + 1)-dimensional closed oriented
submanifold ⊂ S2p+3 and the Hopf link.

Reason: We can prove π1(S2p+7 − K) ∼= π1(S2p+7 − J) in a similar manner to the
proof of Proposition 11.6. If K (resp. J) is such a product, then π1(S2p+7 − K) (resp.
π1(S2p+7 − J)) is Z by [8, 10]. It is well-known that there are countably infinitely many
spherical (2p+ 5)-knots the fundamental groups of whose complements are not Z.
(2) In the k = 0 case in Theorem 7.3 there are countably infinitely many different pairs
([K ′], [J ′]) of different equivalence-classes of 1-knots such that K (resp. J) is equivalent
to K ′⊗ (the Hopf link) (resp. J ′⊗ (the Hopf link)) and that K ′ and J ′ differ by a single
twist-move.

Reason: Refer to the proof of Theorem 7.3 and Note to the proof of Proposition 11.5.

12. Proof of theorems in Section 8
Proof of Theorem 8.1. There is a Seifert matrix X (resp. Y ) for the 1-knot J (resp. K)
with the following properties.
(1) X and Y are c× c matrices for a natural number c.
(2) Let xij denote (i, j)-element of X. Let yij denote (i, j)-element of Y . There are natural
numbers a, b 5 c such that a 6= b and that{

xij = yij − 1 if (i, j) = (a, b)
xij = yij if (i, j) 6= (a, b) and if (i, j) 6= (b, a).

Recall that the (b, a)-element is determined by the (a, b)-element.
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Note that we can take Seifert matrices which satisfy the above conditions. If necessary,
carry out surgeries on Seifert hypersurfaces by 3-dimensional 1-handles embedded in S3.

By Theorem 11.7, J ⊗µ (the Hopf link) (resp. K ⊗µ (the Hopf link)) is a spherical
knot and is a simple knot.

We can make a (4µ + 1)-dimensional spherical knot J ′ (resp. K ′) with the following
properties.
(1) A handle decomposition of a Seifert hypersurface is a set of a (4µ + 2)-dimensional
(2µ + 1)-handle and (4µ + 2)-dimensional (2µ + 1)-handles, where there may not be
(4µ+ 2)-dimensional (2µ+ 1)-handles.
(2) A Seifert matrix associated with the above Seifert hypersurface is (−1)µX (resp.
(−1)µY ).
(3) J ′ is obtained from K ′ by a single (2µ+ 1, 2µ+ 1)-pass-move.

Reason: Since J (resp. K) is diffeomorphic to the single circle.
By [16], simple (4µ + 1)-dimensional spherical knot J ′ (resp. K ′) is equivalent to

J ⊗µ (the Hopf link) (resp. K ⊗µ (the Hopf link)).
By the construction of J ′ (resp. K ′), J ⊗µ (the Hopf link) and K ⊗µ (the Hopf link)

differ by a single (2µ+ 1, 2µ+ 1)-pass-move.

Proof of Theorem 8.3. The pass-move does not change diffeomorphism type of subman-
ifolds. However J ⊗µ [2] and K ⊗µ [2] do not have the same homeomorphism type in
general by [8, 10]. Example: (The trivial 1-knot)⊗[2] and (the trefoil knot)⊗[2].

Proof of Theorem 8.5. Note l = 1. There is a Seifert matrix X (resp. Y ) for the simple
(2l + 1)-knot J (resp. K) with the following properties.
(1) X and Y are c× c matrices for a natural number c.
(2) Let xij denote (i, j)-element ofX. Let yij denote (i, j)-element of Y . There are integers
a, b 5 c such that a 6= b. We have{

xij = yij − 1 if (i, j) = (a, b)
xij = yij if (i, j) 6= (a, b) and if (i, j) 6= (b, a)

Recall that the (b, a)-element is determined by the (a, b)-element.
Note that we can take Seifert matrices which satisfy the above conditions. If necessary,

carry out surgeries on Seifert hypersurfaces by handles embedded in S2l+3.
By Theorem 11.7, J ⊗µ (the Hopf link) (resp. K ⊗µ (the Hopf link)) is a spherical

knot and a simple knot.
We can make a (2l+4µ+1)-dimensional spherical knot J ′ (resp. K ′) with the following

properties.
(1) A handle decomposition of a Seifert hypersurface is a set of a (2l+4µ+2)-dimensional
0-handle and (2l + 4µ+ 2)-dimensional (l + 2µ+ 1)-handles.
(2) A Seifert matrix associated with the above Seifert hypersurface is (−1)µX (resp.
(−1)µY ).
(3) J ′ is obtained from K ′ by a single (l + 2µ+ 1, l + 2µ+ 1)-pass-move.

Reason: Since J (resp. K) is homeomorphic to the standard sphere, we can realize
(1), (2) and (3) by using (l + 2µ+ 1, l + 2µ+ 1)-pass-moves.
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By [16], simple (2l+ 4µ+ 1)-dimensional spherical knot J ′ (resp. K ′) is equivalent to
J ⊗µ (the Hopf link) (resp. K ⊗µ (the Hopf link)).

By the construction of J ′ (resp. K ′), J ⊗µ (the Hopf link) and K ⊗µ (the Hopf link)
differ by a single (l + 2µ+ 1, l + 2µ+ 1)-pass-move.

Proof of Theorem 8.8. Take the nontrivial 1-knot K in the figure in the proof of Theorem
7.2. Note that K is obtained from the trivial knot by a single pass-move.

Note. For the above K, the diffeomorphism type of K⊗ [2] is not homeomorphic to the
standard 3-sphere. See Note to the proof of Theorem 7.2.(1).

For the proof of Theorem 8.10 we need a proposition.

Proposition 12.1. Let p ∈ N. Let K be a simple (2p + 1)-knot. Let J be a (2p + 1)-
submanifold in S2p+3 such that J is obtained from K by a single (p+1, p+1)-pass-move.
Then J is a simple knot.

Proof. By the definition of the (p+ 1, p+ 1)-pass-move, J is a spherical (2p+ 1)-knot.

Sp ×Bp+1

Sp ×Bp+1

Bp+2
2

B2p+3

Y1

Y2

Bp+2
1

See the above figure. We can take two copies of the (p + 1)-sphere Y1 and Y2 in
B2p+3 ⊂ S2p+3 with the following property. Y1 (resp. Y2) is embedded trivially. The
linking number of Y1 and Y2 is one. Carry out surgeries along two (p+ 1)-spheres Y1 and
Y2 by two (2p+ 3)-dimensional (p+ 2)-handles with the trivial framing on B2p+3. Then
B2p+3 becomes the (2p + 3)-ball again and S2p+3 becomes the (2p + 3)-sphere again.
Furthermore the (p+ 1, p+ 1)-pass-move in the (2p+ 3)-ball B2p+3 is done.

Since p = 1 holds and K is a simple knot, πi(S2p+3 − N(K)) = πi(S2p+3 − N(J))
for 1 5 i 5 p). (Use the van Kampen’s theorem and the Meyer–Vietoris theorem on the
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complements and the infinite cyclic covering spaces.) Therefore J is a simple knot. This
completes the proof of Proposition 12.1.

Proof of Theorem 8.10. By Theorem 11.7, K is a simple knot. By Proposition 12.1, J is
a simple knot. By Proposition 11.5 and Theorem 11.7, there is a 1-knot J ′ to satisfy (i).

By [20], K ′⊗µ (the Hopf link) and J ′⊗µ (the Hopf link) have the same Arf invariant.
By [8, 10], a (2µ+1)-Seifert matrix of K ′⊗µ (the Hopf link) (of J ′⊗µ (the Hopf link))

is (±1)× a Seifert matrix of K ′ (of J ′). Hence Arf(K ′) = Arf(J ′)
By Theorem 2.4.1, K ′ is pass-move-equivalent to J ′. Hence J ′ satisfies (i) and (ii).

This completes the proof of Theorem 8.10.

Proof of Note to Theorem 8.10. Use the nontrivial knot K in the proof of Theorem 7.2.
Take a knot-sum as many times as we need.

Proof of Theorem 8.11. By Theorem 11.7, K is a simple knot. By Proposition 12.1, J is
a simple knot.

Then there is a (p+ 3)-Seifert matrix X (resp. Y ) for J (resp. K) with the following
properties.
(1) X and Y are c× c matrices for a natural number c.
(2) Let xij denote (i, j)-element ofX. Let yij denote (i, j)-element of Y . There are integers
a, b 5 c such that a 6= b. We have{

xij = yij − 1 if (i, j) = (a, b)
xij = yij if (i, j) 6= (a, b) and if (i, j) 6= (b, a).

Recall that the (b, a)-element is determined by the (a, b)-element.
(3) X and Y are not S-equivalent. See [16] for S-equivalent.

Note that we can take Seifert matrices which satisfy the above conditions. If necessary,
carry out surgeries on Seifert hypersurfaces by handles embedded in S2p+7.

By Proposition 11.3 and Theorem 11.7, there are simple (2p + 1)-knots K ′ and J ′

with the following properties.

(i) J is equivalent to J ′ ⊗ (the Hopf link). −X is a (p+ 1)-Seifert matrix for J ′.
(ii) K is equivalent to K ′ ⊗ (the Hopf link). −Y is a (p+ 1)-Seifert matrix for K ′.
(iii) The equivalence classes of such simple knots are unique.

Therefore we can make a (2p + 1)-dimensional simple knot J̄ (resp. K̄) with the
following properties.
(I) A handle decomposition of a Seifert hypersurface is a set of a (2p+ 2)-dimensional
0-handle and (2p + 2)-dimensional (p + 1)-handles, where there may not be a (2p + 2)-
dimensional (p+ 1)-handle.
(II) A Seifert matrix associated with the above Seifert hypersurface is −X (resp. −Y ).
(III) J̄ and K̄ differ by a single (p+ 1, p+ 1)-pass-move and are nonequivalent.

Reason: Since J (resp. K) is homeomorphic to the standard sphere, we can realize
(I), (II) and (III) by using (p+ 1, p+ 1)-pass-moves.

By [16], simple (2p + 1)-dimensional spherical knot J̄ (resp. K̄) is equivalent to J ′

(resp. K ′). This completes the proof.
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Note. Let p ∈ {0} ∪ N. There are countably infinitely many different pairs ([J ], [K]) of
different equivalence-classes of (2p+5)-dimensional closed oriented submanifolds ⊂ S2p+7

with the following properties: J is a spherical knot. Neither K or J is the product of any
(2p+1)-dimensional closed oriented submanifold ⊂ S2p+3 and the Hopf link. J is obtained
from K by a single (p+ 1, p+ 1)-pass-move.

Reason: We can prove π1(S2p+7 − K) ∼= π1(S2p+7 − J) in a similar manner of the
proof of Proposition 12.1. If K (resp. J) is such a product, then π1(S2p+7 − K) (resp.
π1(S2p+7 − J)) is Z by [8, 10]. It is well-known that there are countably infinitely many
spherical (2p+ 5)-knots the fundamental groups of whose complements are not Z.

Proof of Theorem 8.12. The following was proved in [8, 10]. Let V be a Seifert hypersur-
face for an n-dimensional closed oriented submanifold K ⊂ Sn+2. Then there is a Seifert
hypersurface W for the (n+2)-submanifold K⊗ [2] ⊂ Sn+4 such that W is diffeomorphic
to Bn+3 ∪Bn+3 and that Bn+3 ∩Bn+3 is diffeomorphic to V × [−1, 1].

Note that P has a Seifert hypersurface which is diffeomorphic to the punctured
Poincaré sphere.

Therefore, by the above theorem in [8, 10], the (2ν + 2)-submanifold P ⊗ν [2] has
a Seifert hypersurface Q which consists of a (2ν + 3)-dimensional 0-handle, (2ν + 3)-
dimensional (ν + 1)-handles, and (2ν + 3)-dimensional (ν + 2)-handles. Note ν = 2. By
the van Kampen’s theorem, π1(∂Q) = 1. By using the Meyer–Vietoris exact sequence,
Q is a homology (2ν + 3)-ball. By the van Kampen’s theorem, Q is simply-connected.

By [30], Q is diffeomorphic to the (2ν + 3)-ball.
Hence P ⊗ν [2] has a Seifert hypersurface which is diffeomorphic to the (2ν + 3)-ball.
Hence P ⊗ν [2] is equivalent to the trivial knot.

13. Proof of theorems in Section 9

Proof of Theorem 9.1. Part (1) follows from part (2) by Theorem 2.3.2. We prove part (2)
of the theorem. By [10], K∗⊗ν [2] has a Seifert hypersurface V∗ with a handle decomposi-
tion of one (2ν+2)-dimensional 0-handle and (2ν+2)-dimensional (ν+1)-handles, where
there may not be (2ν+2)-dimensional (ν+1)-handles (∗ = +,−, 0). Therefore the ν-
Alexander matrix associated with V∗ is ‘empty’. See Section 5.

By Proposition 5.4, a (ν + 1)-positive Seifert matrix Sν+1(K∗ ⊗ν [2]) and a (ν + 1)-
negative Seifert matrix Nν+1(K∗ ⊗ν [2]) are square matrices. By Proposition 5.1, the
(ν + 1)-Q[t, t−1]-Alexander polynomial of K∗ ⊗ν [2] is the Q[t, t−1]-balanced class of the
determinant of the (ν + 1)-Alexander matrix

Pν+1(K∗ ⊗ν [2]) = (p∗ij) = t · Sν+1(K∗ ⊗ν [2])−Nν+1(K∗ ⊗ν [2])
= t · Sν+1(K∗ ⊗ν [2]) + (−1)ν+1 · tSν+1(K∗ ⊗ν [2])

(Reason: Sν+1(K∗ ⊗ν [2]) = (−1)ν tNν+1(K∗ ⊗ν [2]) by Section 5.)
= (−1)ν(ν−1)/2 (t · S1(K∗) + (−1)ν+1 · tS1(K∗)).

(Reason: Sν+1(K∗ ⊗ν [2]) = (−1)ν(ν−1)/2 S1(K∗) by Proposition 5.4.(7).)
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Since (K+,K−,K0) is a crossing-change-triple of 1-links, we can suppose that
S1(K∗) = (s∗ij) (∗ = +,−, 0) has the following properties.

(s+
ij) and (s−ij) are ρ× ρ matrices(1)

(s0
ij) is a (ρ− 1)× (ρ− 1) matrix (ρ = 2, ρ ∈ N)

s+
ρ,ρ − s−ρ,ρ = 1(2)

s+
ij = s−ij = s0

ij (1 5 i 5 ρ− 1, 1 5 j 5 ρ− 1), s+
ij = s−ij ((i, j) 6= (ρ, ρ)).(3)

Note we can suppose that ρ − 1 = 1 by using surgeries of Seifert hypersurfaces by
embedded handles, if necessary.

Therefore we can suppose that Pν+1(K∗ ⊗ν [2]) = (p∗ij) has the following properties
(∗ = +,−, 0).

(p+
ij) and (p−ij) are ρ× ρ matrices(1)

(p0
ij) is a (ρ− 1)× (ρ− 1) matrix (ρ = 2, ρ ∈ N)
p+
ρ,ρ − p−ρ,ρ = c(t+ (−1)ν+1), where c = ±1(2)

p+
ij = p−ij = p0

ij (1 5 i 5 ρ− 1, 1 5 j 5 ρ− 1), p+
ij = p−ij((i, j) 6= (ρ, ρ)).(3)

By calculus of determinants,

detPν+1(K+ ⊗ν [2])− detPν+1(K− ⊗ν [2]) = c(t+ (−1)ν+1) · detPν+1(K0 ⊗ν [2]),

where c = ±1. Hence Theorem 9.1.(2) holds. Note that the Q[t, t−1]-Alexander polyno-
mial is a Q[t, t−1]-balanced class.

Proof of Theorem 9.2. The ‘l = even’ case is proved in [24]. We prove the ‘l = odd’ case.
There is a Seifert hypersurface V∗ for K∗ (∗ = +,−, 0) such that (V+, V−, V0) is related
by a single twist-move in B2l+3.

Take a positive Seifert matrix S](K∗) and a negative Seifert matrix N](K∗) for K∗
associated with V∗ (∗ = +,−, 0). We can suppose that Sl(K+) = Sl(K−) = Sl(K0) and
that Nl(K+) = Nl(K−) = Nl(K0). Since K+ is a spherical knot, the linear map which
is defined by Sl(K+) − Nl(K+) is injective. Hence the linear map which is defined by
Sl(K∗) − Nl(K∗) is injective (∗ = +,−, 0). Hence the l-Alexander matrix t · Sl(K∗) −
Nl(K∗) associated with V∗ is injective. By Proposition 5.1, the (l+1)-Q[t, t−1]-Alexander
polynomial of K∗ is the Q[t, t−1]-balanced class of the determinant of the (l+1)-Alexander
matrix

Pl+1(K∗) = t · Sl+1(K∗)−Nl+1(K∗).

Since (K+,K−,K0) is a twist-move-triple, we can suppose that Sl+1(K∗) = (s∗ij)
(∗ = +,−, 0) has the following property.

(s+
ij) and (s−ij) are ρ× ρ matrices(1)

(s0
ij) is a (ρ− 1)× (ρ− 1) matrix (ρ = 2, ρ ∈ N)

s+
ρ,ρ − s−ρ,ρ = ±1(2)

s+
ij = s−ij = s0

ij (1 5 i 5 ρ− 1, 1 5 j 5 ρ− 1), s+
ij = s−ij ((i, j) 6= (ρ, ρ)).(3)
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Note we can suppose that ρ − 1 = 1 by using surgeries of Seifert hypersurfaces by
embedded handles, if necessary.

We have

Pl+1(K∗) = t · Sl+1(K∗)−Nl+1(K∗) = t · Sl+1(K∗)− (−1)l · tSl+1(K∗).

Since l is odd,
Pl+1(K∗) = t · Sl+1(K∗) + tSl+1(K∗).

Therefore Pl+1(K∗) = (p∗ij) satisfies the following (∗ = +,−, 0).

(p+
ij) and (p−ij) are ρ× ρ matrices(1)

(p0
ij) is a (ρ− 1)× (ρ− 1) matrix (ρ = 2, ρ ∈ N)

p+
ρ,ρ − p−ρ,ρ = ±(t+ 1)(2)

p+
ij = p−ij = p0

ij (1 5 i 5 ρ− 1, 1 5 j 5 ρ− 1), p+
ij = p−ij ((i, j) 6= (ρ, ρ)).(3)

By calculus of determinants,

detPl+1(K+)− detPl+1(K−) = ±(t+ 1) · detPl+1(K0).

Hence Theorem 9.2 holds. Note that the Q[t, t−1]-Alexander polynomial is a Q[t, t−1]-
balanced class.

Proof of Theorem 9.3. Take V∗, S](K∗), N](K∗) in the proof of Theorem 9.2. Since K+
is a spherical knot, we see that Sl(K+) and Nl(K+) are square matrix and furthermore
we can suppose that the determinant of Sl(K+)−Nl(K+) is ±1. Hence we can suppose
that the determinant of Sl(K∗)−Nl(K∗) is ±1 (∗ = +,−, 0).

By [10], an (l+ ν)-Alexander matrix Pl+ν(K∗ ⊗ν [2]) is ±(t · Sl+ν(K∗)± tNl+ν(K∗)).
If we let t = 1 or t = −1, then the determinant of Pl+ν(K∗ ⊗ν [2]) is not zero. Note that
Pl+ν(K∗⊗ν [2]) is a square matrix because K+ is a spherical knot. Hence the linear map
which is defined by Pl+ν(K∗ ⊗ν [2]) is injective.

Hence the (l+1+ν)-Q[t, t−1]-Alexander polynomial Al+1+ν(K∗⊗ν [2]) is the Q[t, t−1]-
balanced class of the determinant of an (l+ 1 + ν)-Alexander matrix Pl+1+ν(K∗ ⊗ν [2]).

Proposition 5.4 implies that

Sl+1+ν(K∗ ⊗ν [2]) = (−1)ξSl+1(K∗).
Nl+1+ν(K∗ ⊗ν [2]) = (−1)ξ+νNl+1(K∗).

(∗ = +,−, 0, ξ is a constant integer.)
Hence we can suppose that

Pl+1+ν(K∗ ⊗ν [2])
= t · (−1)ξSl+1(K∗)− (−1)ξ+νNl+1(K∗)
= (−1)ξ(t · Sl+1(K∗) + (−1)ν+1Nl+1(K∗))
= (−1)ξ(t · Sl+1(K∗) + (−1)ν+1+l · tSl+1(K∗)).

(Reason: Sν+1(K∗) = (−1)l tNν+1(K∗) by Section 5.)
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Hence we have the following. Let Pl+1+ν(K∗ ⊗ν [2]) = (p∗ij).

(p+
ij) and (p−ij) are ρ× ρ matrices(1)

(p0
ij) is a (ρ− 1)× (ρ− 1) matrix (ρ = 2, ρ ∈ N).
p+
ρ,ρ − p−ρ,ρ = c(t+ (−1)l+1+ν), where c = ±1(2)

p+
ij = p−ij = p0

ij (1 5 i 5 ρ− 1, 1 5 j 5 ρ− 1)(3)

p+
ij = p−ij ((i, j) 6= (ρ, ρ)).

By calculus of determinants,

detPl+1+ν(K+⊗ν [2])−detPl+1+ν(K−⊗ν [2]) = c(t+(−1)l+1+ν) ·detPl+1+ν(K0⊗ν [2]),

where c = ±1. Hence Theorem 9.3 holds. Note that the (l + 1 + ν)-Q[t, t−1]-Alexander
polynomial is a Q[t, t−1]-balanced class.

Proof of Theorem 9.4. K+ is a spherical (4k + 1)-knot and K− is obtained from K+
by a single twist move. Hence K∗ ⊗µ (the Hopf link) is a spherical (4k + 4µ + 1)-knot
(∗ = +,−). (K+,K−,K0) is a twist-move-triple. By Proposition 11.1,(

K+ ⊗µ (the Hopf link),K− ⊗µ (the Hopf link),K0 ⊗µ (the Hopf link)
)

is a twist-move-triple. By Theorem 6.3, the proof is completed.

Proof of Theorem 9.5. Proposition 5.4 implies

Sp+ν(K∗ ⊗ν [2]) = (−1)cSp(K∗)
Np+ν(K∗ ⊗ν [2]) = (−1)c+νNp(K∗),

where ∗ = +,−, 0 and c is a constant integer.
Since K+, K− are spherical knots and (K+,K−,K0) is a (p, q)-pass-move-triple, we

have the following. There is a (p+ ν)-Alexander matrix

Pp+ν(K∗ ⊗ν [2]) = (−1)c
{
t · Sp(K∗ ⊗ν [2])− (−1)ν ·Np(K∗ ⊗ν [2])

}
= (p∗ij),

which is a square matrix, with the following property.

(p+
ij) and (p−ij) are ρ× ρ matrices(1)

(p0
ij) is a (ρ− 1)× (ρ− 1) matrix (ρ = 2, ρ ∈ N)

p+
ρ,ρ − p−ρ,ρ = (−1)c{t+ (−1)1+ν}(2)

p+
ij = p−ij = p0

ij (1 5 i 5 ρ− 1, 1 5 j 5 ρ− 1)(3)

p+
ij = p−ij ((i, j) 6= (ρ, ρ)).

Note we can suppose that ρ−1 = 1 by using surgeries of Seifert hypersurface by embedded
handles, if necessary.

By calculus of determinants,

detPp+ν(K+⊗ν [2])−detPp+ν(K−⊗ν [2]) = (−1)ζ ·(t+(−1)ν+1) ·detPp+ν(K0⊗ν [2]), (!)

where ζ is a constant integer.
Take detPp+ν(K∗ ⊗ν [2]) for each ∗ (∗ = +,−, 0). Here, there are the following three

cases (i), (ii) and (iii).



208 L. H. KAUFFMAN AND E. OGASA

(i): Suppose that detPp+ν(K∗⊗ν [2]) 6= 0 for a ∗. Let p−1 6= n+1−p. Then K+, K−
andK0 has the same (p−1)-Alexander matrix t·Sp−1−Np−1. The (p−1)-Alexander matrix
has the following properties. Note that t ·Sp−1−Np−1 is a square matrix. t ·Sp−1−Np−1
is a nonsingular square matrix. Reason: K+ and K− are spherical knots. Hence if t = 1,
t · Sp−1 −Np−1 = Sp−1 −Np−1 is nonsingular.

By [10], a (p+ν−1)-Alexander matrix Pp+ν−1 for K∗⊗ν [2] is one of ±{t·Sp−1±Np−1}.
If t = 1 or t = −1, Pp+ν−1 is nonsingular. Hence Pp+ν−1 is nonsingular.
Hence the (p+ µ)-Q[t, t−1]-Alexander polynomial for K∗⊗ν [2] is detPp+µ(K∗⊗ν [2])

for the ∗.
(ii): Suppose that detPp+ν(K∗⊗ν [2]) 6= 0 for a ∗. Let p−1 = n+1−p. A (p+ν−1)-

Alexander matrix for K∗ ⊗ν [2] defines an injective map because a (p − 1)-Alexander
matrix for K∗ does. See the identity right above Proposition 5.2.

Hence the (p+ ν)-Q[t, t−1]-Alexander polynomial for K∗ is detPp+ν(K∗ ⊗ν [2]) for
the ∗.

(iii): Suppose that detPp+ν(K∗⊗ν [2]) = 0 for a ∗. Then the (p+ν)-Q[t, t−1]-Alexander
polynomial for K∗ ⊗ν [2] is 0 = detPp+ν(K∗ ⊗ν [2]) for the ∗. Here, note that we do not
need to consider whether the linear map defined by a (p + ν − 1)-Alexander matrix is
injective or not.

By the above (i), (ii), (iii) and the identity (!) several lines above here, the proof is
completed. Note that the (p + ν)-Q[t, t−1]-Alexander polynomial is a Q[t, t−1]-balanced
class.

14. A problem

Problem 14.1. Suppose that n-dimensional closed oriented submanifolds K,K ′ ⊂ Sn+2

differ by a single twist-move (resp. pass-move). Suppose that m-dimensional closed ori-
ented submanifolds J, J ′ ⊂ Sn+2 differ by a single twist-move (resp. pass-move). Then
how do we characterize a relation between K ⊗ J and K ′ ⊗ J ′?
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