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Abstract. We describe a collection of differential graded rings that categorify weight spaces of
the positive half of the quantized universal enveloping algebra of the Lie superalgebra gl(1|2).

1. Lie superalgebra gl(1|2), the positive half and its quantum version. The Lie
superalgebra gl(n|m) is defined by partitioning (n+m)× (n+m) matrices into 4 blocks:
diagonal blocks of size n×n and m×m and off-diagonal blocks of size n×m and m×n.
Matrices with nonzero entries only in the diagonal, respectively off-diagonal blocks, are
called even, respectively odd. Elementary matrix Eij is even if i, j ≤ n or i, j ≥ n+ 1 and
odd otherwise.

The superbracket [A,B] of matrices is defined as the usual bracket AB−BA if at least
one of A and B is even and as anticommutator AB+BA if both A and B are odd. With
these conventions, the superbracket satisfies the super analogues [2] of the antisymmetry
and the Jacobi identity:

[a, b] = −(−1)p(a)p(b)[b, a], (1)

[a, [b, c]] = [[a, b], c] + (−1)p(a)p(b)[b, [a, c]], (2)

where p(a) = 0 (resp. 1) if a is even (resp. odd).
The universal enveloping algebra UL of a Lie superalgebra L is defined in the same

way as for Lie algebras. If L = L0 ⊕ L1 is the decomposition of L into the sum of its
even and odd parts, UL can be identified, as a vector space, with S(L0) ⊗ Λ(L1), the
tensor product of the symmetric algebra of L0 and exterior algebra of L1, once bases of
L0 and L1 are fixed. It is a Hopf algebra in the category of super vector spaces, with
∆(x) = x⊗ 1 + 1⊗ x for x ∈ L.

The decomposition of gl(n) into the direct sum of strictly upper-triangular, diagonal,
and strictly lower-triangular matrices generalizes to gl(n|m). We denote by gl(n|m)+ the
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Lie superalgebra of strictly upper-triangular (n|m)-matrices and by U+(n|m) its universal
enveloping algebra (say, over Q).

Note that U+(1|1) ∼= Λ(E12), the exterior algebra on one generator E12. In particular,
U+(1|1) is two-dimensional, with basis {1, E12}, and E2

12 = 0.
The universal enveloping algebra U+(1|2) (we also denote it by U+) has two generators

E1 := E12 and E2 := E23, first odd, second even, and defining relations

E2
1 = 0,

2E2E1E2 = E1E
2
2 + E2

2E1.

The Lie superalgebra gl(1|2)+ has a basis {E2, E1, [E1, E2]}. The first of these generators
is even, the other two are odd, so that U+ has a basis {Em2 Eε1[E1, E2]ε′} where m ∈ Z+
and ε, ε′ ∈ {0, 1}. The set {Eε1Em2 Eε

′

1 } is also a basis, with m, ε, ε′ in the same range as
above, except that m 6= 0 if ε = ε′ = 1.

The quantum deformation U+
q = U+

q (1|2) of U+ is a Q(q)-algebra with the same
generators as U+ and defining relations

E2
1 = 0, (3)

[2]E2E1E2 = E1E
2
2 + E2

2E1. (4)

The deformation simply transforms coefficient 2 in the second relation to quantum
[2] = q + q−1. The latter relation can be rewritten

E2E1E2 = E1E
(2)
2 + E

(2)
2 E1, E

(2)
2 := E2

2
[2] , (5)

where E(m) := Em

[m]! denotes m-th quantum divided power of E.
Equipped with comultiplication

∆(Ei) = Ei ⊗ 1 + 1⊗ Ei, i = 1, 2,

U+
q becomes a twisted bialgebra, in the sense of [8, Chapter 1], in the category of super

vector spaces.
Define the integral form U+

Z = U+
Z (1|2) to be the Z[q, q−1]-subalgebra of U+

q generated
by E1 and divided powers E(m)

2 over all m ≥ 0. As a free Z[q, q−1]-module, U+
Z has a

basis {Eε1E
(m)
2 Eε

′

1 }, with m ∈ Z+, ε, ε
′ ∈ {0, 1}, and m 6= 0 if ε = ε′ = 1. The set of

defining relations in U+
Z can be taken to be

E2
1 = 0 (6)

E
(k)
2 E

(m−k)
2 =

[
m

k

]
E

(m)
2 , 0 ≤ k ≤ m, (7)

E
(k)
2 E1E

(m−k)
2 =

[
m− 1
k

]
E1E

(m)
2 +

[
m− 1
k − 1

]
E

(m)
2 E1, 0 < k < m, (8)

where square brackets denote quantum binomials. Notice that E(k)
2 E1E

(m−k)
2 is a linear

combination of E1E
(m)
2 and E

(m)
2 E1 with coefficients in Z+[q, q−1]. The weight space

of U+
q containing these products is naturally isomorphic to the corresponding weight

space of U+
q (sl(3)), since the only relation that contributes to the size of this weight
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space is (4) in both algebras. Moreover, {E1E
(m)
2 , E

(m)
2 E1} is the canonical basis of this

weight space of quantum sl(3), see [8, Example 14.5.4].

2. Categorification of positive half of quantum sl(2). We recall categorification of
U+
q (sl(2)) following [4, 5]. Fix a ground field k. The nilHecke algebra Hm is the algebra of

endomorphisms of k[x1, . . . , xm] generated by multiplication by xi endomorphisms (also
denoted by xi) and divided difference operators

∂i(f) = f − si(f)
xi − xi+1

,

where si(f) is f with xi, xi+1 transposed. We depict the identity endomorphism of
k[x1, . . . , xm] by m vertical lines, multiplication by xi endomorphism by the dot on the
i-th strand counting from left, and ∂i by the i-th crossing:

1 i mm1 2 1 i i+1 m

The following is a set of defining relations for Hm:

xixj = xjxi,

xi∂j = ∂jxi, i 6= j, j + 1, ∂i∂j = ∂j∂i, |i− j| > 1,
∂2
i = 0, ∂i∂i+1∂i = ∂i+1∂i∂i+1,

xi∂i − ∂ixi+1 = 1, ∂ixi − xi+1∂i = 1.

The defining relations say that far away dots and crossings can be isotoped past each
other and, in addition, the following diagrammatic equalities hold

= =

== 0

The center of Hm is isomorphic to the ring of symmetric polynomials in x1, . . . , xm,
and Hm is isomorphic to the algebra of m!×m! matrices with coefficients in the center
Z(Hm). The minimal idempotent em ∈ Hm, given for m = 3 by the diagram below,
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provides a Morita equivalence between Hm and its center, via the bimodules Hmem
and emHm, the first an (Hm, Z(Hm))-bimodule, the second a (Z(Hm), Hm)-bimodule.
Idempotent em is the product of the maximal permutation word in divided difference
operators and xm−1

1 xm−2
2 . . . xm−1.

Algebra Hm is graded, with deg(xi) = 2 and deg(∂i) = −2, so that deg(em) = 0, and
the above Morita equivalence is that of graded rings.

The Grothendieck group K0(A) of a Z-graded associative ring A is a Z[q, q−1]-module
with generators [P ], over finitely-generated graded projective A-modules P , and defining
relations [P ] = [P ′] + [P ′′] whenever P ∼= P ′ ⊕ P ′′ and [P{n}] = qn[P ], where {n} is the
grading shift by n degrees up.

K0(Hm) is a free Z[q, q−1]-module on one generator [P(m)], where

P(m) := Hmem

{m(1−m)
2

}
is an indecomposable graded projective Hm-module, unique up to grading shifts and
isomorphisms. Placing diagrams next to each other gives inclusions Hn ⊗Hm ⊂ Hn+m,
which lead to induction and restriction functors between categories of graded Hn ⊗Hm-
modules and Hn+m-modules. These functors preserve subcategories of finitely-generated
projective modules and give us maps

M : K0(Hn)⊗K0(Hm) −→ K0(Hn+m),
∆ : K0(Hn+m) −→ K0(Hn)⊗K0(Hm),

where the tensor products are over Z[q, q−1]. Note that

K0(Hn ⊗k Hm) ∼= K0(Hn)⊗Z[q,q−1] K0(Hm), (9)

essentially due to absolute irreducibility of graded simple modules over these rings for
any field k, allowing us to freely switch between the two sides of (9) and to define ∆ (a
similar fact for rings R(ν) was glossed over in [4]).

Summing over all n and m produces maps that turn

K0(H) :=
⊕
m≥0

K0(Hm)

into a twisted Z[q, q−1]-bialgebra naturally isomorphic to U+
Z (sl(2)). This isomorphism

takes [Hm] to Em2 and [P(m)] to the divided power E(m)
2 . Following our notation we think

of U+
Z (sl(2)) as a Z[q, q−1]-subalgebra of U+

Z = U+
Z (gl(1|2)) generated by the divided

powers of E2.
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3. Lipshitz–Ozsváth–Thurston dg algebras. Continuing to work over a field k, con-
sider the k-algebra H−n with generators σ1, . . . , σn−1 and defining relations

σ2
i = 0, (10)

σiσj + σjσi = 0 if |i− j| > 1, (11)
σiσi+1σi = σi+1σiσi+1. (12)

Algebras H−n can be given a graphical description [6], by considering diagrams of n lines
in the strip R× [0, 1] of the plane, connecting n fixed points on the bottom line R× {0}
to n matching points on the top line R × {1}. Each line projects bijectively onto [0, 1]
along R. Diagrams are composed via concatenation, and isotopies are allowed that do
not change the relative height position of crossings. In addition, the following relations
are imposed

= 0+

= 0 =

(13)

We draw these as thick lines, to distinguish them from the lines that enter the dia-
grammatics for the nilHecke algebra Hm. One can think of these lines as being fermionic,
so that the far away crossing points anticommute rather than commute (change in the
order of the product σiσj ←→ σjσi corresponds to the relative height change of the two
far away crossings).

We make H−n graded, with deg(σi) = −1, thinking about it as cohomological grading
(as opposed to the grading of Hm above, which we shall refer to as q-grading), and
equip H−n with a differential d via the rules

d(σi) = 1, d(ab) = d(a)b+ (−1)deg(a)ad(b).

The differential takes a diagram to the alternating sum of diagrams obtained by smooth-
ing a crossing c of the diagram and multiplying what is left by −1 to the power the
number of crossings above c.

d

This turns H−n into a differential graded (dg) k-algebra. Ring H−n is the simplest ex-
ample in the family of rings introduced by Lipshitz, Ozsváth, and Thurston [6, Section 3],
[7] to extend Ozsváth-Szabó 3-manifold homology to 3-manifolds with boundary and to
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localize combinatorial (grid diagram) construction [9] of the Ozsváth–Szabó–Rasmussen
knot Floer homology (which categorifies the Alexander polynomial). The authors of [6, 7]
work over Z/2; the above characteristic-free lifting of their dg ring is a straightforward
guess.

It is obvious that the dimension of H−n is at most n! and slightly less obvious that the
dimension is exactly n!. Let us explain this fact. A permutation w ∈ Sn admits (usually
non-unique) reduced expression w = si1 . . . sir as a product of transpositions si = (i, i+1),
with r = l(w) the length of w, also equal to the number of crossings in any minimal
presentation of w via n intersecting lines in the plane. We can describe a presentation
w′ of w by listing the sequence of indices w′ = (i1, . . . , ir). To each presentation w′ we
assign the element σw′ = σi1 . . . σir of H−n . Fixing a presentation for each permutation w,
we obtain a set of elements {σw′}w∈Sn

that clearly spans H−n .

Lemma 1. This set is a basis of H−n as a k-vector space.

Proof. The only potential issue is that minus signs in the relations σiσj = −σjσi for
|j − i| > 1 might force the relation σw′ = −σw′ for some permutation w, making σw′ = 0
if char(k) 6= 2. To see that this does not happen, denote by PDI(w) the set of pairs
of disjoint inversions in w. An inversion in w is a pair (j1, j2) of numbers such that
j1 < j2 but w(j1) > w(j2). Given a reduced presentation w′ of w, inversions are in a
bijection with terms of the presentation. If w′ is drawn as a diagram of n intersecting
lines in the plane, an inversion corresponds to a pair of intersecting lines (a crossing).
A pair of disjoint inversions is a quadruple (j1, j2, k1, k2) such that (j1, j2) and (k1, k2)
are inversions, j1 < k1, and all four numbers j1, j2, k1, k2 are distinct. Diagrammatically,
a pair of inversions corresponds to a pair of crossings that belong to four distinct lines.

j1 j2k1 k2

(j1, j2)-crossing

(k1, k2)-crossing

Given x = (j1, j2, k1, k2) ∈ PDI(w) and a presentation w′ of w, define ε(w′, x) = 1
if the (j1, j2)-crossing is located below the (k1, k2)-crossing in the diagram of w′ and
ε(w′, x) = −1 if it is located above the (k1, k2)-crossing. Algebraically, ε(w′, x) = 1 if
the generator for the (j1, j2)-crossing appears in w′ to the right of the generator for
the (k1, k2)-crossing and ε(w′, x) = −1 if it appears to the left. In the above diagram,
ε(w′, x) = 1.

Define ε(w′) ∈ {1,−1} as the product of ε(w′, x) over all x ∈ PDI(w), and let

σ̃w′ = ε(w′)σw′ .
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If w′′ differs from w′ by a simple transposition of two consecutive terms,
w′ = (. . . , i, j, . . . ), w′′ = (. . . , j, i, . . . ), |j − i| > 1

(geometrically, w′, w′′ differ as the two diagrams in the top equation in (13)), then
ε(w′, x) = ε(w′′, x) for all x ∈ PDI(w) save the one that corresponds to the permuted
pair of crossings. Hence, ε(w′′) = −ε(w′), matching the sign change in the equation
σjσi = −σiσj , and σ̃w′ = σ̃w′′ in this case.

If w′′ differs from w′ by a “Reidemeister III” move,
w′ = (. . . , i, i+ 1, i, . . . ), w′′ = (. . . , i+ 1, i, i+ 1, . . . ),

then ε(w′, x) = ε(w′′, x) for all x ∈ PDI(w), and σ̃w′ = σ̃w′′ .
These observations imply that if w′ and w′′ are two presentations of w then σ̃w′ = σ̃w′′ ,

so that we can define σw := σ̃w′ for any presentation w′ of w, and σw will depend only
of w and not on its presentation. That σw 6= 0 (consistency) follows as well.

Remark. If char(k) = 2, anticommutativity is indistinguishable from commutativity,
and H−n turns into the nilCoxeter algebra, a subalgebra of the nilHecke algebra generated
by the divided difference operators. The nilCoxeter algebras (over any field and without
the differential) can be used to categorify the polynomial representation of the first Weyl
algebra, as well as the bialgebra Z[E], ∆(E) = E ⊗ 1 + 1⊗E, see [3] (as opposed to the
bigger bialgebra Z[E(m)]m≥1 that contains divided powers E(m) = Em

m! of E and whose
categorification relies on nilHecke rings Hm, see earlier but without the q-grading).

Placing diagrams next to each other gives dg ring inclusions
H−n ⊗H−m ⊂ H−n+m (14)

(the tensor product is taken in the category of super vector spaces, and a diagram from
H−n is placed above and to the left of a diagram from H−m). We would like to form
the Grothendieck group K0(H−n ) and use these inclusions to define a multiplication and
comultiplication on

K0(H−) :=
⊕
n≥0

K0(H−n ),

then identify K0(H−) with the integral subalgebra of the positive half of quantum gl(1|1).
This integral subalgebra is Z[q, q−1, E1]/(E2

1).

4. K0 of a dg ring. The analogue of a projective module over a k-algebra A is a
projective dg module over a dg k-algebra (called K-projective in [1]). A (left) dg module
M over A is a Z-graded A-module equipped with a differential dM : M i −→ M i+1 such
that dM (am) = d(a)m+(−1)deg(a)adM (m). We call a dg module P over a dg k-algebra A
projective if the complex HomA(P,M) has zero homology whenever M does; here M is
a dg module over A.

For an introduction to dg modules and projective dg modules we refer the reader
to [1, Section 10]. Starting with the abelian category of dg A-modules, one first pro-
duces a triangulated category K(A) of dg-modules by modding out by homotopic to
zero morphisms, then quasi-isomorphisms are inverted to produce the derived category
D(A). The category K(A) contains the full subcategory KP(A) of projective dg modules.
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The localization functor K(A) −→ D(A), when restricted to KP(A), gives an equivalence
KP(A) ∼= D(A).

To define the Grothendieck group K0(A) we need to restrict the size of projective
modules. An object M of KP(A) or D(A) is called compact if the inclusion⊕

i∈I
Hom(M,Ni) ⊂ Hom(M,

⊕
i∈I

Ni)

is an isomorphism for any collection {Ni}i∈I of objects indexed by a set I. This definition
of a compact object makes sense in any additive category which admits arbitrary direct
sums (not just finite ones). In a category of modules over a ring A, a module is compact
iff it is finitely-generated as an A-module.

Let P(A) ⊂ KP(A) be the full subcategory of compact projective modules, for a dg
algebra A. It is a triangulated category. Define K0(A) as the Grothendieck group of P(A).
It has generators [P ] over all compact projectives P and relations [P [1]] = −[P ] (here [1] is
the grading shift), and [P2] = [P1]+[P3] for each distinguished triangle P1 −→ P2 −→ P3.
Note that P(A) is equivalent to the subcategory P ′(A) of compact objects in D(A), and
we can alternatively define K0(A) as the Grothendieck group of the triangulated category
P ′(A). The following diagram summarizes our categories, inclusions, and equivalences.

A-dgmod // K(A)

$$

KP(A)
?�

OO

∼= // D(A)

P(A)
?�

OO

∼= // P ′(A).
?�

OO (15)

A quasi-isomorphism A −→ B of dg algebras induces an equivalence of derived cate-
gories D(A) ∼= D(B), an equivalence of subcategories of compact objects P ′(A) ∼= P ′(B),
and an isomorphism K0(A) ∼= K0(B).

Any k-algebra A is naturally a dg algebra, concentrated in degree 0 and with the
trivial differential. In this case, in addition to the above definition of K0(A), there is the
classical definition of K0(A) as the Grothendieck group of projective finitely-generated
A-modules.

Lemma 2. If A is (left) Noetherian, the two definitions give naturally isomorphic groups.

Proof. The lemma can be proved by showing that P ′(A) is equivalent to the homotopy
category of bounded complexes of finitely-generated projective left modules over the
ring A.

For later use, we point out that the above story has a generalization if the dg algebra A
has an additional grading, complementary to the cohomological grading. We call such A
a graded dg ring and refer to the additional grading as q-grading. Then one can talk about
the category of graded dg modules, its homotopy and derived categories, projective graded
dg modules, etc. If we retain the above notation, the Grothendieck group K0(A) will be
a Z[q, q−1]-module, with q corresponding to the grading shift in the additional grading.
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If A is just a graded algebra, we turn it into a graded dg algebra by placing it entirely in
cohomological degree 0, so that the differential acts by 0, and form the Z[q, q−1]-module
K0(A), the Grothendieck group of the category of compact objects in D(A), the derived
category of the category of graded dg A-modules. The classical definition ofK0 of a graded
ring, mentioned earlier (in our discussion of Hm), also produces a Z[q, q−1]-module, with
generators [P ], over graded finitely-generated projective A-modules, and relations coming
from direct sum decompositions.

Lemma 3. If A is (left) graded Noetherian, the two definitions give naturally isomorphic
Z[q, q−1]-modules.

We say that a (graded) dg algebra A is (graded) formal if it is (graded) quasi-
isomorphic to its cohomology algebra H(A). In this case we can identify K0(A) ∼=
K0(H(A)). An easy exercise shows that A is formal if H(A) is concentrated in cohomo-
logical degree 0. If, furthermore, H(A) is a (graded) Noetherian algebra, we can describe
K0(A) via finitely-generated (graded) projective H(A)-modules.

From now on all algebras and dg algebras that we consider are graded, and we work
with the category of graded dg modules, its homotopy and derived categories. Corre-
sponding K0-groups are Z[q, q−1]-modules. The q-grading on H−n is trivial—the entire dg
algebra sits in zero q-degree.

5. Categorification of positive half of quantum gl(1|1). Let us compute K0 of
rings H−n . The ring H−0 = k (the only diagram when n = 0 is the empty one), and
K0(H−0 ) ∼= Z[q, q−1], with the generator [k], since an object in the category of complexes
of graded vector spaces up to chain homotopy is compact iff its total cohomology is
finite-dimensional. The ring H−1 = k, since when n = 1 the diagrams have only one line
and no room for interactions. Again, K0(H−0 ) ∼= Z[q, q−1].

To treat the n ≥ 2 case we use the following observation.

Lemma 4. Suppose that A is a dg ring and x ∈ A an element of degree −1 such that
e = dx is an idempotent. Then the inclusion (1− e)A(1− e) ⊂ A is a quasi-isomorphism.
In particular, if dx = 1 for some x ∈ A then H(A) = 0.

Proof. An idempotent e in a ring A makes it look (superficially) like the ring of 2 × 2-
matrices:

A = eAe⊕ eA(1− e)⊕ (1− e)Ae⊕ (1− e)A(1− e).

For e and A as in the lemma, each of the first three summands is a contractible complex of
abelian groups. The map h : Ae −→ Ae that takes ae to (−1)|a|axe satisfies hd+ dh = 1,
implying that Ae is contractible; a similar computation establishes contractibility of the
second summand.

We call idempotents that can be written as dx, for some x, contractible idempotents.
The dg ring H−n has a special property that, for n ≥ 2, the differential of some

element equals one, for instance d(σi) = 1. This implies that H−n has trivial homology
and its derived category D(H−n ) is trivial. Category P(A) is equivalent to P ′(A), a full
subcategory of D(H−n ), so it is trivial as well and K0(H−n ) = 0 for n ≥ 2.
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This way we do obtain Z[q, q−1, E1]/(E2
1), the integral form of U+

q (gl(1|1)), as the
Grothendieck group

K0(H−) :=
⊕
n≥0

K0(H−n ).

Generators 1, E1 ∈ Z[q, q−1, E1]/(E2
1) are given by the symbols [H−0 ] and [H−1 ] of free

modules over H−0 ∼= k, H−1 ∼= k, respectively, and multiplication, comultiplication descend
from the induction and restriction functors.

Notice that we went into a lot of trouble, only to categorify the exterior algebra on
one generator, with a bit of additional structure thrown in. This will pay off momentarily,
as well as teach us that to categorify algebras with nilpotent generators it helps to use
categories of modules over dg rings rather than just of modules over rings.

6. Putting the two categorifications together. The Lie superalgebra gl(1|2) is gen-
erated by its subalgebras gl(1|1) and gl(2). Likewise, U+

q = U+
q (gl(1|2)) has generators

E1, E2 (see the first section), first odd, second even, which generate a copy of U+
q (gl(1|1)),

U+
q (sl(2)), respectively. We know categorifications of these subalgebras, via diagrammat-

ics of braid-like pictures, and simply need to guess how to combine them. A possible
answer is the following.

For each n,m ∈ Z+ let R(n,m) be the dg k-algebra spanned by braid-like diagrams
with n lines labelled 1 and m lines labelled 2. We call lines of the first type fermionic or
odd, lines of the second type bosonic or even. We draw fermionic lines thicker than bosonic.
Bosonic lines can carry dots, fermionic lines cannot. Bosonic lines and dots on them
interact via the diagrammatics for the nilHecke algebra, fermionic lines interact through
diagrammatics for the LOT (Lipshitz–Ozsváth–Thurston) dg algebra. Alternatively, we
will indicate fermionic lines by labelling their lower endpoints 1 and bosonic lines by
labelling their lower endpoints 2 (as in generators E1, E2 of U+

q ). The following example
displays the relation between the two notations:

=

1 1 2 2

We need to add additional generators—intersections between fermionic and bosonic lines:

and

and impose the following relations:
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1) Far away intersections commute, unless both intersections are between fermionic
lines, in which case they anticommute. We can encode these into a single relation

= (−1)aa’bb’

a a’ b b’ a a’ b b’

where a, a′, b, b′ ∈ {1, 2} are the labels of the four crossing lines. The only anticommuting
case is the following:

= 0+

2) A dot commutes with far away intersection of any kind

a b a b 1  1

= a, b ∈ {1, 2}

(same if the intersection is to the right of the dot). Two dots commute:

=

Summary of relations 1) and 2): far away generators commute if at least one of them is
even and anticommute if both are odd.

3) Dot through a crossing relations:

=

==

=

These say that a dot can freely move through an odd-even crossing, and can move through
an even-even crossing at the cost of adding an extra term, as in the nilHecke algebra.
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4) Two-line relations (Reidemeister II type relations):

= 0

= =

= 0

If the two lines that make a crossing are both bosonic or both fermionic, the square of
the crossing is 0. A double crossing of a bosonic and a fermionic line equals to the vertical
lines diagram with a dot on the bosonic line.

5) Three-line relations (Reidemeister III type relations):

=

a cb a b c a b c

δa,2δb,1δc,2

These relations say that a triple intersection homotopy is allowed, unless the three line
types are even, odd, even (in this order), in which case there is an additional term:

=

The defining relations for R(n,m) contain the nilHecke and the LOT relations. When
bosonic lines are absent (case m = 0), they are exactly the relations in the LOT algebra,
so that R(n, 0) ∼= H−n . When fermionic lines are absent (n = 0 case), the relations are
that of the nilHecke algebra, and R(0,m) ∼= Hm.

For each sequence i of n ones and m twos we have the corresponding idempotent
1i in R(n,m) with the diagram of n + m vertical lines, n fermionic and m bosonic,
in the order i. The unit element of R(n,m) is the sum of these idempotents, over all
sequences i. Let Pi = R(n,m)1i be the left projective R(n,m)-module corresponding to
the idempotent 1i.
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We make R(n,m) bigraded by placing each 1i in bidegree (0, 0) and listing bidegrees
of other generators in the table below:

(0,2) (0,−2) (0,1) (0,1) (−1,0)bidegree

generator
(16)

Defining relations are homogeneous, and R(n,m) is a bigraded k-algebra. We call the
first grading cohomological grading, the second grading q-grading. This bigrading restricts
to the previously discussed gradings on the nilHecke and LOT algebras.

We turn R(n,m) into a dg algebra by defining d on generators (crossings, dots, idem-
potents 1i) to be 0, except that d of an odd crossing is the idempotent 1i given by resolving
the crossing:

d

Bidegree of the differential is (1, 0), thus d respects the q-grading, and R(n,m) becomes
a graded dg algebra.

Putting diagrams next to each other defines inclusions of graded dg algebras

R(n,m)⊗R(n′,m′) ⊂ R(n+ n′,m+m′)

(with the same caveats as for inclusions (14)) and leads to induction and restriction
functors between categories of graded dg modules, and between corresponding derived
categories. We claim that K0(R(n,m)) can be identified with the weight nα1 + mα2
subspace of U+

Z ,
K0(R(n,m)) ∼= U+

Z (n,m), (17)

so that induction and restriction functors descend to multiplication and comultiplication
on U+

Z :

K0(R) ∼= U+
Z ,

K0(R) :=
⊕
n,m≥0

K0(R(n,m)), U+
Z =

⊕
n,m≥0

U+
Z (n,m).

(do not confuse the notation (n,m) for the weight space of gl(1|2) with the earlier notation
(n|m) for the parameters of gl(n|m)).

Pi = R(n,m)1i is a dg module, since d(1i) = 0. We want isomorphism (17) to take
[Pi] to Ei, were Ei = Ei1 . . . Ein+m

for i = i1i2 . . . in+m. Also, the divided power element
E

(m)
2 should correspond to the indecomposable projective R(0,m)-module

P2(m) := R(0,m)em
{m(1−m)

2

}
. (18)
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The idempotent em ∈ Hm was described earlier. Here we use the same notation em for
the image of em in R(0,m) under the canonical isomorphism Hm

∼= R(0,m).
Reflecting diagrams about the x-axis induces an anti-involution on R(n,m). Reflect-

ing a diagram about the y-axis and multiplying it by (−1)b, where b is the number of
22-crossings, induces an involution on R(n,m).

Any diagram representing an element of R(n,m) can be simplified to a linear combi-
nation of diagrams which consist of fixed minimal length presentations of permutations
w ∈ Sn+m with some number of dots at the top of each bosonic strand. Similar to the
case of rings R(ν), see [4], this set is a basis of R(n,m) as a k-vector space. For rings
R(ν) this was shown [4] by checking that these elements act linearly independently on a
certain representation Polν of R(ν).

The analogue of Polν is a representation Pol of R(n,m) given by

Pol =
⊕
i,w

Pol(i, w), Pol(i, w) = k[x1(i, w), . . . , xm(i, w)].

Here i ranges over all sequences of n ones and m twos, and w over elements of the
symmetric group Sn. The idempotent 1i acts as identity on Pol(i, w) for each w and by 0
on Pol(j, w′) for j 6= i. An element x ∈ R(n,m)1i takes elements of Pol(j, w) to 0 for
j 6= i.

A diagram of vertical lines for a sequence i with a dot on the i-th bosonic strand
counting from the left takes f ∈ Pol(i, w) to xi(i, w)f (these diagrams are generators of
the first type listed in table (16)).

A crossing diagram of the i-th and (i + 1)-st bosonic strands counting from the left
(assuming they are next to each other) acts as the divided difference operator, taking
f ∈ Pol(i, w) to ∂i(f) ∈ Pol(i, w). These diagrams are generators of the second type listed
in table (16).

A crossing diagram of the i-th bosonic and j-th fermionic strands, assuming they are
next to each other in the sequence and the bosonic strand is on the main diagonal (third
type generator in the table) takes f ∈ Pol(i, w) to the same polynomial f in variables
x1(i′, w), . . . , xm(i′, w) instead of x1(i, w), . . . , xm(i, w), where i′ is given by transposing
i-th two with j-th one in the sequence i:

i = . . . 12 . . . , i′ = . . . 21 . . . .

A crossing diagram of the i-th bosonic and j-th fermionic strands, assuming they are
next to each other in the sequence and the fermionic strand is the main diagonal (fourth
type generator in the table) takes f ∈ Pol(i, w) to xi(i′, w)f ′, where f ′ is the same as f
but with variables x1(i′, w), . . . , xm(i′, w) substituted for x1(i, w), . . . , xm(i, w). Here i′ is
given by transposing i-th two with j-th one in the sequence i:

i = . . . 21 . . . , i′ = . . . 12 . . . .

The crossing diagram of the i-th and (i + 1)-st fermionic strands (assuming they
are next to each other; this is a fifth type generator from (16)) takes f ∈ Pol(i, w) to
εiwf

′ ∈ Pol(i, siw) if l(siw) = l(w) + 1 (to go from f to f ′ change variables xi(i, w) to
xi(i, siw)) and to 0 if l(siw) = l(w) − 1, where l is the usual length function in the



HOW TO CATEGORIFY ONE-HALF OF QUANTUM gl(1|2) 225

symmetric group, and εiw ∈ {1,−1} is determined by the formula σsiw = εiwσiσw (see the
definition of σw earlier).

It is an easy but enlightening exercise to check that these rules give an action of
R(n,m) on Pol. An argument similar to the one in [4, Section 2.3] shows that the action
is faithful and implies that the spanning set in R(n,m) described earlier is a basis of this
algebra. If desired, the rules for the action of the two types of bosonic-fermionic crossings
can be interchanged, resulting in the same endomorphism algebra.

The algebra of symmetric polynomials Sym(n,m) in dots on bosonic lines belongs to
the center of R(n,m). Since R(n,m) is a free module of finite rank over Sym(n,m), we
conclude that R(n,m) is both left and right Noetherian.

We can construct a homomorphism

γ : U+
Z −→ K0(R) (19)

by taking generator E1 to [P1], where P1 = R(1, 0) is the free rank one R(1, 0)-module,
and generator E(m)

2 to [P2(m) ]. According to our definition, U+
Z is spanned by various

products E1E
(m1)
2 E1 . . . E1E

(mk)
2 E1 and their variations given by removing the first or

the last E1 from the product, or both. γ will take the above product to the symbol of
projective module

P12(m1)1...12(mk)1 := R(n,m)112(m1)1...12(mk)1{a},

where 112(m1)1...12(mk)1 is the idempotent obtained by placing em1 , . . . , emk
in paral-

lel next to each other, separated by odd lines, one for each E1 in the product, and
a =

∑
i
mi(1−mi)

2 :

em1 em2 emk
112(m1)1...12(mk)1 =

To check that γ is well-defined we consider the defining relations (3), (4). We already
saw that [P11] = 0, due to contractibility of the dg module P11. More generally, for any
sequences i, j projective module Pi11j is contractible as a complex of k-vector spaces, so
that [Pi11j] = 0. In particular, the equivalent of relation (3) holds in K0(R).

7. Comparison with categorified sl(3). To see that the equivalent of relation (4)
holds in K0(R), we will compare R(1,m) with the graded ring R(α1 + mα2) that cat-
egorifies the weight space α1 + mα2 of U+

q (sl(3)). This is a special case of rings R(ν)
defined in [4]. The Dynkin diagram of sl(3) consists of two vertices joined by an edge, in
this way similar to the Dynkin diagram of gl(1|2), which also consists of two vertices and
an edge. Just like diagrams describing R(1,m), diagrams for R(α1 +mα2) have one line
labelled 1 and m lines labelled 2. But now the line labelled one can carry dots, which
freely slide through intersections with type 2 lines (there are no intersections of two lines
labelled one, since in this weight there is only one such line). Another difference from
R(1,m) is that the double intersection of line 1 and line 2 equals the sum of two terms
rather than one: a dot on line 1 plus a dot on line 2:
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1 21 2 1 2

= +

Other relations are the same. This gives a homomorphism

τ : R(α1 +mα2) −→ R(1,m)

that kills any diagram which contains a dot on type 1 line and is the identity on diagrams
without such dots. The kernel of τ is spanned by diagrams with at least one dot on line 1.
Equivalently, the kernel is the two-sided ideal generated by diagrams of vertical lines, with
a dot on the line labelled 1.

In the relations for R(α1 + mα2) dot on line 1 can be slid up and down without
obstacles. Let J be the graded Jacobson radical of the graded ring R(α1 +mα2). We know
from [4] that J has finite codimension in R(α1 +mα2) and the quotient R(α1 +mα2)/J
is a finite-dimensional semisimple k-algebra. The ideal (ker(τ))N is spanned by diagrams
with at least N dots on line 1, and its easy to see that, for degree reasons, (ker(τ))N ⊂ J
for sufficiently large N . This in turn implies that ker(τ) ⊂ J , so that the induced map of
Grothendieck groups of graded rings

K0(τ) : K0(R(α1 +mα2)) −→ K0(R(1,m))

is an isomorphism.
Given a sequence i of divided powers of symbols 1 and 2, we associate to it an idem-

potent 1i ∈ R(nα1 +mα2) and graded projective R(nα1 +mα2)-module

P ′i = R(nα1 +mα2)1i{a}

for n and m equal to total weight of 1 and 2 in the sequence (in [4] this module was
denoted by Pi), with grading shift as in [4]. We only treat the case n = 1, and then
sequence i also defines graded projective R(1,m)-module, denoted by

Pi ∼= P ′i /ker(τ)P ′i = R(1,m)1i{a},

where a =
∑ mi(1−mi)

2 and mi’s are divided powers of 2 that appear in i.
Proposition 2.13 in [4] implies that, in our notation,

P ′212
∼= P ′12(2) ⊕ P ′2(2)1.

Applying τ , we see that
P212 ∼= P12(2) ⊕ P2(2)1,

and, more generally,

Pi212j ∼= Pi12(2)j ⊕ Pi2(2)1j, [Pi212j] = [Pi12(2)j] + [Pi2(2)1j],

for any sequences i, j of ones and twos. Therefore, relations (4), (5) hold in K0(R).
From [4, Section 3.3] we know that K0(R(α1 +mα2)) is a free Z[q, q−1]-module with

basis elements [P ′12(m) ], [P ′2(m)1] (this is implied by {E1E
(m)
2 , E

(m)
2 E1} being the canon-

ical basis of weight α1 + mα2 subspace of U+
q (sl(3))). Moreover, any finitely-generated
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graded projective R(α1 + mα2)-module is isomorphic to a direct sum of (graded shifts
of) modules P ′12(m) , P

′
2(m)1, with multiplicities determined by the image of the module in

the Grothendieck group. In particular,

P ′2(k)12(m−k)
∼= (P ′12(m))s

′
⊕ (P ′2(m)1)s

′′
,

where

s′ =
[
m− 1
k

]
, s′′ =

[
m− 1
k − 1

]
, s′, s′′ ∈ Z+[q, q−1],

and P s, for a graded module P and s ∈ Z+[q, q−1], denotes the direct sum of s(1) copies
of P with grading shifts:

P s =
⊕
i∈Z

P si{i}, s = s(q) =
∑

siq
i.

Polynomials s′, s′′ are determined by equation (8). Applying τ , we obtain

P2(k)12(m−k) ∼= (P12(m))s
′
⊕ (P2(m)1)s

′′
,

so that
[P2(k)12(m−k) ] = s′[P12(m) ] + s′′[P2(m)1],

and the equivalent of relation (8) holds in K0(R). That (7) holds follows from the corre-
sponding result for the nilHecke algebra [4, 5]. Therefore, γ is well-defined. Why γ is an
isomorphism will be explained next.

We have

P ′2k12m−k = R(α1 +mα2)12k12m−k
∼= (P ′12(m))r

′
⊕ (P ′2(m)1)r

′′
(20)

as a graded left R(α1 +mα2)-module, where

r′ = [k]![m− k]!s′, r′′ = [k]![m]!s′′.

Projective modules in the above equation correspond to the following three idempo-
tents:

m−k  k

112(m) = 12(m)1 =em em12k12m−k =

Direct sum decomposition (20) is equivalent to a choice of homogeneous elements

α′a ∈ 12k12m−kR(α1 +mα2)112(m) , 1 ≤ a ≤ r′(1),
β′a ∈ 112(m)R(α1 +mα2)12k12m−k , 1 ≤ a ≤ r′(1),
α′′a ∈ 12k12m−kR(α1 +mα2)12(m)1, 1 ≤ a ≤ r′′(1),
β′′a ∈ 12(m)1R(α1 +mα2)12k12m−k , 1 ≤ a ≤ r′′(1),



228 M. KHOVANOV

such that

β′bα
′
a = δa,b112(m) , (21)

β′′b α
′′
a = δa,b12(m)1, (22)

β′′b α
′
a = 0, (23)

β′bα
′′
a = 0, (24)

12k12m−k =
r′(1)∑
a=1

α′aβ
′
a +

r′′(1)∑
a=1

α′′aβ
′′
a . (25)

From the standard representation theory of graded rings and the observation that
ker(τ) belongs to the graded Jacobson radical of R(α1 +mα2) it follows that any finitely-
generated graded projective R(1,m)-module is a direct sum of indecomposable projectives
P12(m) and P2(m)1 with grading shifts, that these two projectives are not isomorphic, and
K0(R(1,m)) is a free Z[q, q−1]-module with basis elements [P12(m) ] and [P2(m)1]. The
above homogeneous elements of R(α1 +mα2) descend via τ to homogeneous elements of
R(1,m) satisfying the same identities. We depict these elements by boxes:

τ(α′
a) τ(β ′

a) τ(α′′
a) τ(β ′′

a )

Upon applying τ equation (25) becomes

+
τ(α′

a)

τ(β ′
a)

τ(α′′
a)

τ(β ′′
a )

r′′(1)∑
a=1

12k12m−k =
r′(1)∑
a=1

To establish that γ is an isomorphism, we recall from the beginning of the paper that

• U+
Z (0,m) is a free Z[q, q−1]-module with generator E(m)

2 ,
• U+

Z (1,m) is a free rank two Z[q, q−1]-module with generators E1E
(m)
2 , E(m)

2 E1,
• U+

Z (2,m) is a free Z[q, q−1]-module generated by E1E
(m)
2 E1,

• U+
Z (n,m) = 0 for n ≥ 3.

We now look at the size of K0(R(n,m)).
Case n = 0. The ring R(0,m) is graded Noetherian and concentrated in cohomological

degree 0 with trivial differential. By Lemma 3, K0(R(0,m)) can be computed via finitely-
generated graded projectives. Any such projective is isomorphic to a finite direct sum of
shifts of the indecomposable projective P2(m) defined in (18). Hence,

K0(R(0,m)) ∼= Z[q, q−1] · [P2(m) ],

giving us a match with U+
Z (0,m), see above.
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Case n = 1. The ring R(1,m) is also graded Noetherian concentrated in cohomological
degree 0 with trivial differential. We have established that the graded Grothendieck group
K0(R(1,m)) is a free rank two Z[q, q−1]-module with the basis given by symbols [P12(m) ],
[P2(m)1]. This matches with the above basis for U+

Z (1,m).
Case n ≥ 3. We will prove that dg algebra R(n,m) has trivial homology when n ≥ 3.

Consider the element yk ∈ R(3,m):

+
τ(α′

a)

τ(β ′
a)

τ(α′′
a)

τ(β ′′
a )

yk =
r′(1)∑
a=1

r′′(1)∑
a=1

Applying d and using the previous diagrammatic equation, we get

d(yk) = 112k12m−k1.

Therefore, for any sequence i which contains at least three ones we can find yi ∈ R(n,m)
such that d(yi) = 1i. We can write 1 ∈ R(n,m) as the sum of 1i over all sequences i with
n ones (n ≥ 3) and m twos. Then

d
(∑

i

yi

)
= 1

implying that H(R(n,m)) = 0 and K0(R(n,m)) = 0.
Case n = 2. Observe that the unit element of R(2,m) decomposes

1 =
∑
k,`

12k12`12m−k−`

and that projective module P2k12`12m−k−` is isomorphic to the direct sum of shifts of
modules P12(k+`)12m−k−` and P2(k+`)112m−k−` . The latter are contractible, as complexes
of vector spaces (since their sequences contain two consecutive ones), while modules of
the first kind decompose as direct sum of shifts of modules P112(m) and P12(m)1. We can
discard P112(m) because of contractibility and conclude that the K0 groups of graded dg
rings R(2,m) and

R1 := 112(m)1R(2,m)112(m)1

are naturally isomorphic. To make this argument more accurate, introduce additional dg
rings defined via idempotents e(4), e(3), e(2):

R4 = e(4)R(2,m)e(4), e(4) :=
m∑
t=0

(112(t)12m−t + 12(t)112m−t),

R3 = e(3)R4e(3), e(3) :=
m∑
t=0

112(t)12m−t ,

R2 = e(2)R3e(2), e(2) := 1112(m) + 112(m)1.
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Graded dg rings R4 and R(2,m) are graded dg Morita equivalent in the strongest sense,
via dg bimodules R(2,m)e(4) and e(4)R(2,m). These bimodules produce an equivalence
of abelian categories of graded dg modules over R4 and R(2,m), as well as all the other
categories of dg modules and their graded counterparts that appear in the diagram (15).
Hence, there is a canonical isomorphism K0(R(2,m)) ∼= K0(R4). Next, R3 is a graded dg
subring of R4 obtained by removing chunks of R4 corresponding to contractible idempo-
tents 12(t)112(m−t) . In view of Lemma 4 and invariance of K0 under quasi-isomorphisms
of graded dg rings there is a natural isomorphism K0(R4) ∼= K0(R3). Graded dg rings
R3 and R2 are graded dg Morita equivalent, via bimodules

R3(1112(m) + 112(m)1) and (1112(m) + 112(m)1)R3,

giving us an isomorphism K0(R3) ∼= K0(R2). Finally, reducing R2 via Lemma 4 applied
to the contractible idempotent 1112(m) results in R1. Nonunital inclusions

R1 ⊂ R2 ⊂ R3 ⊂ R4 ⊂ R(2,m)
are quasi-isomorphisms, giving rise to canonical isomorphisms of Grothendieck groups

K0(R1) ∼= K0(R2) ∼= K0(R3) ∼= K0(R4) ∼= K0(R(2,m)). (26)
Diagrams representing elements of R1 have two fermionic lines that start and end at the
leftmost and rightmost top and bottom endpoints and m bosonic lines, capped off on
both sides by the projector em = 12(m) . We can decompose R1 into the direct sum of
the 2-sided ideal I spanned by diagrams in which the two fermionic lines intersect and
the subring R′1 spanned by diagrams with the disjoint fermionic lines, R1 = R′1 ⊕ I.
The ring R′1 is isomorphic to emHmem, where Hm is the nilHecke algebra (note that
nonintersecting fermionic lines can be pulled away to be disjoint from the m bosonic
lines). In turn, emHmem is isomorphic to the ring of symmetric polynomials in x1, . . . , xm,
corresponding to the dots on the bosonic lines, so that R′1 ∼= Sym(x1, . . . , xm). Ideal I is
isomorphic to R′1 when viewed as an R′1-bimodule, with the generator X depicted below
and on the left. The differential in the dg ring R1 is zero on R′1 and takes I injectively
to R′1,

0 −→ I
d−→ R′1 −→ 0,

with the generator X taken to x1x2 . . . xm. In the diagram below each box denotes idem-
potent em.

X = dX =

em

em

em

em

Therefore, the quotient map R1 −→ R′1/d(I) is a quasi-isomorphism of dg rings,
inducing an isomorphismK0(R1) ∼= K0(R′1/d(I)). The ringR′1/d(I) has trivial differential
and is concentrated in cohomological degree 0. It is isomorphic to the quotient of the
graded ring of symmetric polynomials Sym(x1, . . . , xm) by the ideal (x1x2 . . . xm). This
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quotient is a graded local ring, with K0 isomorphic to Z[q, q−1]. The above arguments
tell us that

K0(R(2,m)) ∼= K0(R1) ∼= Z[q, q−1],

with the generator being [P12(m)1].
We conclude that the map γ is an isomorphism. It is straightforward to check that

γ respects comultiplication of twisted bialgebras in (19). Hence, we have a canonical
isomorphism of twisted bialgebras

U+
Z
∼= K0(R)

taking weight spaces of U+
Z to K0(R(n,m)) for various n,m.

8. Perspectives. It is not hard to guess how one should couple the above diagrammatics
for categorified U+

q (gl(1|2)) to the diagrammatics [4] for categorified U+
q (g) to produce a

graphical calculus for categorified U+
q (gl(1|n)) and some other classical Lie superalgebras

in place of gl(1|n). Technical obstacles related to switching from algebras to dg algebras
and their representations were largely avoided in the present paper due to small size of
Grothendieck groups of dg rings R(n,m) and manual case-by-case considerations. We
plan to discuss categorification of U+

q (gl(1|n)) in a follow-up paper. Categorification of
U+
q (gl(n|m)) for n,m ≥ 2 should require additional ideas.

Varagnolo and Vasserot [11] established that rings R(ν) from [4], [10] that categorify
weight spaces of U+

q (g) are isomorphic to equivariant ext groups of sheaves on Lusztig
quiver varieties. It is an interesting problem to find a similar interpretation for the dg
rings R(n,m) described above that categorify weight spaces of U+

q (gl(1|2)) and for their
generalizations.

The problem of categorifying the entire (suitably idempotented) quantum group
Uq(gl(1|1)) rather than just its positive half is open as well. With Lauda’s categorifica-
tion [5] of Uq(sl(2)) in mind, we expect that one should generalize the Lipshitz–Ozsváth–
Thurston rings to allow the lines to travel in all directions rather than just up. Another
challenging problem is to extend the work of Webster [12, 13] to the superalgebra case.
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[9] C. Manolescu, P. Ozsváth, S. Sarkar, A combinatorial description of knot Floer homology,

Ann. of Math. (2) 169 (2009), 633–660.
[10] R. Rouquier, 2-Kac-Moody algebras, arxiv 0812.5023.
[11] M. Varagnolo, E. Vasserot, Canonical bases and KLR-algebras, J. Reine Angew. Math.

659 (2011), 67–100.
[12] B. Webster, Knot invariants and higher representation theory I: diagrammatic and geo-

metric categorification of tensor products, arXiv 1001.2020.
[13] B. Webster, Knot invariants and higher representation theory II: the categorification of

quantum knot invariants, arXiv 1005.4559.

http://arXiv.org/abs/0810.0687
http://dx.doi.org/10.4007/annals.2009.169.633
http://arXiv.org/abs/0812.5023
http://dx.doi.org/10.1515/CRELLE.2011.068
http://arXiv.org/abs/1001.2020
http://arXiv.org/abs/1005.4559

	Lie superalgebra gl(1|2), the positive half and its quantum version
	Categorification of positive half of quantum sl(2)
	Lipshitz–Ozsváth–Thurston dg algebras
	K0 of a dg ring
	Categorification of positive half of quantum gl(1|1)
	Putting the two categorifications together
	Comparison with categorified sl(3)
	Perspectives

