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1. Introduction. Jets of mappings introduced by Ehresmann [1] are still the most use-
ful objects for formulating geometric frameworks of physical theories. We are proposing
modifications designed to make jet theory less dependent on local coordinates. Exten-
sions of the theory with applications to the calculus of variations and mechanics are also
proposed.

2. The p* vitesses and points proches. The p* vitesses in a manifold N were origi-
nally defined as equivalence classes of differentiable mappings from R? to N. Mappings

v:RP - N and ~:RP - N
are equivalent if
0i(f ©+')(0) = 9i(f 2 7)(0)

for each function f : N — R and each multi-index ¢ € NP with length |¢| = 4+ - -+1, < k.
Equivalence classes are the p* vitesses. Ehresmann’s construction extended the definition
of the tangent vector of a curve to higher dimensions and higher differential orders.

Defining a vector as a derivation was the approach preferred by some mathematicians.
André Weil’s response [10] to Ehresmann’s construction was a generalization of the con-

cept of a derivation to higher differential orders based on local algebras. Let A be a local
algebra. A point proche in a manifold N is a unit preserving morphism

u: C°(N) — A,
where C°°(N) is the algebra of differentiable functions on N.
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WEeil claimed that his construction was more general. My agreement with this state-
ment is not unqualified. Here are some comments.

(1) It is true that vitesses can be obtained as points proches. Let 1o(R?,0) be the set
of differentiable functions on R? vanishing at 0 € RP. This set is a maximal ideal
in the algebra C°°(RP) of differentiable functions on R?. Let I (R?, 0) be the power
(Io(R?, 0))k*+1. The quotient

A¥(RP,0) = C=(RP) /1(R, 0)
is a local algebra. The construction of points proches in IV associated with this
algebra reproduces the construction of the p* vitesses in N.
(2) The construction of p* vitesses extends to the definition of k-jets of mappings

v: M — N.

Pairs (y,z) of a mapping v and a point € M are classified. Pairs (v,z) and
(+',2') are equivalent if 2’ = z and

9i(f o' 0€71)(0) = 95(f oy o€ 1)(0)
for each function f: N — R, each chart
£E: M — RP
defined in a neighbourhood of z, and each multi-index ¢ € NP with length |¢| = 41 +
-+ 1, < k. The equivalence class is the k-jet of v at z. Only jets of mappings with
a distinguished source point can be produced as points proches. Weil’s approach
would have to be generalized to make it applicable to more general jets.
(3) In applications to differential geometry jets are equivalence classes of mappings.
Simple generalizations of Ehresmann’s construction seem to provide all applicable
types of jets. The generality of Weil’s abstract approach is in my opinion excessive.

3. Borrowing from Weil the algebraic definition of derivatives

3.1. Ideals in the algebras of differentiable functions. With a differential manifold M we
associate the algebra C'°°(M) of differentiable functions on M.

We will denote by K the set N U {oo, ¢}, where ¢ stands for the cardinality of R.
The ordering relations <, <, >, and > have in K the usual meaning of inequalities of
cardinal numbers. Let z be a point in a differential manifold M. In the algebra C'*°(M)
of differentiable functions on M we introduce a sequence of ideals

Jo(M,x), 31(M,x), ..., Joo(M,z), T (M, x).

The ideal Jo(M,x) associated with z is maximal in the sense that it is not a proper
subset of any ideal except the trivial ideal C°°(M). It is known that all maximal ideals
in C*°(M) are associated with points.

For k € N, the ideal J,(M,z) is the power (Jo(M,x))**! of the ideal Jo(M,x).
The ideal Jo. (M, x) is the intersection (), . Jr(M,x). The ideal T (M, x) is the set of
functions each vanishing in a closed neighbourhood of x. Inclusion relations

jk(M, .T) C jk/(M, .T)
hold for all ¥’ and k in K such that &' < k.
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3.2. Jets and germs of mappings. Let C*°(N|M) denote the space of differentiable map-
pings from a differential manifold M to a differential manifold N. In the set C*°(N|M) x
M we introduce an equivalence relation for each k € K. Two pairs (p,x) and (¢’, z') are
equivalent if ' = x and

goy' —goyp € In(M,x)
for each g € C*°(N). The equivalence class of (¢, z) is denoted by j*p(x) and is called
the k-jet of ¢ at x. A c-jet is also called a germ. The set of k-jets is denoted by J¥(N|M).
The source and target projections are the mappings
orwvn) f SENIM) — M i o(z) —
and
Tevia) 2 SN(N|IM) — N 2 iFo(z) = o(x).
The symbol J*(N|M, x) will denote the fibre
orv (x) ={a € I (N|M); ok (N|m)(a) =z}
Inclusion relations
jk(Ma ‘T) c jk’(Mv ‘T)
for £ and k in K such that k' < k imply the existence of canonical epimorphisms
Tk/k(N\M,z) : Sk(N|M7 l‘) - 3k/(N‘Ma ‘T)
for each x € M. Hence, we have epimorphisms
™ kvian : IN|M) — FF(N|M).
Relations
k// _ k:// kl
T k(NIM) =T K(NIM) T k(N|M)
hold for k" < k' < k.
Jets of local mappings can be composed. If i*¢(z) € J¥(N,y|M,z) and j*4(y) €
I¥(0, 2| N, y), then j*1(y) o j¥¢(x) is an element of J*(O, z|M, x) defined by
i*9(y) oj*e(a) = i* (Y o )(x).
Sets
M. yIM, 2) = {a € JHNIM); onpy(a) = 2, Tovian (@) =y}
are used.
The k-jet prolongation of a mapping ¢ : M — N is the mapping
Fo: M — FHNIM) : z— iFp(x).
Jets of functions can be multiplied. Sets J*(R|M, ) are local algebras isomorphic to

the quotient algebras A*(M,z) = C°°(M)/J)(M,z). These algebras could be used to
reproduce the p* vitesses as points proches at each fixed point .

3.3. Jets and germs of submanifolds and jets with volume. Jets of submanifolds and
subsets in general can be defined. Let (S,z) and (5’,2’) be pairs composed each of a
subset of M and one of its points. The pairs are equivalent if ' = z and

jk(M,l') +30(M,S/) = jk(M,ZL') +30(M,S).
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This establishes an equivalence relation. The equivalence class of (S, x) is denoted by
j*S(x) and called the k-jet of S at .

A vector v € T, M is said to be tangent to a jet j*S(x) = Jp(M,x) + Jo(M, S) if
(df,v) = 0 for each function f € Jp(M,z) + Jo(M,S). Vectors tangent to a jet form
the tangent set of the jet. A k-jet of a set with a q-volume element is a pair (j*S(z),w)
composed of a jet j*S(z) and a g-vector w in the tangent space of j*S(x). We will denote
by B*9M the space of k-jets of subsets of M with g-volume elements.

3.4. Other interpretations of power ideals. Consider the lattice of closed subsets of M.
Unions and intersections of closed sets are closed. Infinite intersections are still closed.
Infinite unions are not necessarily closed. With a closed subset S C M we associate the
ideal

Jo(M,S) ={f € C*(M); Vypes f(x) =0}.

The ideal Jo(M, M) associated with the whole manifold M contains only the zero func-
tion. The ideal Jo(M, D) is the whole algebra C°°(M). These two ideals are considered
trivial. The following relations hold.

(1) jo(M, S) C jo(M, SI) if 8’ cS.

(2) jo(M, SU S/) = j()(M, S) N j()(M, S/)

(3) Jo(M,SNS")=7To(M,S)+ To(M,S").
These relations do not extend to infinite unions and intersections. An infinite intersection
of ideals associated with closed sets corresponds to the closure of the union of the sets.
An infinite union of ideals associated with closed sets does not necessarily correspond to
a closed set. Examples will be given below.

Products of ideals associated with sets are not usually associated with sets. Maximal
ideals

jO(]\4’ ‘T) = jO(]\47 {l‘})

corresponding to single point sets were introduced earlier. The powers J; (M, z) of these
ideals are not associated with sets. These power ideals could be considered enlarged points.

The ideal J; (M, ) +Jo(M, S) used in the definition of the jet j*S(x) of a submanifold
can be used to represent the jet. This ideal is not associated with a set.

3.5. The support of a current. Let ¢ be a current of dimension 0 in a differential manifold
M and let

Z(C) = {SC € M; ElUCM S vaeCOO(M) supp(f) cU= <f, C> = 0}
The support of ¢ is the set supp(c) = M\ Z(c). This definition is based on Theorem 7 p.
40 of de Rham’s book.
A new definition is proposed. The support of a current c is the ideal
S(c) = {f € C*(M); Ygec=(m) (9f,¢) =0}.
PROPOSITION 1.
supp(c) = {z € M; Vies(e) f(z) =0}
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Proof. a) Let x € Z(¢) and let U be an open neighbourhood of x such that (h,¢) = 0 for
each function h on M with supp(h) C U. Let f be a function on M such that f(z) # 0
and supp(f) C U. For each function g we have supp(gf) C U. Hence, (gf,c) = 0. It
follows that f € &(c). We conclude that x is not in the set

(1) {r € M; Vyes(e) flz) =0}

since f(x) # 0. We have proved the inclusion
supp(c) D {z € M; Vies(e) f(z) =0}

b) If x is not in the set (1), then there is a function f such that f(z) # 0 and
(g9f,¢) = 0 for each function g. Let U be a neighbourhood of = such that f(z’) # 0 for
each 2’ € U. If h is a function with supp(h) C U, then h = gf, where g is the function

g: M—-R
, {h(w’)/f(sc’), fora’ € U
R
0, for ' ¢ U
Hence, (h,c) = 0. It follows that x € Z(c). This proves the inclusion

supp(c) C {x € M; Vice(e) f(z) =0}. =

4. Ideals of functions on a product manifold. Given a system of ideals
I(M,z) CJo(M,z) C C>*(M)

we can introduce generalized jets as equivalence classes of pairs (p,x) € C°(N|M) x M.
Two pairs (¢, x) and (¢, z') are equivalent if 2’ = = and

goy' —gopeI(M,x)
for each g € C°(N). If M is a manifold with no additional structure, then the power
ideals J; (M, x) are the natural choice of ideals of differentiable functions. Other ideals
can be constructed in terms of additional structures in M. We will construct ideals of

functions on a product manifold.
The set N? displayed below

NQ

is a lattice. The partial order relation (k’,1’) < (k,1) holds if ¥’ < k and I’ < I. A subset
K C N?is an ideal if (k1) € K and (K',1') < (k,1) imply (k',1) € K. Here is an example
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of an ideal:
N2

* ok ok % .
(2)

* ok ok % .

* ok x k .

* ok ok ok ok ke e

¥ ok ok ok ok ke

An element of N? generates a principal ideal. The ideal generated by (k,1) is the set
{(K',1') e N*; (K',I') < (k,1)}
The set
N2

0 i . 0
0 Q

is the principal ideal generated by (4, 5). Each ideal is the union of principal ideals. The
ideal (2) is the union of principal ideals generated by (4,5) and (6, 3).

We establish a correspondence between ideals in the algebra C*° (M x N) and the ideals
in the lattice N2. The correspondence associates intersections of ideals in C°°(M x N)
with unions of ideals in N? and sums of ideals in C°°(M x N) with intersections of ideals
in N2, Inclusions of ideals are reversed by the correspondence. To the principal ideal
generated by (k,[) € N? we assign the ideal

oy (M % N, (2,9)) = Tu(M,x) o 7+ 3y(N.y) 0 p C C(M x N)

constructed with the canonical projections 7 and p of M x N onto M and N respectively.
This assignment extends to all ideals in N? since each ideal is the union of principal ideals.

The construction of ideals of functions on product manifolds produces useful results
in the case of the product R x R. The 1! vitesses in a manifold M are the I-tangent
vectors. These objects are equivalence classes of curves. In the space T'M of [-vectors we
can construct k-vectors. These objects are equivalence classes of curves in the space of
equivalence classes of curves in M. It has been shown [5] that the space T*T'M can be
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identified with the space T*Y M of equivalence classes of mappings
X:RxR— M.
Mappings x and X’ are equivalent if

goxX' —gox €Iupn(RxR,(0,0))
for each g € C°°(M). This identification makes studying such objects easier.

The set of vitesses in M constructed with an ideal in C°°(R?2,0) corresponding to an
ideal K C N? will be denoted by X M. The equivalence class of a mapping x : R? — M
will be denoted by t*x(0,0). This set is a differential manifold. Given two ideals K and
K’ such that K’ C K we introduce the projection

5 e TEM — TE M 55(0,0) — t5x(0,0).
This projection is a differential fibration.
Tt was shown in [5] that the manifold TXYK’ M is diffeomorphic to the fibre product
TENM x TM.
(TKﬂK’KM’TKﬁK’ K/ M)

The following diagram displays the union and the intersection of principal ideals
generated by (4,5) and (6, 3).

N2

5. Iterated tangent functors ([4], [5]). It is convenient to associate a covariant func-
tor

rs:k
Tk

J
with an index & C N. To a manifold M this functor assigns the differential fibration
M
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The differential fibration morphism
Tk
TPM ——— > TFN

TkM Tk N
4
M ———> N
is assigned to a morphism ¢ : M — N.
The differential fibration morphism

S’k
TleM % IkM

(3) Tkl M Tk M
TN M M
is the result of the functor
:Ik
Tk
J
applied to the fibration
M
TIM
M

It is convenient to think about the fibration (3) as the double fibration obtained by
applying to M the functor
Tha!

T,V
Zk
\ o
J

We have observed that for each manifold M the space T*T'M can be identified with
the space T*D M. We use mappings x : R — M to represent elements of T*T'M. In
terms of this representation we define the mapping

D s TR — TR (D3 (0,0) — tERX(0,0),
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where X is the mapping
X:R* — M: (t,5) — x(s,1).

The result of this construction is the natural transformation

ghgt Tlgk
TV /
{Zle Tigk
The diagram
Tk(fl (fl(fk
T V TZT‘k///
’ l,
Ek ‘zl (k l) 3:[3:]‘7/ T gk
PGS
sksrl’ S
ok - kV Tl/lgxgl, /
k(B
S S

expresses properties of the natural transformation k(%) represented also in the two fol-

lowing diagrams.
ThgIN ——— > glgk M

/

™ exin Tk
k(B0
T gl ——— gk
for ¥’ < k and

(k)
‘Ik‘IZM _........_.........._.1\{.[...__.> :IlrIkM

Thrl i Ve
KD 5 /
Tk TZM‘—“—‘—“>TZTk
for I’ <.
Relations
P a0 kR = Tgigin
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are obviously satisfied. The special case ky; = k11, is the most frequently used. It is
known as the canonical involution in TIM = T M.

We introduce mappings
AED AL TR 5 (0) - tFD (0, 0),
where y is the mapping
X:R? = M: (s,t) — (s +1).
In this definition we are using the identification of T*T'M with T M. An alternative
definition is given by
PGSV el V/ N s o Vo tkH’y(O) — tktl'y(O),
The commutative diagram
A1)

csk+l Tk(fl
Tll% T]f%
<l 41 <l Thn
X .
Tk gk
N ¥ N ¥
J J

presents A(*) as a natural transformation.
Mappings Ay = X35 1 and Ay = A(WD ; are of particular interest.

6. Applications to the calculus of variations ([5], [6])

6.1. Derivations. Let (M) be the exterior algebra of differential forms on a differential
manifold M. A linear operator a : Q(M) — Q(M) is called a derivation of Q(M) of degree
p if ap is a form of degree ¢ + p and

a(pAv)=apAv+ (—1D)Plp Aav

when p is a form of degree ¢ and v is any form on M. The exterior differential d : Q(M) —
Q(M) is a derivation of degree 1. The commutator
[a,a'] = aa’ — (—1)" aa

of derivations a and a’ of degrees p and p’ respectively is a derivation of degree p + p'.
A derivation a is said to be of type &« if af = 0 for each function f on M. A derivation
a is said to be of type dx if [a,d] = 0. If £4 is a derivation of type &x, then dg = [£4,d]
is a derivation of type dx. Derivations are local operators: if a is a derivation and p
is a differential form on M vanishing on an open subset U C M, then au vanishes
on U. A derivation is fully characterized by its action on functions and differentials
of functions since each differential form is locally representable as a sum of exterior
products of differentials of functions multiplied by functions. A derivation of type dx is
fully characterized by its action on functions.
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6.2. Vector-valued forms and derivations. A vector-valued p-form is a linear mapping
A: NPEM — M.

If we APE,M, then A(w) € ¥,M. Following Frolicher and Nijenhuis [2] we associate
with a vector-valued p-form A a derivation £4 of type s and degree p — 1 and the
derivation d4 = [£4,d]. The derivation £4 is characterized by its action on 1-forms. If p
is a 1-form, then &4 is a p-form and

(Eap, w) = (u, A(w))
for each w € APTM.
For each k£ € N and each n € N we define a linear mapping

Fk;n) : STEM — TT8M - t3F)x(0,0) — R y™(0,0),
where Y is a mapping from R? to M and
X" R% — M : (s,t) — x(st™,t).
Relations
F(k;0) = 1ggi,
F(k;n') o F(k;n) = F(k;n' +n),

and

F(k;n)=0 ifn>k
are easily established. The diagram

F(k;n)
TTEM ———————> Tk [

Tk M Tt M
is commutative since x™(0,-) = x(0, -) and the diagram
F(k;n)

TR — > 3%k M

ITk/ kM ITk, kM
) F(K';n) ,
TFM—————> 3T M
is obvously commutative. It follows that the mappings F'(k;n) are vector-valued 1-forms.

Let Qi (M) denote the exterior algebra of differential forms on the k-jet bundle T%M.
We will denote by wi¥ ar the homomorphism

’

’Tk kM* : Qk/(M) — Qk(M)



170 W. M. TULCZYJEW

Derivations {p(x;n) and dp(x;n) are associated with the vector-valued 1-forms F'(k;n).

Diagrams
é.F(k’;n
Qe (M) s (M)
wkk/M Wk /M
gF(k:;n)
Qk (M) Qk (M)

are commutative.

6.3. Generalized vector-valued forms and derivations. The article [3] offers a generaliza-
tion of the Frolicher and Nijenhuis theory. Let ¢ : N — M be a differentiable mapping.
The mapping ¢* : Q(M) — Q(N) is a homomorphism of the exterior algebras. A deriva-
tion of degree p relative to p™* is a linear operator a: Q(M) — Q(N) such that au is a
form on N of degree ¢ 4+ p and
a(pAv) =ap A v+ (=1)Plp*u A av
if p is a form on M of degree ¢ and v is any form on M. A derivation of the algebra
Q(M) is a derivation relative to the identity mapping 1,,. A derivation a relative to ¢
is said to be of type &x if af = 0 for each function f on M. A relative derivation a of
degree p is said to be of type dx if ad — (—1)Pda = 0. If {4 is a derivation of type {x
relative to ¢, then dg = £4d — (—=1)Pd€4 is a derivation of type dx relative to ¢. Note
that the expressions ad — (—1)Pda and £4d — (—1)Pd€4 are not commutators since each
of these expressions involves two different exterior differentials d. If a is a derivation of
degree p relative to ¢* and ¢ : O — N is a differentiable mapping, then the operator
P*a: Q(M) — Q(O) is a derivation of degree p relative to (o t)* since
Pra(p Av) = Pap ATt + (“1)PT o A Tar
=y ap A (p o) v+ (=1)Pp o) u Ay ar
if p is a form on M of degree g and v is any form on M. If a is a derivation of type
&4 or dx, then 1*a is a derivation of the same type. Relative derivations are again local
operators and are completely characterized by their action on functions and differentials
of functions.
A wvector-valued p-form relative to ¢ : N — M is a linear mapping

A: NPEN - SM

such that if w € APT, N, then A(w) € T,y M. We associate with a vector-valued p-form
A relative to ¢ a derivation &4 relative to ¢* of type &4 and degree p— 1 and the relative
derivation dg = §4d — (—1)Pd€4. If p is a 1-form on M, then 4p is a p-form on N and

(Eap, w) = (u, A(w))
for each w € APETN.
For each k € N we introduce the mapping

T(k) : SFIM — ITEM = #F14(0) > t74(0).
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For kK = 0 we have

T(0): TM — TM : t'4(0) — ty(0).

Diagrams
T (k)
ThHI M TTEM
R Tk
, T(K) :
AN TIFM

are commutative.
Interpreting the mapping T'(k) as a vector-valued O-form relative to

i TM - TEM

we introduce derivations &py @ Qu(M) — Qgi1(M) and dpgyy : (M) — Qpy1 (M)
relative to (Uk;Jrlk(M). The derivation ;) is a derivation of degree —1. The derivation
drgy = §ryd + d€p(r) of degree 0 is known in the calculus of variations as the total
derivative. Diagrams

Er(r)
O (M) Qw1 (M)
wkk/M Wk+1k/+1M
Er(k)
Q. (M) Qi41(M)
and d
(k')
Qk/(M) Qk/+1(M)
Wkk,M wk+1kl+lM
dp(r)
Q. (M) Qi1 (M)

are commutative.

6.4. The Euler-Lagrange differential. Let M be manifold. A parameterized differentiable
arc is the restriction &|[tg, ¢1] of an emedding £ : R — M to an interval [tg, t1] C R. The
space Q(M|R) of arcs is not a differential manifold.

In terms of differentiable homotopies x : R? — M we define curves

Vto, ta] : R — Q(M[R) : s — x(s,-)|[to, t1]
considered differentiable by definition.
Let L : M — R be a differentiable function. The mapping

t1
A: QM|R) — R : |[to, t1] — Lotkg

to
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is considered a differentiable function. There is a natural projection
Pr: Q(MIR) — T1M x 1M : €lto, 1] (716 (ty), 1€ (11)).

The function A is considered a family of functions defined on fibres of this projection and
the calculus of variations is a study of the critical set of this family. An arc £|[tg, t1] is a
critical arc for the family if

D(A o 9[to, t1])(0) =0

for each homotopy x : R? — M such that x(0,-) = &, t*"1x(s, )(ty) = t*1¢(tg), and
t*=x(s, ) (t1) = ti71€(ty) for each s. The curve 7|[to, 1] derived from such homotopy is
said to be wvertical.

By introducing mappings
0 : R —IM : t— tx(-,1)(0)

and
(Stkf = Kj(k’l)M o tk6£

we obtain the expression

Do ltont)0) = 5 [ Lo (sl

t1
= / (AL, 6tk¢).
to

This expression is converted to an equivalent expression

D(A o [to, 1])(0) = / (L, 6t¢)

to

ty
= / (AL, Tr* g1 0r 0 682%€)

to

ty
= / <w2kkMdL,5f2k§>

to
t1 t1
— [ (B0aL.50) ~ [ tdrey POIALL 5
to to
with operators
E(k) : Qx(M) — Qo (M),

and

P(k): Qp(M) — Qop—1(M)
defined by

71 n
E(k) = ( n,) work T M AT (et 1) AT (kn—2) * * * A7) EF (kim) -
n=0 ’
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and

k

_1 n _

P(k) = Z ( n,) wak— 1" g drhin—2) - Ay ERn)
n=1 :

for k > 0.
The form E(k)dL € Qg (M) is vertical with respect to the projection

Town : TRM — M
and the form P(k)dL € Qg,_1(M) is vertical with respect to the projection
TR s TR — R
Verticality of these forms makes it possible to define mappings

EL: %k m T* M

and
PL: 21N — g*gh-1y
such that
Ty 0 EL = Topm
and

myp o PL = Top_10m-
These mappings are characterized by
(E(k)AL,w) = (—1)*(EL(rgarrs (w)), TTopr (w))
for each w € TT?* M and
(P(k)AL,w) = (PL(tgar-1p(w)), T 2101 (w))
for each w € TI2F~1 M.

The following final expression for the derivative of A is obtained:

/t1 (EL o 25, 86) — ((PLo 2771 (t1), 0t €(t1)) + (PL o 27 1€) (to), 6t* ¢ (to)).

to

If the curve v|[to, t1] is vertical, then the boundary terms vanish and the Fuler-Lagrange
equation

ELot?re =0

is obtained as the condition for the arc £|[to,¢1] to be critical. The boundary terms are
important in variational principles of physics but not in the calculus of variations.
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7. A framework for the Legendre transformation ([7], [8], [9]). The diagram

ﬁT*Mw ap
& M) TTF M TETN

T*TEM

Tk pp Tk \p T TE M

TEM TM

M

contains the essential geometric objects used in the formulation of the Legendre trans-
formation of analytical mechanics.

On the Hamiltonian side we have the vector fibration isomorphism

ﬂ TRM.w
TTF M & M) THTHF M
Tk g Tk pp
TENM TEM

derived from the symplectic structure of T*M.
On the Lagrangian side there is the vector fibration isomorphism

N

TIT*M TEIM
T TEM
M TM
defined as dual to the vector fibration isomorphism
TIM L TTM
v TEM
TM M

in the sense that
(o (2), w) = (2, kp(w))

for 2 € TT*M and w € TIM such that Tm(2) = Tear(w).
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8. Isomorphisms between TT*M, T*TM, and T*T*M. We introduce the set 23(M)
of equivalence classes of pairs (f,v) of a function f: Rx M — R and a curve v : R — M.
The equivalence is defined in terms of functions

F:R* = R:(s,t) — f(s,0(t,7(s)))
and
F':R2SR: (s,t) — f'(s,0(t,7'(s)))

associated with pairs (f,v) and (f’,7'), and a mapping ¢ : R x M — M such that
©(0,z) = z for each x € M. Pairs (f,7) and (f’,+') are equivalent if

t/(0) = t(0),
df'(0,)(v(0)) = df(0,-)(7(0)),
and
DYV E(0,0) = DBV F(0,0).
Coordinates
(x"””,:'v’\,a“,b,) (WM — R™
in 20(M) are defined by

with
T: M =Rz Df(,)(0),
and

by (w) = 0, f(0,-)(~(0)).

Given coordinates (2" (w), 2* (w), a,(w), b, (w)) of an element w € (M) we construct
a representative (f,~) of w. The curve -y is characterized by

(2" 07)(5) = ™ (w) + " (w)s
and the function f is defined by
£(5,2) = by ()" (@) + a, ()2 (2)s.
We establish an isomorphism of 23(M) with TI*M. A pair (f,7) representing an
element w € (M) is used to construct a curve
PR —TM: s df(s,)(v(s)).
The tangent vector tp(0) is the element of TT* M associated with w.

We establish an isomorphism of 20(M) with T*TM. A pair (f,7) representing an
element w € W(M) is used to construct a function

g:IM - R:to(0) — Df(-,0(-))(0).
The covector dg(z) at z = ty(0) is the element of T*TM associated with w.
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We establish an isomorphism of 203(M) with T*T*M. A pair (f,7) representing an

element w € (M) is used to construct a function

h:T*M — R: dk(z) — D(f(-,z) — ko v)(0).

The covector dh(p) at p = df(0,-)(7(0)) is the element of T*T*M associated with w.

1
2]
3]
(4]
5]
[6]
(7]
18]
(9]

[10]
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