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Abstract. We outline some of the tools C. Ehresmann introduced in Differential Geometry (fiber

bundles, connections, jets, groupoids, pseudogroups). We emphasize two aspects of C. Ehres-

mann’s works: use of Cartan notations for the theory of connections and semi-holonomic jets.

Introduction. As R. Hermann puts it “Ehresmann’s work was very prophetic and pro-

vided a general framework for describing Geometry and the mathematics which have a

geometric component”.

One of the motivations of C. Ehresmann to build up the foundations of Differential

Geometry was to understand Elie Cartan’s work from a global point of view. He was also

influenced by S. Lie and E. Vessiot.

Besides his written work, C. Ehresmann had a great influence in the development of

Geometry. His lectures, his seminars (where well known mathematicians of many coun-

tries, as well as young mathematicians like Thom, Reeb, Kuiper, Wu Wen Tsun, . . .

explained their results), his private conversations (where generously he gave new ideas)

had played a significant part in this development.

The written part of Ehresmann’s work in Differential Geometry and Algebraic Topol-

ogy is published in the first volume (parts 1 and 2) of his “Œuvres complètes” [6]. This

volume also contains a report of C. Ehresmann on his own work (written in 1955) and

comments from W. Van Est (homogeneous spaces and Lie groups), M. Zisman (fiber

bundles), G. Reeb (foliations), R. Thom (jets), P. Libermann (connections and Lie pseu-

dogroups), J. Pradines (groupoids), R. Hermann (applications to Physics and control
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theory), A. Haefliger (the whole work in Geometry); A. Haefliger has also written a pa-

per on the birth of foliations, published in the book “Géométrie au XX-ème siècle” [24].

I also gave contributions in the same book and in the publication “Fibrés, fibrations et

connexions”.

That is why this paper will only contain a brief report on the main notions of Dif-

ferential Geometry introduced by C. Ehresmann (section 1). In sections 2 and 3 we shall

emphasize two aspects of C. Ehresmann’s work. In section 2 (which has many links with

the contribution of C. Marle to this volume [37]) we deal with the theory of connections

as introduced by C. Ehresmann. His paper on “Infinitesimal connections”(Bruxelles 1950,

[17]) is fundamental for the subsequent development of the modern theory of connections.

We show how C. Ehresmann utilizing E. Cartan’s notations can build in a few pages this

theory, thanks to his geometrical insight. He introduces for the first time the notion of

differentiable groupoid. But C. Ehresmann was not satisfied with these notations and one

year later he introduced the jets.

Section 3 deals with semi-holonomic jets. While the notion of holonomic jet is now

classical, the notion of non holonomic ans semi-holonomic jet seems mysterious to many

mathematicians. We show with the help of examples that the theory of semi-holonomic

jets appears naturally in Differential Geometry.

In this paper we shall suppose that manifolds and mappings are C∞.

1. Survey of C. Ehresmann’s work in Differential Geometry. The main fields

investigated by E. Cartan that influenced C. Ehresmann in Differential Geometry were

a) Lie groups, homogeneous spaces, theory of the moving frame, Riemannian geometry,

b) generalized spaces and connections,

c) the so-called “infinite groups” and the equivalence problem.

1.1. Trying to understand E. Cartan’s connections from the global point of view,

C. Ehresmann worked on fiber bundles (particular cases of such bundles appear in his

thesis “the topology of certain homogeneous spaces” [7]). He was one of the founders of

the theory of fiber bundles, independently of Whitney and Steenrod. The first Notes were

published from 1941 to 1943 [11, 12, 13, 14]; one of them was written in collaboration

with J. Feldbau. C. Ehresmann introduced the notions of locally trivial principal bundle

and their associated bundles. Later the introduction of pseudogroups of transformations

simplified the definitions. For the topological results see the papers of M. Zisman and

A. Haefliger in the “Œuvres complètes” [6].

An important problem was the restriction of the structure group of a G-principal

bundle to a subgroup G. In particular if H is the frame bundle of a manifold M of

dimension n, a reduction of the structure group GL(n, R) was called “regular infinitesimal

structure” by C. Ehresmann. Later these structures were called G-structures by S. Chern

but the original idea comes from Ehresmann.

The author proved that the existence of a reduction of G is equivalent to the existence

of a section in an associated bundle with standard fiber G/G.

On a paracompact manifold there always exists a Riemannian structure, which is not

the case for a metric of type (p, q). For instance on a compact manifold of dimension 4,



EHRESMANN’S CONCEPTS IN DIFFERENTIAL GEOMETRY 37

there exists a metric of type (3, 1) if and only if the Euler-Poincaré characteristic is null.

So S4 and P4(R) cannot be models for the Relativity.

Studying the existence of a complex structure on a manifold M , of dimension 2n,

C. Ehresmann has introduced the notion of almost complex structure corresponding to a

reduction of GL(2n, R) to GL(n, C). He has shown that the existence of an almost com-

plex structure is equivalent to the existence of an almost symplectic structure (defined by

a non-degenerate 2-form). For instance the sphere S6 admits an almost complex struc-

ture defined by means of Cayley numbers; this structure does not come from a complex

structure and is not symplectic (the 2-form is not closed) [29]. The existence of a com-

plex structure on S6 is still an open problem. Notice that the notion of almost complex

structure plays an important part in Gromov’s theory of pseudo-holomorphic curves.

1.2. An “infinite group” in the sense of E. Cartan is a family Γ of differentiable mappings

defined on open subsets of Rn, endowed with a partial composition law, each f ∈ Γ being

the solution of a differential system of order q ≥ 1.

The global version introduced by C. Ehresmann was the notion of Lie pseudogroup,

which needs the introduction of the notions of pseudogroup of transformations, of jet, and

of groupoid.

The notion of pseudogroup of transformations underlies a Note published in 1943 [14]

where for the first time a structure of differentiable manifold was defined by means of

local charts. The notion was introduced in 1947 [16]. It is fundamental in the papers of

C. Ehresmann. Such a pseudogroup is a family of local homeomorphisms (on a topoloical

space) or local diffeomorphisms on a differential manifold satisfying axioms which gen-

eralize those of Veblen-Whitehead. This notion permits to define local structures as for

example differentiable manifolds, fiber bundles, foliations. A local structure is defined

by an atlas of local maps from a manifold endowed with a pseudogroup Λ onto another

manifold, the changes of charts belonging to the pseudogroup.

1.3. C. Ehresmann has introduced the notion of infinitesimal jet in order to obtain an

intrinsic differential calculus on manifolds. For instance it permits to define differential

systems as submanifolds of jet spaces. As A. Haefliger writes “The notion of jet is now so

familiar that we forgot how much its introduction has permitted to set the fundamental

problems in local and global Differential Geometry”. For instance R. Thom utilized jets

when investigating the problem of the singularities of differential mappings.

For the theory of prolongations see [19, 20, 21, 22].

1.4. The groupoids have been introduced in Differential Geometry by C. Ehresmann in

his paper on connections [17] first when considering the groupoid of closed paths, then

associated with a principal bundle (gauge groupoid as we shall see later). All authors

do not agree on the definition of a Lie groupoid; for some authors it is a groupoid with

differentiable composition laws. For C. Ehresmann a Lie groupoid must be locally trivial.

Many authors worked on groupoids (J. Pradines, P. Libermann, K. Mackenzie, R.

Brown). The subject has enjoyed renewed vigor with the introduction of symplectic group-

oids independently by A. Weinstein an M. Karasev [23].
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The publications of A. Weinstein, C. Albert and P. Dazord and their coworkers have

settled the foundations of the theory [1, 5]. Many books and papers have been published

on the subject but sometimes the initiator C. Ehresmann has been forgotten. For more

details see [36].

1.5. On a manifold M , the set Jq(Γ) of q-jets of all local diffeomorphisms belonging to

a pseudogroup Γ constitute a groupoid, subgroupoid of the groupoid Πq(M) of the q-jets

of all local diffeomorphisms of M .

A Lie pseudogroup of order q on a manifold M is a pseudogroup of local diffeomor-

phisms such that there exists an integer q satisfying the conditions

a) Jq(Γ) is a submanifold of Πq(M),

b) Γ is the set of all solutions of Jq(Γ) considered as a differential system. See [19] IV.

There are two types of Lie pseudogroups.

a) The Lie pseudogroups of finite type satisfying the condition: there exists an integer

r ≥ q such that Jr(Γ) is locally isomorphic to Jr−1(Γ). For instance the pseudogroup

of all local isometries of a Riemannian manifold.

b) the other ones called pseudogroups of infinite type. For instance the pseudogroup of

all local symplectomorphisms of a symplectic manifold.

In 1958, C. Ehresmann [22] proved two theorems concerning the pseudogroups of finite

type.

a) The group of all global transformations belonging to Γ is a Lie group (theorem already

known for the isometries of a Riemannian manifold).

b) If moreover the manifold is compact and simply connected, there exists a Lie group

G acting on M such that any f ∈ Γ is the restriction of an element of G.

Since 1960, the theory of Lie pseudogroups has known a great development. D. Spencer

[25] introduced cohomological methods which were utilized by Kuranishi, H. Godschmidt,

V. Guillemin, S. Sternberg, A. Kumpera, B. Malgrange. Lately P. Molino and C. Albert

published a book on the subject [2].

1.6. We shall not tackle the theory of foliations created by C. Ehresmann and G. Reeb.

One important contribution of C. Ehresmann was the introduction of the holonomy

groupoid.

2. On Cartan–Ehresmann notations and connections

2.1. From his first Notes [8, 10] where he studied E. Cartan’s “generalized spaces”, his

lecture on Lie groups (at the Julia seminar) in 1937 [9], until his famous paper on con-

nections (“Colloque de Bruxelles”1950) [17], C. Ehresmann used E. Cartan’s notations.

These notations which are linked with physics look intuitive and permit simple for-

mulae but, as we shall see, they are sometimes ambiguous.

This is why C. Ehresmann tried more satisfactory notations and introduced the theory

of jets. First order jets permit to define in an intrinsic way tangent vectors to a manifold.

This notion already underlied a Note [14] where for the first time a manifold was defined

by means of an “atlas of local charts”.
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C. Ehresmann explains Cartan’s notations in his paper on connections.

A tangent vector to a differentiable manifold M with origin x is denoted by

x + dx.

The prolongation of f : M → N to the tangent vectors is still denoted by f , i. e.

f(x + dx) = f(x) + d(fx).

Let (x+dx, y+dy) be a tangent vector to the manifold M1×M2; then for the prolongation

of g : M1 × M2 → N to tangent vectors, we have

g(x + dx, y + dy) = g(x + dx, y) + g(x, y + dy).

In particular if g(x, y) is written x.y, we get

(x + dx).(y + dy) = x.(y + dy) + (x + dx).y.

These formulae may be interpreted by means of 1-jets as follows: for any imbedding

γ : I ⊂ R from an interval I containing 0 to a manifold M the symbol x + dx (with

x = γ(t)) represents the 1-jet j1
0 γ̃, with source 0, target x, the function γ̃ being the map

γ ◦ τt, where τt is the translation t → 0. When M is an affine space, we recover the affine

map tangent to γ at the point x = γ(t).

We could use the symbol x + dx for a mapping from an open set of Rp to M if the

mapping is an imbedding. In particular if p = n = dim M , we get a frame with origin x.

2.2. In his paper on connections [17] (colloque de Bruxelles, 1950), C. Ehresmann has

introduced the notion of differentiable groupoid associated to a principal bundle. This

groupoid is now called “gauge groupoid”.

Let (P, π, M) be a principal G-bundle. C. Ehresmann uses the same notation z for an

element of P and the diffeomorphism Cz of G onto the fiber Px = π−1(x) (with x = π(z))

defined by s 7→ zs. With this convention, for any pair (z, z′) ∈ P ×P , the diffeomorphism

Cz′C−1
z from Px to Px′ is denoted by z′z−1. The set of all isomorphisms from a fiber of

P to another one is denoted by PP−1. As (z′s)(zs)−1 = z′z−1, the manifold PP−1 is

the quotient of P × P by the equivalence relation (z, z′) ∼ (zs, z′s). The composition of

maps induces a groupoid structure on PP−1. The set of units is the set of identity maps

on each fiber; it can be identified with M (i.e. each x is identified with the identity map

of Px). We have α(z′z−1) = π(z), β(z′z−1) = π(z′).

The mapping P ×P → PP−1 can be prolongated to tangent vectors (z, z′ +dz′). The

image of (z, z′ + dz′) is denoted by (z′ + dz′)z−1. In particular the vector (z + dz)z−1

(called infinitesimal displacement) is a vector tangent to the α-fiber Px with origin the

identity map of Px.

The consideration of the set A(PP−1) of all infinitesimal displacements has led J.

Pradines to introduce the notion of Lie algebroid, notion which underlies C. Ehresmann’s

work. Recall that a vector bundle p : A → M is endowed with a Lie algebroid structure

if it satisfies the following properties:

a) the vector bundle is equipped with a Lie algebra structure [ , ] on its space of sections,

b) there exists a bundle map ρ : A → TM (called the anchor map) which induces a Lie

algebra homomorphism (also denoted ρ) from sections of A to vector fields on M ,
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c) for any smooth function f on M and any pair (ξ, η) of sections of A, the following

identity is satisfied
[fξ, η] = f [ξ, η] −

(
ρ(η)

)
fξ.

If ρ is surjective, the Lie algebroid is said to be transitive.

The importance of this notion comes from the fact that the set A(Φ) of all tangent

vectors to the α-fibers of a Lie groupoid Φ, with origin a unit constitute a Lie algebroid.

Conversely a Lie algebroid does not come necessarily from a Lie groupoid. It is the

problem of integration of a Lie algebroid. Many mathematicians had worked on this

problem. See for instance the book by K. C. H. Mackenzie [36].

Let us go back to the principal G-bundle (P, π, M). As

(z + dz)s(zs)−1 = (z + dz)z−1,

any infinitesimal displacement may be considered as an element of TP/G, set of all

tangent vectors to P modulo the right translations. We deduce an isomorphism from

A(PP−1) onto TP/G. The isomorphism was called by J. Pradines the Ehresmann iso-

morphism. Later the vector bundle TP/G → M was called the Atiyah-Molino bundle.

Let (E, π, M) be a locally trivial fiber bundle. C. Ehresmann has defined an infinites-

imal connection on (E, π, M) as a distribution of n-contact elements (where n = dimM)

which is transverse to the fibers π−1(x) and satisfies the path lifting property: for any

smooth path γ on M joining x0 = γ(t0) to x1 = γ(t1), there exists a horizontal smooth

path γ̃ on E joining y0 ∈ π−1(x0) to y1 ∈ π−1(x1) which projects on γ by π, the point

y0 being arbitrary in π−1(x0).

C. Ehresmann did not introduce the words “vertical” for the bundle V E = kerTπ

(which is tangent to the fibers) and “horizontal” for the transverse distribution. We use

this terminology which is convenient.

In the case of a principal G-bundle (P, π, M), C. Ehresmann adds the condition: the

horizontal distribution must be invariant under the right action of G.

C. Ehresmann shows that the connection associates an infinitesimal displacement to

any vector tangent to M ; so the principal connection is a lifting C : TM → TP/G; as the

base M is supposed to be paracompact the lifting C which is a vector bundle morphism

always exists and the path lifting property is satisfied.

2.3. C. Ehresmann has given an equivalent definition of a principal connection by means

of a “connection form”, i.e. a 1-form on P with values in the Lie algebra G of G.

First he considers the 1-form ̟ on V P = kerTπ, this form being independent of

the choice of the connection. For any z ∈ P , the form ̟ associates to the vector z + dz

element of V P , the vector
̟(z + dz) = z−1(z + dz).

The vector ̟(z + dz) being tangent to G at e, can be identified with an element of G.

The form ̟ satisfies the relation

̟((z + dz)s) = s−1(z−1(z + dz))s for any s ∈ G,

which can be written
R∗

s̟ = Ads−1 ◦̟,

Rs meaning the right translation by s on P .
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The vertical vectors z+dz and z′+dz′ are said to be equipollent if they have the same

image by ̟. Hence we get a trivialization V P → P×G defined by z+dz 7→ (z, ̟(z+dz)).

The invariant vertical vector fields (whose image by ̟ is constant) are the fundamental

vector fields associated to the action of G.

Consider now a principal connection on (P, π, M); the horizontal distribution H de-

fines a splitting of TP into the direct sum TP = V P ⊕H; hence C. Ehresmann defines

a 1-form ω on P by ω(z + dz) = ̟(z + dz) where dz is the projection of dz on V P .

The form ω : TP → G satisfies the conditions

a) the restriction of ω to V P is the form ̟;

b) ω((z + dz)s) = s−1ω(z + dz)s.

The form ω is the connection form of the given principal connection.

Conversely if a 1-form ω : TP → G satisfies the conditions a) and b), its kernel kerω

is a distribution defining a principal connection.

2.4. C. Ehresmann has given a definition of the Cartan “generalized spaces” in terms of

fiber bundles [17].

A “generalized space” is a fiber bundle E(M, F, Ĝ, P̂ ) associated to a principal Ĝ-

bundle P̂ , satisfying the conditions

a) the fiber F is a homogeneous space Ĝ/G (where G is a closed subgroup of Ĝ); dim F =

dimM ;

b) there exists a section σ : M → E.

These conditions imply the existence of a principal G-bundle P , subbundle of P̂ . The

bundle P is the set of all diffeomorphisms from Ĝ/G to the fibers of E which send the

fixed point a0 of Ĝ/G onto a point of the section σ(M).

Then C. Ehresmann introduces the notion of a Cartan connection. Such a Cartan

connection is defined by a 1-form ω on P , with values in the Lie algebra Ĝ of Ĝ such

that:

a) the restriction of ω to the vertical bundle V P is the form ̟ defined in 2.3;

b) ω((z + dz)s) = s−1(z−1(z + dz))s for any s ∈ G;

c) for any z ∈ P , the relation ω(z + dz) = 0 implies dz = 0.

Hence ω defines a parallelism on P .

C. Ehresmann has proved that any “generalized space” admits Cartan connections.

Moreover each Cartan connection induces a soldering of E onto the base M , i.e. there

exists an isomorphism from the vector bundle of all tangent vectors to the fibers with

origin at a point of σ(M) onto the tangent bundle TM . Conversely C. Ehresmann proves

that a soldering on a “generalized space” induces a Cartan connection. For more details

see [37].

A Cartan connection form on P is not a principal connection on P because ω takes its

values in Ĝ and not necessarily in G. But any Cartan connection on P can be extended

to a principal connection ω̂ on the Ĝ-bundle P̂ . Indeed P̂ can be identified with P ×G Ĝ,

quotient of P × Ĝ by the equivalence relation (z, s) ∼ (zg, g−1s) for z ∈ P , s ∈ Ĝ, g ∈ G.
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The form ω− η on P × Ĝ (where η is the Maurer-Cartan form on Ĝ) is the pull back (by

the morphism Λ : P ×G Ĝ → P̂ ) of a connection form ω̂ on P̂ . See [35].

The Cartan connection on P is said to be integrable if the connection ω̂ is integrable.

C. Ehresmann has shown that in this case, there exists a local development of M onto

the fiber F = Ĝ/G; so M is locally homogeneous; C. Ehresmann has proved that, when

M is compact (or at least complete) and simply connected then M is homogeneous. The

manifold is said to be complete if any smooth path on F admits a development onto M .

In his paper [37], C. Marle has explained the notion of development. He also has

studied the affine, projective and conformal connections, with applications to Mechanics

and Physics.

The notations used by C. Ehresmann were useful but they have to be employed

carefully. For instance if we consider a principal G-bundle P , the expression (z′ +dz′)z−1

is meaningful for z ∈ P , z′ + dz′ ∈ TP . The form γ such that γ(z + dz) = (z + dz)z−1

takes its values in the Lie algebroid of the groupoid PP−1.

The expression z−1(z′ + dz′) is meaningful only if z′ + dz′ is vertical and if z = z′s

for some s ∈ G.

The form ̟ such that ̟(z + dz) = z−1(z + dz) takes its values in the Lie algebra of

G.

The notations are not convenient for higher order calculus on manifolds. It is why

C. Ehresmann introduced the notions of jet soon after he wrote his paper on connections.

3. Semi-holonomic jets [21]

3.1. Utilizing the terminology of Mechanics, C. Ehresmann has defined the non-holo-

nomic jets by iteration of 1-jets. The semi-holonomic jets are non-holonomic jets satis-

fying some extra conditions. They are obtained from usual jets (called holonomic jets)

in “forgetting” the Schwarz symmetry lemma for jets of order ≥ 2. The semi-holonomic

jets are found in many situations in Differential Geometry.

Let π : E → M be a surjective submersion (also called fibered manifold) and J1E be

the set of 1-jets of all sections of π. The second order non-holonomic prolongation is the

set J̃2E = J1J1E. By iteration we define J̃q = J1J̃q−1E. We can also define J̃q(M, N)

setting E = M × N and π = pr1.

The semi-holonomic prolongation J2E ⊂ J1J1E is defined as follows: a local section

U ⊂ M → J1E is said to be adapted at x ∈ U if s(x) = j1
x(β ◦ s), where β is the target

map; then the jet j1
xs is called semi-holonomic.

As remarked by J. Pradines, the subset J2E ⊂ J̃2E may be defined utilizing the

commutative diagram

J1J1E
j1β

−−−−→ J1E

β

y β

y

J1E
β

−−−−→ E

.

Then

J2E = {z2 ∈ J1J1E ; β(z2) = j1β(z2)}.
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In other terms J2E is the inverse image of the diagonal J1E ×M J1E by the map

(β, j1β). If s = j1f (where f is a local section of E), then s is adapted at each point of

its source and j1
xs = j1

xj1f = j2
xf . So the holonomic prolongation J2E is contained in

J2E.

By iteration we consider the commutative diagram

J1Jq−1E
j1β

−−−−→ J1Jq−2E

β

y β

y

Jq−1E
β

−−−−→ Jq−2E

.

As Jq−1E ⊂ J1Jq−2E, the projection πq−1
q−2 : Jq−1E → Jq−2E is the restriction to Jq−1E

of the target map β : J1Jq−2E → Jq−2E. The projection J1Jq−1E → J1Jq−2E is the

1-jet prolongation of β. We define

JqE = {zq ∈ J1Jq−1E ; β(zq) = j1β(zq)}.

The semi-holonomic prolongation JqE is a submanifold of J1Jq−1E and of J̃qE =

J1J̃q−1E; the holonomic prolongation JqE is contained in JqE.

We have also to consider the prolongation Jq,q−1E, inverse image of Jq−1E by the

projection πq
q−1 = β : JqE → Jq−1E as well as the sesquiholonomic prolongation J̌qE

defined by

J̌qE = {zq ∈ J1Jq−1E ; β(zq) = j1β(zq)}.

This prolongation J̌qE is contained in Jq,q−1E.

For q = 2, then J2,1E and J̌2E coincide with J2E.

Setting E = M × N and π = pr1, we can define J
q
(M, N). In particular all semi-

holonomic jets from R to a manifold are holonomic. For instance the elements of TTM

whose projections p and Tp on TM are equal are the holonomic tangent vectors to TM ;

they define second order differential equations.

3.2. Examples

3.2.1. Example 1. Let (E, π, M) be a fibered manifold with dimM = n. The prolonga-

tion J1E may be considered as the set of all contact n-elements in E that are transverse

to the vertical bundle V E. Then the lifting C : E → J1E can be called generalized

connection because the path lifting property is not necessarily satisfied. We define the

1-jet extension j1C : J1E → J1J1E. It is easy to check that the lifting j1C ◦ C takes

its values in J2E. Utilizing the Frobenius theorem, we show that the horizontal distri-

bution is completely integrable if and only if j1C ◦ C takes its values in the holonomic

prolongation J2E.

For a holonomic connection of order q, i.e. a lifting Cq : Jq−1E → JqE, then j1Cq ◦Cq

takes its values in the sesquiholonomic prolongation J̌q+1E.

More generally for a regular differntial system Rq → M , where Rq → M is a fibered

submanifold of JqE → M , we define the sesquiholonomic prolongation of Rq by

Řq+1 = J1Rq ∩ J̌q+1E.
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When Rq is diffeomorphic to Rq−1 (system of finite type), the system Rq is integrable if

and only if Řq+1 coincides with Rq, according to the Frobenius theorem. By an integrable

system we mean a system such that any zq ∈ Rq is the q-jet of a solution. A solution is

a section s : U → E such that jq
xs belongs to Rq for any x ∈ U .

3.2.2. Example 2. Let ω : M → T ∗M be a Pfaffian form; then for any x ∈ M , there

exists a function f : U ⊂ M → R such that f(x) = 0, j1
xf = ω(x). So the section

ω is adapted at any point x ∈ M and the 1-jet j1
xω belongs to T

∗2
(M) (space of all

semi-holonomic 2-jets from M to R or semi-holonomic 2-covelocities). So we have proved

that

J1T
∗M is diffeomorphic to T

∗2
(M).

The jet j1
xω belongs to T ∗2(M) at any x if and only if ω = j1f , i.e. ω = df in the

neighbourhood of x. So ω must be closed.

In terms of local coordinates, we write in an open subset U of M

ω =
∑

i

aidxi ;

j1
xω is defined by a1(x), . . . , an(x),

∂ai

∂xj
(x).

If we assume U to be simply connected, the 2-jet is holonomic if and only if

∂ai

∂xj
=

∂aj

∂xi
.

3.2.3. Example 3. Let (P, π, M) be a principal G-bundle. The projection J1P → M

is not necessarily a principal bundle map. But we have constructed a principal bundle

(TnP, π′, M) (see [30]). The manifold TnP (with n = dim M) is the submanifold of TnP

(set of all 1-jets from R
n to P with source 0), inverse image of the frame bundle H(M) by

the projection TnP → TnM . We have proved that TnP is diffeomorphic to J1P×M H(M).

The manifold TnP enjoys also the following property: the gauge groupoid Φ(1) of TnP is

the prolongation (in the sense of Ehresmann) of the gauge groupoid Φ of P , i.e. Φ(1) is

the set of the 1-jets of all invertible α-sections of Φ.

If we consider the principal bundle (M, idM , M) we identify TnM with H(M). We

define H
2
(M) (second order semi-holonomic frame bundle) as the submanifold of TnTnH,

inverse image of the diagonal of TnM × TnM by the map (β, j1β). As β and j1β are

principal bundles morphisms, it follows that H
2
(M) → M is a principal subbundle of

TnTnM → M .

Any n-contact element on H(M) which is transverse to the vertical bundle V H(M)

is the image of an element of TnH (considered also as a linear map). It can be deduced

the following property: there exists a natural diffeomorphism

Ψ1 : J1H(M) → H
2
(M)

inducing a principal bundle structure to the projection J1H(M) → M .

By iteration, it is possible to prove the existence of the diffeomorphism

Ψq : JqH(M) → H
q+1

(M),

where H
q+1

(M) is the semi-holonomic frame bundle of order q + 1.
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A generalized connection C : H(M) → J1H(M) such that C is a principal bun-

dle morphism is a connection in the sense of Ehresmann. The connection is said to be

symmetric if C takes its values in H2(M).

It is known that this connection C (symmetric or not) induces a linear connection on

the tangent bundle TM . We can prove this property as follows. Utilizing the Schwarz

lemma for manifolds we prove that there exists a diffeomorphism TTnM ⇔ TnTM . As

TTnM may be written TH(M) and TnTM is diffeomorphic to J1T (M) ×M H(M), we

conclude that the bundle J1T (M) → M is isomorphic to the Atiyah-Molino bundle of

H(M), i.e.

J1T (M) is diffeomorphic to TH(M)/Ln with Ln = GL(n, R).

So the connection C on H induces a lifting T (M) → J1T (M) and conversely.

In the same way we can prove that JqT (M) is diffeomorphic to THq(M)/Lq
n, where

Lq
n is the group of q-jets of local diffeomorphisms with source and target 0.

These properties have been proved in [30] utilizing local vector fields.

Similarly JqT (M) is diffeomorphic to TH
q
/L

q

n.

3.2.4. Example 4. Consider now a G-structure on M , i.e. a principal G-subbundle

HG(M) of H(M), where G is a closed subgroup of GL(n, R).

For q ≥ 1, we may define by iteration the semi-holonomic frame bundle H
q+1

G →

M of order q + 1. It is a principal bundle, image of JqHG(M) by the diffeomorphism

JqH(M) → H
q+1

(M).

Then the holonomic prolongation of order q + 1 of HG(M) is the intersection

Hq+1
G (M) = H

q+1

G (M) ∩ Hq+1(M).

The restriction to Hq+1
G (M) of the projection Hq+1(M) → H(M) is not necessarily a

surjective map on HG(M). When this projection is surjective on HG(M), it can be proved

in this case that the projection Hq+1
G (M) → HG(M) is a principal bundle morphism; then

the G-structure is said to be q-integrable.

The 1-integrability means that there exists a connection C : HG(M) → J1HG(M)

such that C takes its values in H2(M), i.e. is symmetric.

This problem has been studied by C. Ehresmann [6] using semi-holonomic jets and

by D. Bernard [3] by other methods. They introduced the so-called structure tensor.

Many mathematicians worked on higher order; among them I. Kolář [26] utilizing

semi-holonomic jets, D. Lehmann [28] and P. Molino [38] by other methods.

Instead of principal bundles we could consider their gauge groupoids with their Lie

algebroids.

We obtain the condition of q-integrability of these groupoids considering their semi-

holonomic and holonomic prolongations. If HG is q-integrable, then its gauge groupoid Φ

(which is a subgroupoid of the groupoid Θ(M), set of 1-jets of all local diffeomorphisms

on M) is q-integrable. The converse is not always true.

If Φ is q-integrable then its Lie algebroid is also q-integrable. Conversely if Φ is a Lie

subgroupoid of Θ(M), its Lie algebroid R1 is a vector subbundle of J1T (M) (according to

a previous remark). Then if Φ is α-connected and if the prolongation R2 = J2T (M)∩R2
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is a vector subbundle of J2T (M) and R2 then Φ is 1-integrable, i.e. the mapping

Θ2(M) ∩ Φ
2
→ Φ

is surjective.

For more details see [32].

3.3. Affine properties of semi-holonomic bundles. Let (E, M, π) be a fibered manifold.

We shall denote by πq the projection J
q
E → M , by πq

k the projection JqE → JkE, for

0 ≤ k ≤ q with the convention J0E = E; the vertical bundle V E is as usual the kernel of

the projection Tπ : TE → TM .

The main property of semi-holonomic prolongations is the following theorem.

Theorem 1. The projection πq
q−1 : JqE → Jq−1E defines an affine bundle structure

whose associated vector bundle is (πq−1
0 )∗Lq

E(π∗TM, V E), i.e. the pullback to Jq−1E of

the vector bundle, with base E, of the q-linear morphisms from π∗TM to V E.

The theorem is known for q = 1. We have to show that if the theorem is true

for the projection πq−1
q−2, it is true for the projection πq

q−1. As JqE ⊂ J1Jq−1E, if

we consider zq ∈ JqE and z′q ∈ J1Jq−1E which have the same projection zq−1 on

Jq−1E, then it makes sense to define zq − z′q. We show that z′q belongs to JqE if

zq − z′q ∈ L(TxM, Lq−1(TxM, VyE)), i.e. zq − z′q ∈ Lq(TxM, VyE), where x is the projec-

tion of zq−1 on M and y the projection of zq−1 on E. For more details see [34].

As we deal with finite dimensional manifolds, we may write

Lq(TxM, VyE) = VyE ⊗⊗qT ∗
x M.

In the case of the prolongations Jq,q−1E and J̌qE, the inverse image of zq−1 ∈ Jq−1E

by the projection Jq,q−1E → Jq−1E (resp. J̌qE → Jq−1E) is an affine space whose

associated vector space is VyE ⊗ ⊗qT ∗
x M (resp. VyE ⊗ ⊙q−1T ∗

x M ⊗ T ∗
x M), where ⊙ is

the multiplication in the symmetric algebra of the tensor algebra of T ∗
x M .

It is possible to find local coordinates on JqE, any zq ∈ JqE being defined in the

neighbourhood of πq(zq) by the functions xi, yα, yα
j1...jq

. For JqE, we have the condition:

for k = 2, . . . , jq then yα
σ(j1),...,σ(jk) = yα

j1,...,jk
for any permutation on k.

For Jq,q−1E we have this condition only for k = 2, . . . , jq−1. For J̌qE ⊂ Jq,q−1E, the

yα
j1...jq

are symmetric with respect of the (q − 1) first indices.

In this section we fix an element zq−1 ∈ Jq−1E. Let y = πq−1
0 (zq−1) and x = π(y).

We denote by zq and z′q elements of Jq,q−1E which project on zq−1.

Let Sy be the projection

VyE ⊗ (⊗qT ∗
x M) → VyE ⊗ (⊙qT ∗

x M)

defined by

Sy(v ⊗ u) =
1

q!

∑

σ∈Pq

v ⊗ σu for v ∈ VyE, u ∈ ⊗qT ∗
x M,

Pq being the group of permutations of [1, q].

Let Ay be the projection

VyE ⊗ (⊗qT ∗
x M) → ker Sy
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defined by Ay(v ⊗ u) = v ⊗ u − Sy(v ⊗ u).

If z′q ∈ Jq(E), then Ay(z − z′q) is independent of the choice of z′q in JqE. So we

have defined a mapping zq 7→ Azq−1
(zq) = Ay(z − z′q). Then the mapping Szq−1

: zq 7→

zq −Azq−1
(zq) takes its values in Jq(E).

These considerations lead to the following theorem (whose complete proof is explained

in [34]).

Theorem 2. Given a fibered manifold (E, M, π) there exists for the prolongation Jq,q−1E

a natural contraction S : Jq,q−1E → JqE and a natural involution I : Jq,q−1E → Jq,q−1E

such that I(J̌qE) = J̌qE and I
∣∣
JqE

is the identity map. These maps S and I are defined

by

S(zq) = zq −A(zq), I(zq) = zq − 2A(zq),

where A is a mapping from Jq,q−1E onto the kernel of the projection V E⊗(⊗qπ∗TM) →

V E ⊗ (⊙π∗TM); this map A vanishes on JqE.

Remark 3. For q = 2, then J2,1E = J̌2E = J2E. The mapping A takes its values in

V E ⊗ (
∧2

T ∗M). We recover the involution introduced by J. Pradines.

The operator A permits to define the curvature of a connection, obstruction to in-

tegrability. For a connection C : E → J1E (where π : E → M is a fibered man-

ifold), we have seen that j1C ◦ C takes its values in J2E. There exists a morphism

A : J2E → V E⊗ (
∧2 π∗TM) which vanishes on J2E. Combining with the lifting j1C ◦C

we get a morphism

ρ : E → V E ⊗ (

2∧
π∗TM)

which vanishes if and only if j1C ◦ C takes its values in J2E.

Similarly for a connection of order q, i.e. a lifting Cq : Jq−1E → JqE, the curvature

is the morphism of fibered manifolds

ρq : Jq−1E → V E ⊗ (⊙q−1π∗TM) ⊗ (
2∧

T ∗M).

3.4. Second order foliations. In a lecture devoted to foliations [18], C. Ehresmann defined

in 1950 second order elements of contact and second order foliations. His results may be

interpreted in terms of semi-holonomic jets, notion he introduced only in 1954.

Let Gp(M) be the set of all p-contact elements on a manifold M , of dimension n.

C. Ehresmann considered the p-contact elements on Gp(M) which satisfy the condition:

the origin of the contact element on Gp(M) and the projection on Gp(M) of this con-

tact element are identical. This can be explained as follows. The manifold Gp(M) is the

total space of a fibration with standard fiber Gp(R
n), the Grassmannian of the linear

p-subspaces of Rn.

The set of p-elements of order 2 is obtained by means of the commutative diagram

GpGp(M)
Tπ

−−−−→ G′
p(M)

π

y
yπ′

Gp(M)
π

−−−−→ M

,
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where G′
p(M) is the set of contact elements on M of dimension ≤ p. The set of p-contact

elements of order 2 on M is, according to C. Ehresmann, the manifold

G
2

p(M) = {z ∈ GpGp(M); π(z) = Tπ(z)}.

A second order distribution of p-contact elements is a lifting c : Gp(M) → G
2

p(M). Such

a distribution always exists, as the fibration G
2

p(M) → Gp(M) is affine.

The distribution is said to be integrable if for any z ∈ Gp(M), there exists in the

neighbourhood of π(z) a p-dimensional submanifold of M such that its second order

contact elements are the image by c of its tangent spaces. Then the distribution defines a

second order foliation. The leaves are the maximal submanifolds which satisfy the above

condition.

For instance the totally geodesic submanifolds of a Riemannian manifold with constant

curvature are the leaves of a second order foliation. It is the same for the totally geodesic

submanifolds of a locally projective space.

3.5. Final remarks. One of the interests of semi-holonomic jets is the possibility of build-

ing prolongations of differential systems (considered as fibered submanifolds) which are

also fibered manifolds while the holonomic prolongation is not necessarily a manifold.

Among the mathematicians who have investigated semi-holonomic jets are C. Ehres-

mann pupils (J. Pradines, myself, P. Ver Eecke). A very important contribution has been

made by I. Kolář [26] and his coworkers as well as G. Virsik [42]. The theory is linked

with the research of natural transformations studied in [27].

J. Pradines [41] has initiated the theory of double vector bundles. He has shown the

links between this theory and the theory of non-holonomic and semi-holonomic jets; this

theory is also connected with the theory of groupoids and algebroids [36].
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