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1. Introduction. The problem of equivalence of submanifolds of homogeneous spaces
of Lie groups was extensively treated by F. Cartan by his method of moving frames [2].
A basic idea of Cartan’s method is that for sufficiently high k, G-contact of order k (see
§4) implies G-equivalence. In other words, for each homogeneous space M there exists an
integer k, depending on the dimension p, such that if two submanifolds S and S of same
dimension p have G-contact of order k, then there exists g € G such that gS = S. Cartan
treated several important geometrical examples and proved in each case the existence of k.

Essentially, Cartan’s method of proving the existence of the element g € G consists
in using the uniqueness of solution of a system of first order differential equations as in
Frobenius theorem. Cartan’s theory has been the subject of interest of a great number of
authors (see for example [4], [5]). However, they all reduce the proof of the existence of
the element g € GG to the uniqueness of solution of a first order differential system whereas
it seems more natural and geometrical to deal directly with a higher order differential
system.

The notion of contact element as defined by Ehresmann [3] allows a geometrical for-
mulation of the theorem of existence and uniqueness of solution of higher order completely
integrable differential systems which is a straight forward generalization of Frobenius the-
orem (theorem 1). It is the uniqueness of this theorem that we use to solve the problem
of G-equivalence. As a result, the regularity conditions on the submanifolds S and S,
which are necessary for the theorem of equivalence to hold (theorem 3), can be given
a simple and geometrical definition, valid in any homogeneous space M. Also, in the
method of moving frames, the invariants of a submanifold S of M are defined attaching
special higher order frames to the points of S, [2], [5]. These frames are constructed by
subtle geometrical arguments valid for a fixed homogeneous space whereas we construct

2000 Mathematics Subject Classification: Primary 53A55; Secondary 53C30.

[201] © Instytut Matematyczny PAN, 2007



202 A. A. M. RODRIGUES

the invariants of S as the elements of a complete set of invariants of the orbits of G acting
on a manifold of higher order contact elements.

The equivalence problem may be posed for two immersions f,h : S — M of a
differentiable manifold S. f and g are equivalent if there exists g € G such that h = Ljo f
where Ly(z) = gz, x € S. This fixed parametrization theorem has been treated by J. A.
Verderesi [7] by means of a higher order differential system defined in a manifold of jets.

The paper ends with a necessary and sufficient condition for a submanifold S of M
to be an open set of an orbit of a Lie subgroup K of G.

This paper is a summary of a lecture delivered at the 7th Conference on Geometry
and Topology of Manifolds at Bedlewo. Proofs will appear elsewhere.

2. Contact elements. All manifolds and maps considered in this paper are assumed to
be differentiable of class C*°. If M and N are manifolds and f : M — N is a map, the
induced map on tangent spaces at points a € M and b = f(a) € N will be denoted by
fa : ToM — TyN. Given integers p, k > 0, p < dim M, J*PM denotes the manifold of all
k-jets of rank p whose source is the origin of RP and whose target is any point of M. Let
GL*RP be the Lie group of invertible k-jets whose source and target are at the origin of
RP. By definition, a contact element of order k and dimension p of M is an equivalence
class of J®*PM under the equivalence relation: for X,Y € J*PM, X ~ Y if there exists
Z € GLF(RP) such that Y = X o Z. The set of contact elements of order k and dimension
p of M is a differentiable manifold denoted by C*?(M). C%P(M) identifies naturally with
M [3].

For 0 < k' < k there is a natural projection nf, : C*P(M) — C¥»(M). If k' = 0,
we write 7% : C¥PM — M instead of w§. The fiber of C*?M over a € M is denoted
by C*P M. TIf p is the dimension of M, C*? M has only one element which is denoted by
CkM and is called the contact element of order k of M at the point a € M.

Given a submanifold S of M, S C M, and an integer p, 0 < p < dim S, there is a
natural injection of C¥?S into C*PM. If p is the dimension of S, composing the map
a €S — CkrS € CHPM with the injection C¥PS — CKPM, we define an injection
Ck:aeS — CkS e CFPM. The image of this injection is denoted by C*S C Ck-P M.
Two submanifolds S and S of M of the same dimension p have contact of order k at a
common point a if C¥S = CkS.

3. Completely integrable differential systems of higher order. A differential
system of order £ > 1 and dimension p defined over a manifold M is a submanifold
QOF of Ck¥PM such that the projection 7% : QF — M is of rank equal to the dimension
of M. An integral manifold of Q is a submanifold S of M of dimension p such that
CkS € OF for all z € S. For X € C¥PM, let Fx be the fiber of X by the projection
7y CFPM — C*=LPM. The symbol o(X) of QF at the point X € QF is by, definition,
the vector space

O’(X) = Tka NTxFx.

Let X+l € Ck+lrp, X* = 7}t (X), and let S be a submanifold of M such that
X+l = CF1S aeS. Then, C%,(C*S) depends only on X**! and not on the choice
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of S. Hence, there is a natural imbedding
RN eLaR) VNG I(oL) V)

which maps X**! into C;(k (C*S). By definition, the first prolongation of the differential
system QF is the subset Q%! of C*t1P M defined by

Qb1 = (A" ot @F) n RN (O ).
k+1

Since m, " = mgo AR it follows that 7T’]:+1 maps QF! into QF. If S is an integral manifold
of QF then, C*¥+15 € OF1 for every x € S. Hence, a necessary condition for the existence
of an integral manifold of QF going through every point of QF is that the projection

71'];"'1 - QP — QF be surjective.

THEOREM 1. Let QF € C*PM be a differential system of order k > 1 and let X € QF be
a contact element such that

1) o(X) = {0};

2) The image of Q*' by the projection 7r,’§+1 c QR QF s a neighborhood of X in QF.

Then, there exists an integral manifold S of QF such that X € C*S. Moreover, if S and

S’ are integral manifolds of QF such that X € C*SNCFS’, there exists a set W which is
an open neighborhood of X in C*S and C*S'.

Theorem 1 is a geometrical version of the theorem of existence and uniqueness of
solutions of completely integrable systems of partial differential equations of order k£ > 1.
Taking suitable coordinates in C*T1P M and C*PM, the existence of integral manifolds
of QF reduces to the existence of solutions of a completely integrable system of partial
differential equations [6].

4. Contact of submanifolds. Let G be a Lie group acting transitively on the manifold
M. Two submanifolds S and S of M of same dimension p, have G-contact of order p
at points @ € S and @ € S if there exists g € G such that ga = @ and ¢S and S have
contact of order k at the point @ . S and S have G-contact of order k > 0 if there exists
a diffeomorphism ¢ : S — S such that for all z € S, S and S have contact of order k at
points x and ¢(z) = g(z)x . We say in this case that ¢ makes contact of order k of S
onto S . S and S are G-equivalent if there exists ¢ € G such that ¢S = S. S and S are
locally G-equivalent at points @ € S and @ € S if there are open neighborhoods of a and
@ in S and S which are G-equivalent.

The action of G on M extends to an equivariant action on the manifold C*?M of
contact elements of order k and dimension p of M. For a point 2 € M, let CkS, G¥ and
dk(x) denote respectively the contact element of order k of S at the point z, the isotropy
subgroup of G at the point C¥S and the dimension of G¥. We call G¥ the isotropy
subgroup of order k of the point x of S. Put X = C¥S and let h*(z) be the dimension
of the vector space Tx(GX) N TxC*S where C*S is the submanifold of C*PM of all
contact elements of order k of S and Tx (GX) and TxC*S are the tangent spaces of the
orbit GX and of C*S at the point X.

For k' < k, d*(z) < d¥ (2) and h¥(z) < h¥' (). Hence, there exists an integer k > 1
such that d*(x)d*~1(z) and h*(z) = h*~1(z). We say that a € S is a k-regular point of
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S under the action of G if there exists k > 1 such that

1) d*(a) = d*~'(a) and h*(a) = h*1(a);
2) d*(z) and h*(x) are constant for x varying in a neighborhood of a in S.

The order of a is the least integer satisfying conditions above. If a is a k-regular point of
S then ga is a k-regular point of gS.

THEOREM 2. Let S, S be two submanifolds of M of same dimension p. Let a € S and
@ € S be two points. Assume that @ is a k-regular point of S and that there exists a
continuous map ¢ : V — G, defined in a neighborhood V' of a in S, such that p(a).a = @,
o(z).x € S and p(x).CFS = CZZ(;E)E for all x € V. Then, there ezxist open neighborhoods

W and W of a and @ in S and S which are G-equivalent.

The proof of theorem 2 is based on the uniqueness statement of theorem 1.

We assume in theorems 3, 4, 5, 6, 8 that the action of G on M is proper and that H
is a closed subgroup of G. Let L be the union of all G-orbits of C*PM of type H that is,
orbits whose isotropy subgroups are conjugate to H. Denote by L/G the quotient space
of L by the orbits and by 7 : L — L/G the natural projection. It is known [1] that L and
L/G are differentiable manifolds and that (L, L/G,7) is a locally trivial fiber bundle.

Let f: S — S be a diffeomorphism such that S and S have G-contact of order k > 1
at corresponding points z € S and T = f(z) € Sand let a € S and @ = f(a) € S be two
points. Considering suitable cross sections of the fiber bundle (L, L/G, 7), one can prove
the existence of a neighborhood V of a in S and of a differentiable map ¢ : V' — G such
that ¢(z).x = f(z) and ¢(x).CFS = CES. Hence, theorem 2 can be restated as follows:

THEOREM 3. Assume that the action of G on M is proper and that there exists k > 1
such that
1. a € S is a k-regular point.
2. The isotropy subgroups of CES are conjugate in G for allT € S.
3. There erists a diffeomorphism f : S — S such that S and S have G-contact of
order k at corresponding points.

Let a € S be such that f(a) =a. Then S and S are locally G-equivalent at points a and a.

THEOREM 4. Assume that S and S are connected and that there exists an integer k > 1
such that:
1. T € S is a k-regular point of S and h*(T) =0 for allT € S.
2. The isotropy subgroups of C’%g are conjugate in G for all T € S.
3. There erists a diffeomorphism f : S — S such that S and S have G-contact of
order k at corresponding points.

Then, f is the restriction to S of the translation by an element g of G : f = L4|S.

Consider again the fiber bundle (L, L/G,w). There exists a finite number of real
valued differentiable functions p;, 1 < ¢ < r, defined in L, such that two contact elements
X, X € L are in the same fiber of L if and only if 5;(X) = p;(X), 1 <i < r. Given a
submanifold S of M of dimension p, and assuming that the orbits of C*S are of type H
for all z € S, one can pull back the functions p; by the map ¢ : 2 € S — CFS € L.
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The set of functions p; = p; o o*, 1 < i < r, is a complete set of G-invariants of order
k of the submanifold S of M. Often the invariants can be defined in a natural way and
have deep geometrical meaning as for instance, the curvature and torsion of curves and
the principal curvatures of surfaces in R3.

Assuming that the isotropy subgroups of C¥S and CES are of type H for all x € S
and Z € S, complete sets of invariants of order k, p; and p; can be defined in S and S.
The condition h*(Z) = 0 in theorem 4 is then clearly equivalent to stating that the rank
of differentials dp;, 1 < i <, is p at every point T € S One can then restate theorems
3 and 4 in the following way.

THEOREM 5. Let @ € S be a k-reqular point of S, k > 1. Assume the following conditions
are satisfied:

1. The isotropy subgroups of CXS and CES are conjugate for allz € S and T € S.
2. There ezxists a diffeomorphism f : S — S such that

pi=piof, 1<i<m
Then, S and S are locally G-equivalent at points a = f~1(a) and G.
THEOREM 6. Let S, S be two connected submanifolds of M and let k > 1 be such that

1. Every point T € S is k-reqular.
2. The isotropy subgroups of CXS and CES are conjugate for all x € S and T € S.
3. There exists a diffeomorphism f : S — S such that

pi=p;of, 1<i<r.
4. The rank of differentials dp;, 1 <i <, is p at every point T € S.
Then, f is the restriction to S of the left translation by an element of G: f = Lg4|S.

Let us assume that S is an open set of an orbit of a Lie subgroup K of G. Then,
hk(x) = p and the isotropy subgroups of C¥ are conjugate for all z € S and k > 0. Hence
there exits k > 1 such that every z € S is a k-regular point of S. Conversely,

THEOREM 7. A necessary and sufficient condition for a connected submanifold S of M
to be an open set of an orbit of a Lie subgroup K of G is the existence of k > 1 such that
for all z € S, x is a k-regular point of S and h*(x) = p.

Assuming that the action of G on M is proper and that the isotropy subgroups of
order k of points of S are conjugate, a complete set of invariants of order k£ can be defined
on S. Clearly, h*(x) = p for every x € S if and only if the invariants are constant on S.
Therefore, the following corollary to theorem 7 holds.

THEOREM 8. Assume that the action of G on M is proper and that S is connected. Assume
also that for some integer k > 1, every point of S is k-reqular and all isotropy subgroups
of order k of points of S are conjugate. Then, a necessary and sufficient condition for S
to be an open set of an orbit of a Lie subgroup of G, is that the invariants of order k of
S be constant.
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