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1. Introduction. The Banach spaces as described in the seminal book [B] are still
actively studied in many domains, in particular the geometry of Banach spaces (see [JL]).

Moreover, from the beginning of the ‘30’s, Banach spaces with an order relation were
introduced and their theory particularly developed in relation with the topology, around
1980 and until now (see [AA]).

They were also used during the ‘30’s where particular distributions were introduced
by Sobolev (see Section 3). In the meantime, general distributions were defined and
developed in the late ‘40’s (Section 4), then it was necessary to introduce more general
function and distribution spaces (Section 5).

We propose to describe the structures of the function and distribution spaces with
their relations with Banach spaces and their generalizations to differential forms and
currents in global analysis (Sections 5–6). We shall see that the (norm) topology, the
completeness, the operators, the dual, the adjoint of an operator will still be used in the
generalized context.

No attempt will be done to anymore enter in the intricate history of distributions.

2. Banach spaces.

2.1. We recall classical definitions [B], ([AA], Ch. 1). Let E be a K-vector space with
K = C or IR. In the following we assume K fixed in every statement. A norm on E is a
function || . ||: E → IR+ satisfying:

(i) for x ∈ E, || x ||= 0 is equivalent to x = 0;
(ii) for every x ∈ E, for every α ∈ K, || α.x ||= |α|. || x ||;
(iii) for every (x, y) ∈ E2, || x+ y ||≤|| x || + || y ||.

A pair (E, || . ||) is called a normed space and is generally denoted by E.
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The norm defines a distance d on E by d(x, y) =|| y − x || such that (E, d) is a metric
space. If (E, d) is complete (i.e. every Cauchy sequence is convergent), E is called a
Banach space.

Let u : E → F be a linear map (or operator) of normed spaces.
Let || u ||= sup||x||≤1 || ux ||= sup||x||=1 || ux ||.

If || u ||< ∞, u is called a bounded operator and || u || its (operator) norm. Clearly, a
bounded operator is exactly a continuous linear map for the topologies defined by the
norms.

2.2. Spaces of operators; topological dual. The set of all bounded operators : E → F is
denoted L(E,F ), with the addition of functions, their multiplication by the elements of
K and the operator norm: it is a normed space. If F is Banach, then L(E,F ) is also
Banach.

A Banach algebra A is a Banach space for which the multiplication of A satisfies, for
every (x, y) ∈ A2, || xy ||≤|| x |||| y ||: the field K is a Banach algebra. We set E′ = L(E,K)
and call it the topological dual of E; the norm on E′ is called the dual norm.

2.3. The adjoint of a bounded operator u : E → F is the bounded operator u′ : F ′ → E′

defined, for y′ ∈ F ′, x ∈ E by: (u′y′)x = y′(ux) translated into:

〈u′y′, x〉 = 〈y′, ux〉.
Then || u′ ||=|| u ||.

3. Sobolev spaces [So 1], [AF].

3.1. Lp spaces. Let U be an open set of IRn. Lp(U) is the C-vector space of complex-
valued functions almost everywhere defined on U , of p-th integrable power (p ∈ IR : p ≥
1), with the norm

|| f ||p=|| f ||Lp(U)=
[∫

U

|f(x)|pdx
] 1

p

.

Lp(U) with this norm is a Banach space; L∞(U) is the Banach space of essentially
bounded measurable functions on U .

Define p′ by
1
p

+
1
p′

= 1,

then, for every g ∈ Lp′
(U), the map: Lp(U)→ C defined by f 7→

∫
U
fgdx is a continuous

linear form.

F. Riesz representation theorem. For every p ∈ [1,∞[, the topological dual Lp(U)′ of
Lp(U) is Lp

′
(U);

L∞(U)′ ) L1(U).

If measure(U) <∞, then for 1 ≤ p ≤ q, Lq(U) ⊂ Lp(U) ⊂ L1(U).
For every p ≥ 1, Lp(U) ⊂ D′(U), the space of distributions on U (see Section 4).
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3.2. Sobolev spaces. Let
m ∈ ZZ+, p ∈ [1,∞];

|| u ||m,p= [ sup
0≤|α|≤m

|| Dαu ||pp]
1
p , p <∞; || u ||m,∞= sup

0≤|α|≤m
|| Dαu ||∞ .

for every function u such that the above expressions have a meaning.
These expressions define norms on the following C-vector spaces:

Hm,p(U) the completion of {u ∈ Cm(U); || u ||m,p<∞};
Wm,p(U) = {u ∈ Lp(U);Dαu ∈ Lp(U); 0 ≤ |α| ≤ m},

where Dαu means the derivative in the distribution sense (see Section 4);

Wm,p
0 (U) = C∞0 (U) ⊂Wm,p(U),

where C∞0 (U) denotes the vector space of C∞ functions with compact support in U .
With the above norms, these spaces are Banach and are called Sobolev spaces.
In 1933, Otton Nikodym [N] introduced1, following Beppo Levi [L] (1906), a vector

subspace of W 1,2(U).

3.3. Properties. We have the following topological inclusions:

for m ≥ 0, Wm,p
0 (U) ⊂Wm,p(U) ⊂ Lp(U);

for m ≤ m′, Wm′,p(U) ⊂Wm,p(U);

Hm(U) = Wm,2(U) is a Hilbert space; Hm,p(U) is a closed subspace of Wm,p(U).

3.4. Duality. Let p ∈]1,∞[, p and p′ related by

1
p

+
1
p′

= 1.

Define W−m,p
′
(U) to be the topological dual of Wm,p

0 (U); since D(U) is dense in
Wm,p

0 (U), the elements of W−m,p
′
(U) are distributions (see Section 5.3). This situation

generalizes the duality between Lp(U) and Lp
′
(U).

Remark that the objects under consideration are Lp functions for m ≥ 0, and test
functions are of finite order of differentiability. In the same way, the derivatives in the
sense of distributions are always considered Lp functions.

4. Distributions: naive definition [So 2], [So 3], [Sc].

4.1. Measures. The support of a continuous complex-valued function f on an open set
U ⊂ IRn is the closure in U of the set of points x ∈ U where f(x) 6= 0; it is denoted
supp f .

Let µ be a complex-valued measure on IRn. Let C be the vector space of complex-
valued continuous functions with compact support on IRn. The map: C → C defined

1I thank B. Bojarski for giving me references on a more remote origin of these spaces.
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by:

ϕ 7→ µ(ϕ) =
∫
IRn

ϕdµ

is a linear form. For any sequence (or net) (ϕj), ϕj ∈ C, supp ϕj ⊂ K a given compact,
and if (ϕj) uniformly converges to ϕ ∈ C, then µ(ϕj)→ µ(ϕ).

Let CK be the subspace of C of functions with supports contained in K: CK is a Banach
space for the norm

|| ϕ ||= sup
x∈IRn

|ϕ(x)|.

Then the continuity condition for µ (said continuity on C) means: µ|CK
is continuous.

Conversely, from the F. Riesz representation theorem, for every continuous linear form
L on C in the above sense, there exists a well-defined measure µ such that L(ϕ) = µ(ϕ).

Then a measure is a continuous linear form on C; the set of measures on IRn is a
C-vector space C′.

Let dx be the Lebesgue measure on IRn; a continuous function f on IRn defines the
measure µ = fdx; identify f and fdx; then the vector space of continuous functions
on IRn appears as a subspace of C′. The same remark concerns elements of the Sobolev
spaces described before.

4.2. Space of differentiable functions. For every r ∈ ZZ+, let C(r)(U) be the C-vector
space of Cr maps: U → C; then:⋂

r∈IN
C(r)(U) = C∞(U) = C(U)

is the space of C∞ complex-valued functions on U .
For every compact K of U , for every s ∈ IN ,f ∈ C(r)(U), we set, for s ≤ r,

ps,K(f) = sup
x∈K;|ν|≤s

|Dνf(x)|

ps,K is a semi-norm on C(r)(U). A semi-norm p satisfies the axioms of a norm, except for
(i) which has to be replaced by

(i′) x = 0 implies p(x) = 0.
The family of semi-norms (ps,K) defines a (Hausdorff) topology of a topological vector

space (t.v.s.) on C(r)(U); this t.v.s. is denoted E(r)(U), r ∈ IN , and E(∞)(U) usually
denoted E(U) is C(U) with the family of semi-norms.

4.3. Locally convex topological vector spaces. A t.v.s. is called locally convex (l.c.) if 0
has a fundamental system of convex neighborhoods.

The l.c.t.v.s. are exactly the vector spaces with a family of semi-norms.

4.4. Differentiable functions with compact support. The spaces E(r)(U), r ∈ IN ∪∞ are
metrizable and complete (i.e. Fréchet spaces, (metrizable and complete l.c.t.v.s.)).

Let K be a compact set contained in U and E(r)
0 (U) be the subspace of E(r)(U) of

functions with compact support. Let D(r)(U ;K) be the subspace of E(r)
0 (U) of functions

with support in K: this space is Fréchet, and for r <∞, it is a Banach space.
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For the moment, let D(r)(U) be the vector space, without topology, union of the
D(r)(U ;K) and denote by D(U), respectively D(U ;K), the corresponding spaces for
r =∞. We call test function every element of D(U).

4.5. Distributions. We call distribution on U every C-linear form T on the C-vector
space D(U) such that, for every compact K of U , T |D(U ;K) is continuous.

As the spaces D(U ;K) are metric, this latter condition is equivalent to:

For every compact K of U , with every sequence (ϕj) of C∞ functions with supports
in K converging to 0 in E(U), the sequence (Tϕj) tends to 0 in C.

The order of the distribution T is the smallest r such that T |D(r)(U ;K) is continuous.
In particular, the measures are the distributions of order 0.

4.6. Derivation. Let f be a function of class C1. Considering it as a measure and hence
as a distribution, and applying, for any ϕ ∈ D(U), integration by parts, suggests the
following definition:

In U ⊂ IRn with coordinates (x1, . . . , xn),

∂T

∂xk
(ϕ) := −T

( ∂ϕ
∂xk

)
for k = 1, . . . , n, and ϕ ∈ D(U).

This process can be iterated indefinitely, for any k and any order.

5. Spaces of functions, distributions and currents [Sc].

5.1. Let E be a C-vector space union of vector subspaces (Fm) such that Fm ⊂ Fm+1

is a topological inclusion. Let jm : Fm → E be the canonical injection and τ the finest
topology of l.c.t.v.s. on E such that, for every m ∈ IN , jm be continuous.

Let E be as above with the topology τ , then for every l.c.t.v.s. G and every linear map
f : E → G, the following conditions are equivalent:

(a) f is continuous:
(b) for every m ∈ IN , the map f ◦ jm : Fm → G is continuous.
E with the topology τ is said to be the inductive limit of the sequence (Fm); if the

topology of Fm+1 induces, by restriction to Fm, the topology of Fm, the inductive limit
is said to be strict.

5.2. Let (Km) be an exhaustive sequence of compacts of U , then

D(U) =
⋃
m∈IN

D(U ;Km)

has a well defined topology τ such that it is the strict inductive limit of the sequence
(D(U ;Km)). In the following, we assume the topology τ on D(U). Then, from 5.1,

The distributions on U are the continuous linear forms on U, i.e. the set of the dis-
tributions on U is the vector space D′(U), topological dual of D(U).

5.3. Let F be a C-t.v.s. such that:
(1) D(U) is a vector subspace of F ;
(2) the set D(U) is dense in the space F ;
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(3) the topology of D(U) is finer than the topology induced on D(U) by the topology
of F; then the topological dual F ′ of F is a vector subspace of D′(U).

Examples. E ′(U) is the space of distributions with compact supports. The Sobolev spaces
are obtained by duality.

5.4. Adjoint of a continuous linear map. Let u : E → F be a continuous linear map of
t.v.s.; the C-linear map: u′ : F ′ → E′ defined by: T → T ◦u is said to be the adjoint of u.

We shall use the following notation: for T ∈ F ′ and y ∈ F , we set:

T (y) =< T, y > .

Then, with the above notations, for x ∈ E, T ∈ F ′, we have

< u′(T ), x >=< T, u(x) > .

Examples. Assume: E = F = D′(U).
(a) For every partial derivative Dν , the map Dν : D(U)→ D(U) defined by: ϕ 7→ Dνϕ

is continuous linear; the differential operator on distributions (also denoted Dν) defined
by Dν is (−1)|ν|(Dν)′.

(b) For every α ∈ E(U), the map α : D(U) → D(U) defined by ϕ 7→ αϕ is con-
tinuous linear. Then, the multiplication of the distributions by α is the adjoint of the
multiplication by α in D(U).

5.5. Currents [R]. This notion has been introduced by G. de Rham, in the ’30’s in special
cases, in particular electrical currents, then, in general, after the L. Schwartz’s definition
of distributions (see [R]).

A distribution is a local notion since it is defined on an open subset U of IRn. The
currents are corresponding global notions and define more general objects, in particular
many geometric objects.

LetX be a differential manifold of class C∞, countable union of compact sets, supposed
to be oriented for simplicity; let n be the dimension of X. Let Γ(r)p(X) be the vector
space of differential forms of degree p and class Cr on X. On a domain V of coordinates
(x1, . . . , xn) of X, every differential form may be expressed as

u =
∑

i1<...<ip

ai1,...,ipdxi1 ∧ . . . ∧ dxip .

There exists a unique topology of l.c.t.v.s. on Γ(r)p(X) such that the following two
conditions are equivalent:

(a) a sequence (uk)k∈IN , uk ∈ Γ(r)p(X) converges to 0;
(b) for every chart of X of domain V of X, for every compact K ⊂ V , for every

multi-index ν, |ν| ≤ r, the sequences of the restrictions to K of the coefficients ak and of
their partial derivatives Dνak uniformly converge to 0.

Let E(r)p(X) be the space Γ(r)p(X) with the above topology, and Ep(X) = E(∞)p(X).
For every compact K of X, let Dp(X;K), (resp. D(r)p(X;K)) be the subspaces of

Ep(X), (resp. E(r)p(X)) of differential forms with supports contained in K. Let Dp(X),
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(resp. D(r)p(X)) be the union of the Dp(X;K), resp. (D(r)p(X;K)) with the topology
such that they are the strict inductive limits of the above spaces.
Dp(X) is the space of C∞-differential forms, of degree p, with compact support, on

X. We denote by D.(X) the direct sum, over p, of the Dp(X), and we call test form every
element of D.(X).

A p-dimensional current is a continuous linear form on Dp(X). So the space of currents
of dimension p on X is the topological dual D′p(X) = (Dp(X))′ of Dp(X), and we denote
by D′.(X) the direct sum of the D′p(X).

The order of a current is defined as for a distribution.
A q-differential form which is continuous, or more generally L1

loc, over X (i.e. with
continuous coefficients or coefficients L1

loc on every coordinate domain), by integration
over X, of its exterior product with a test form of degree p = n− q, defines a current of
dimension p. Hence we define the degree of a current T of dimension p as q = n− p and
set T ∈ D′q(X).

Let E ′.(X), E ′. (X) be the graded vector space, according to degree or dimension, of
the currents on X with compact support.

The currents of dimension 0 are called distributions by extension of the case X = U ⊂
IRn. Among them, the currents of order 0 are the measures.

5.6. Operations on currents. The right exterior product by a differential form α: this is
the adjoint of the corresponding product in D(X).

The boundary (operator) b is the adjoint of the exterior differential on the space D.(X).
The exterior differential of a current T ∈ D′q(X) is: dT = (−1)q+1bT , generalizing

the peculiar case where T is a differential form of degree q.

5.7. Various topologies can be put on the space of currents. The most usual is the weak
topology: T → 0, if and only if, for every ϕ ∈ D.(X) implies: T (ϕ)→ 0; we also say that
T converges to 0 in the sense of currents. Other topologies will be introduced in the next
section.

6. Geometrical currents [F]. Locally a current is a differential form with coefficients
being 0-currents.

We assume that X is an (oriented) Riemannian manifold of dimension n, and we set
n = p+ k.

6.1. Semi-norms on D′.(X). For every ϕ ∈ D(0)p(X), we set:

|| ϕ || (x) = supγ{|ϕ(γ)|; γ decomposable p-(tangent) vector at x of length ≤ 1};
then

ν(ϕ) = sup
x∈X
|| ϕ || (x),

is called the comass of ϕ.
For every open set W ⊂ X, for every u ∈ D′.(X),

MW (u) = sup{|u(ϕ)|; ϕ ∈ Dp(X); supp ϕ ⊂W ; ν(ϕ) ≤ 1}

is called the mass of u on W (it may be +∞).
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For fixed u, W → MW (u) is a Borel measure on X, denoted by || u ||. For a closed
subset A ⊂ X, define MA(u) =|| u || (A). The set {MK ,K compact ⊂ X} is a set of
semi-norms (possibly +∞) inducing on D′.(X) the mass topology; MK(u) is called the
mass of u on K.

6.2. Measurable currents. The space Mp(X) = {u ∈ D′p(X); for every compact K ⊂
X, MK(u) < +∞} is called the space of measurable currents of dimension p. It is a
Fréchet space. Moreover M.(X) =

⊕
Mp(X) is the space of currents of order 0, with

the topology defined by the semi-norms MW ; it is also said to be the space of integration
currents.

6.3. Locally normal currents. The space of locally normal currents is

Nk
loc(X) = {u ∈Mk(X); du ∈Mk+1(X)}

with the semi-norms
NK(u) = MK(u) +MK(du).

Moreover,
Nk(X) = Nk

loc(X) ∩ E ′.(X)
is the space of normal currents.

6.4. Locally flat currents. The corresponding space is

F kloc(X) = D′k(X) ∩ {α+ dβ;α, β ∈ D′.(X)

with L1
loc coefficients}.

The semi-norms

FW (u) = sup{|u(ϕ)|, ϕ ∈ D.(X); supp ϕ ⊂W ; sup
(
ν(ϕ), (ν(dϕ)

)
≤ 1}

define the flat topology; F kloc(X) is now equipped with it; F kloc(X) is a Fréchet space.
By definition, F k(X) = E ′.(X) ∩ F kloc(X) = {flat currents of degree k}.

Properties.
F kloc(X) =

(
Dk(X)

)
D′k(X)

for the flat topology;

Nk
loc(X) ⊂ F kloc(X) : F kloc(X) =

(
Nk(X)

)
D′k(X)

for the flat topology;

F kloc(X) ∩Mk(X) =
(
Nk

loc(X)
)
D′k(X)

for the mass topology.

6.5. Locally rectifiable currents. Let Sp(X) be the group of the simplicial C1 p-chains
(subgroup of the additive group of currents on X).(
Sp(X)

)
D′k(X)

for the mass topology is the group of locally rectifiable p-currents

Rkloc(X) having the following property:

Rkloc(X) ⊂ F kloc(X) ∩Mk(X).

The subgroup
Rk(X) = Rkloc(X) ∩ E ′k(X)

is the group of p-rectifiable currents of X.

I loc
p (X) = {u ∈ Rloc

p (X); du ∈ Rloc
p−1(X)}

is called the group of p-locally integral currents.
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By definition, Ik(X) = E ′.(X) ∩ Ikloc(X) = {integral currents of degree k}.

6.6. Examples of applications.
1. Calculus of variations. Use of the integral currents.

Ex.: minimal subvarieties: evaluation of the codimension of the singular set
[Am 00].

2. Complex geometry. Use of the locally rectifiable currents.
By definition, a holomorphic p-chain is a current T =

∑
nj [Wj ] where nj ∈ Z and

[Wj ] is the integration current on the complex analytic p-dimensional subvariety
Wj of a complex analytic manifold.

(a) Structure theorem of complex analytic subvarieties (or, more generally, holo-
morphic p-chains) [K 71], [HS 74], [H 77], [Sh 55], [Al 97].

(b) Characterization of boundaries (in the sense of currents) of complex analytic
subvarieties, (or, more generally, holomorphic p-chains) in Cn [HL 75], CPn \
CPn−q [HL 77], [H 77], CPn, or linearly concave open sets of CPn [DH 97],
[Di 98].

(c) Characterization of boundary (in the sense of currents) of a Levi-flat hyper-
surface in Cn, n ≥ 3 [DTZ 05].
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For Section 6.6:
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