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Abstra
t. The 
ontents of the arti
le represents the mini
ourse whi
h was delivered at the 7th
onferen
e �Geometry and Topology of Manifolds. The Mathemati
al Lega
y of Charles Ehres-mann�, B�dlewo (Poland), 8.05.2005 � 15.05.2005. The arti
le in
ludes the des
ription of the so
alled Hirzebru
h formula in di�erent aspe
ts whi
h lead to a basi
 list of problems related tonon
ommutative geometry and topology. In 
on
lusion, two new problems are presented: aboutalmost �at bundles and about the Noether de
omposition of the Fredholm operators whi
h maynot admit the adjoint operator.Introdu
tion. In the se
ond half of the last 
entury a new resear
h �eld was developedintensively, whi
h is 
ustomarily referred to as �non
ommutative geometry�. As a matterof fa
t this notion 
overs the 
ir
le of problems and methods that are primordially basedon a fairly simple idea: to reformulate topologi
al properties of spa
es and mappings interms of 
orresponding algebras of 
ontinuous fun
tions. Though this idea is very old (itgoes ba
k to the 
lassi
al Gelfand�Naimark theorem about one-to-one 
orresponden
ebetween the 
ategory of lo
ally 
ompa
t topologi
al spa
es and the 
ategory of 
om-mutative C∗-algebras) and was developed by many authors both in 
ommutative andnon
ommutative setting, this idea was pro
laimed more or less manifestly as a programby A. Connes in his book �Non
ommutative geometry� ([Con94℄).In spite of its self-eviden
e this idea to 
onsider, along with 
ommutative C∗-algebras,also non
ommutative algebras as a family of fun
tions on a non-existing �non
ommuta-tive� spa
e has be
ome very produ
tive and therefore allowed to join together a variety ofdi�erent 
on
epts and methods from many areas su
h as topology, di�erential geometry,fun
tional analysis, representation theory, asymptoti
 methods in analysis. They allowedalso to mutually enri
h all these areas with new theorems and properties.2000 Mathemati
s Subje
t Classi�
ation: Primary 57Rxx, 55Rxx, 19Lxx; Se
ondary 19Kxx,46L80, 46M20.The paper is in �nal form and no version of it will be published elsewhere.[245℄ 
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246 A. S. MISHCHENKOProblems of di�erential topology 
onsidered in the sixties were the sour
es of non-
ommutative geometry. In essen
e, the des
ription of topologi
al and homotopy invariantsof smooth and pie
ewise linear manifolds was only one solved problem. The typi
al in-variants for smooth and pie
ewise linear manifolds were so 
alled 
hara
teristi
 
lasses,whi
h were known of three types: the Stiefel�Whitney 
lasses, the Chern 
lasses and thePontryagin 
lasses. They are 
losely related also to ve
tor bundles.Hen
e the problem 
an be formulated as follows: to what extent one or another 
har-a
teristi
 
lass depends on smooth stru
ture of manifolds by means of whi
h it is deter-mined? As an answer in the �fties it was established that the Stiefel�Whitney 
lasses arehomotopy invariants. More or less using the same methods one 
an establish that rationalPontryagin 
lasses are topologi
al invariants.As to homotopy invarian
e of the Pontryagin 
lasses this problem until now is not 
learand 
ontinues to intrigue many mathemati
ians. This problem �nally was known as theNovikov 
onje
ture and was one of essential sour
es of the generation of non
ommutativegeometry.0.1. From Poin
aré duality to the Hirzebru
h formula. The Pontryagin 
lasses are nothomotopy invariant but have 
lose relation to the problem of a des
ription of smoothstru
tures of given homotopy type. Hen
e the problem of �nding all homotopy Pontryagin
lasses was 
onsidered vital. In reality, another problem happened to be more natural.From the point of view of a 
lassi�
ation of smooth stru
tures on a manifold the mostappropriate equivalen
e relation between manifolds turned out to be so 
alled internalhomology or bordism of manifolds.In 1945 Pontryagin suggested that internal homology 
an be des
ribed in terms of 
er-tain algebrai
 expressions in 
hara
teristi
 Pontryagin 
lasses�the Pontryagin numbers([Pon45℄, 1945), and established that the Pontryagin numbers are invariant with respe
tto internal homology ([Pon47℄, theorem 3). Using the surgery theory for smooth manifoldsW. Browder and S. Novikov proved that the unique homotopy invariant 
hara
teristi
Pontryagin number 
oin
ides with the signature of an oriented 
ompa
t manifold withrespe
t to the Poin
aré duality. The formula that identi�es the signature of a manifoldwith a 
ertain 
hara
teristi
 Pontryagin number is now known as the Hirzebru
h for-mula ([Hir53℄), though its spe
ial 
ase was established by V. A. Rokhlin a year before([Rok52℄).The Poin
aré duality and the Hirzebru
h formula have a long history, partly 
on-ne
ted with 
oming into being of non
ommutative geometry and results of the Mos
owtopologi
al s
hool of the se
ond half of the 20th 
entury. The study of these problemsbegan with the prominent paper �Analysis situs� by H. Poin
aré in 1895 ([Poi95℄). ThereH. Poin
aré in parti
ular for the �rst time formulated the theorem known now as thePoin
aré duality for 
losed oriented manifolds. Although the 
omplete statement and theproof of the Poin
aré duality were presented 
onsiderably later, H. Poin
aré undoubtedlydis
overed the theorem. Certainly H. Poin
aré oversimpli�ed the statement. He meantthe 
oin
iden
e of the Betti numbers that were equidistant from the ends ([Poi95℄, p.490). In any 
ase the notion of the Betti numbers requires a more pre
ise de�nitionwhi
h H. Poin
aré partly gave in his subsequent papers. There is the ex
ellent paper



K-THEORY OVER C∗-ALGEBRAS 247by P. S. Alexandro� 
ontaining his spee
h devoted to the 
entennial of H. Poin
aré'sbirthday on the spe
ial meeting of the International Congress of Mathemati
ians (Ams-terdam, 1954) (see [Ale72℄, p. 813). We 
an hardly add anything more to this ex
ellent
hara
terization of the 
ontribution of H. Poin
aré to the homology theory of manifolds.We should espe
ially point out the following new important obje
ts in algebrai
 topol-ogy: the homology groups (E. Noether, 1925), the 
ohomology groups (J. Alexander,A. N. Kolomogorov, 1934), duality between them (L. S. Pontryagin). The most signi�-
ant event was the 
reation of 
hara
teristi
 
lasses (Stiefel, Whitney, 1935; Pontryagin,1947; Chern, 1948). Everything be
ame prepared to 
onne
t the Poin
aré duality andintegral invariants of 
hara
teristi
 
lasses. This 
onne
tion is now known as the Hirze-bru
h formula. The Hirzebru
h formula gives us an ex
ellent example of the appli
ationof 
ategori
al methods in algebrai
 and di�erential topology. After introdu
tion of thenotion of homology group, the Poin
aré duality was meant as 
oin
iden
e of ranks ofhomology groups. For the Betti numbers it was inessential what kind of homology groupswere 
onsidered�integer or rational, sin
e the rank of the integer homology groups 
o-in
ides with the dimension of the rational homology groups. But the notion of homologygroups allowed to enri
h the Poin
aré duality by 
onsidering the homology groups with
oe�
ients in �nite �elds. Therefore, 
oin
iden
e of Betti numbers 
an be interpreted asisomorphism of rational homology groups. Taking into a

ount the torsion one shouldinterpret the 
oin
iden
e of the torsion as an isomorphism of new groups. But thesenew groups 
annot be homology groups be
ause the torsion 
oin
ides in the dimensionsdi�erent from the 
oin
iden
e of the Betti numbers. This apparent in
onsisten
y wasunderstood after the 
reation of the 
ohomology groups and their relations to the homol-ogy groups. Finally, the Poin
aré duality was interpreted as an isomorphism between thehomology groups and the 
ohomology groups of 
omplementary dimensions:(1) Hk(M ;Z) ≈ Hn−k(M ;Z).The 
ru
ial understanding here is that this isomorphism is not abstra
t but is gener-ated by a natural geometri
 operation. For example, in the 
ase of the middle dimensionwhere dimM = n = 2m the 
ondition (1) be
omes a trivial one sin
e(2) Hm(M ;Q) = Hom(Hm(M ;Q), Q) ≡ Hm(M ;Q).But in the equality (1) the isomorphism is not a

idental. This isomorphism is generatedby the interse
tion operation with the fundamental homology 
lass [M ]:
∩ [M ] : Hn−k(M ;Q)→ Hk(M ;Q).This means that to the manifold M one 
an assign the nondegenerate quadrati
 formwhi
h has an additional invariant�the signature of the quadrati
 form.The Hirzebru
h formula is the expression of the relation between the signature of themanifold M and some 
hara
teristi
 number of the same manifold M .The Hirzebru
h formula says that for a 4k�dimensional orientable 
ompa
t 
losedmanifold X the equality(3) signX = 2k〈L(X), [X]〉



248 A. S. MISHCHENKOholds. Here signX= sign(H2k(X,C),∪) is the signature of the nondegenerate quadrati
form in the 
ohomology groups H2k(X,C), de�ned by the ∪-produ
t:
([ω1], [ω2])

def
= 〈[ω1] ∪ [ω2], [X]〉 = 〈[ω1 ∧ ω2], [X]〉 =

∫

X

ω1 ∧ ω2.The 
lass
L(X) =

∏

j

tj/2th(tj/2)is the Hirzebru
h 
hara
teristi
 
lass de�ned by formal generators tj su
h that
σk(t1, . . . , tn) = ck (cTX) ∈ H2k(X;Z),where σk is an elementary symmetri
 polynomial.There are di�erent ways to generalize the Hirzebru
h formula�mainly for non-simply
onne
ted manifolds whi
h play a 
ru
ial role in di�erent problems of non
ommutativegeometry and topology.1. Finite dimensional representations1.1. Finite dimensional unitary representations. LetX be a 
losed orientable non simply
onne
ted manifold and let π = π1(X),

fX : X → Bπbe the 
anoni
al mapping de�ned up to homotopy that indu
es an isomorphism of fun-damental groups
(fX)∗ : π1(X)→ π.Consider a �nite dimensional representation
ρ : π → U(N).Using the representation ρ one 
an 
onstru
t several obje
ts:1) The �at (
omplex) ve
tor bundle ξρ over Bπ, indu
ed by the representation ρ.2) The �at (
omplex) ve
tor bundle ξρ

X over X indu
ed by the same representation
ρ, ξρ

X = f∗Xξ
ρ.3) The 
ohomology groups H2k(X, ρ) with the lo
al system of 
oe�
ients indu
ed bythe representation ρ

H2k(X, ρ) = H2k(X, ξρ
X).The ∪-produ
t indu
es a nondegenerate Hermitian form in the group H2k(X, ρ):

H2k(X, ξρ
X)×H2k(X, ξρ

X)
∪
−→H4k(X, ξρ

X ⊗ ξ
ρ
X)

〈·,·〉
−→H4k(X,C) ≈ C.The signature of this form will be denoted by

signρX = sign(H2k(X, ρ),∪).It is easy to 
he
k that(4) signρX = 2k〈L(X) ch ξρ
X , [X]〉.Sin
e ξρ is a �at bundle one has ch ξρ = dim ξρ = N . Hen
e both the left side and rightside of the formula (4) 
oin
ide with that of (3) up to an integer fa
tor N .



K-THEORY OVER C∗-ALGEBRAS 249This means at least that the signature signρX depends only on the dimension ofthe �nite dimensional unitary representation ρ. Nevertheless this 
ase might be usefulfor further generalizations. Namely one 
an 
onstru
t at least the right hand side of theformula (4) for more general representations of the fundamental group π.1.2. Finite dimensional unitary representations with respe
t to a pseudo Hermitian stru
-ture of the type (p, q). Consider a representation
ρ : π → U(p, q)into the matrix group U(p, q) that preserves an inde�nite Hermitian nondegenerate formof the type (p, q). Then again one 
an 
onstru
t the operation of the type ∪ whi
hgenerates a nondegenerate Hermitian form into middle 
ohomologies H2k(X; ρ).On the other hand the �at ve
tor bundle ξρ

X 
an be split into the dire
t sum
ξρ
X = ξρ

+ ⊕ ξ
ρ
−,su
h that on ea
h summand the form is (positive and negative) de�nite. Then the Hirze-bru
h formula has the following form:

signρX = 2k〈L(X) ch(ξρ
+ − ξ

ρ
−), [X]〉.Here the Chern 
hara
ter of the bundles ξρ

± may be nontrivial (Lusztig [Lus72, 1972℄).1.3. Finite dimensional unitary representations with respe
t to a skew Hermitian stru
-ture. Taking a skew Hermitian form ϕ on CN and the matrix group Sp(N) whi
h pre-serves this form one 
an 
onsider a representation
ρ : π → Sp(N)and a �at ve
tor (
omplex) bundle ξρ
X . If dimX = 4k + 2 then in the middle dimensionone has a nondegenerate Hermitian form in the group H2k+1(X, ρ) generated by the

∪-produ
t:
H2k+1(X, ξρ

X)×H2k+1(X, ξρ
X)

∪
−→H4k+2(X, ξρ

X ⊗ ξ
ρ
X)

〈·,·〉
−→H4k+2(X,C) ≈ C.The �at ve
tor bundle ξρ

X 
an be split into the dire
t sum
ξρ
X = ξρ

+ ⊕ ξ
ρ
−,su
h that on ea
h summand the Hermitian form i · ϕ is (positive and negative) de�nite.Then again the Hirzebru
h formula has the following form:

signρX = 2k
〈
L(X) ch(ξρ

+ − ξ
ρ
−), [X]

〉(see M. Gromov [Gro95, � 8 1
2 ℄).1.4. Constru
tion of splitting of �at ve
tor bundles for 
al
ulation of the signature. Forall three 
ases above a similar 
onstru
tion is available and is based on the 
onstru
tionof the Hodge operator.Let X be an oriented 
ompa
t manifold, dimX = n, ξ → X be a �at (real) ve
torbundle with a (skew)symmetri
 form 〈•, •〉ϕ in the �ber Rm, that is

〈u, v〉ϕ = ε〈v, u〉ϕ ∈ R, u, v ∈ Rm, ε = ±1,



250 A. S. MISHCHENKOand 
onstant transition fun
tions preserve this form. This means in parti
ular that theform 〈•, •〉ϕ forms a bilinear (skew)symmetri
 map
ξ ⊕ ξ → ξ ⊗ ξ

ϕ
→1.Consider the de Rham 
omplex of di�erential forms on the manifold X valued in thebundle ξ:

0→ Ω0(X; ξ)
d
→Ω1(X; ξ)

d
→Ω2(X; ξ)

d
→ · · ·

d
→Ωn(X; ξ)→ 0.The 
orresponding 
ohomology 
omplex

0→ H0(X; ξ)
0
→H1(X; ξ)

0
→H2(X; ξ)

0
→ · · ·

0
→Hn(X; ξ)→ 0possesses the Poin
aré duality with respe
t to the pairing

〈ω1, ω2〉
def
=

∫

X

ϕ(ω1 ∧ ω2), ω1, ω2 ∈ H
∗(X; ξ).This form is nondegenerate and (skew)symmetri
. Namely,

〈ω2, ω1〉 = ε(−1)dim ω1·dim ω2〈ω1, ω2〉.We intend to 
al
ulate the signature of the form in terms of 
hara
teristi
 
lasses.For that let us 
onsider an analogue of the s
alar forms generated by a Riemannianmetri
 g = (gij(x)) on X and a metri
 tensor u = (uαβ(x)) in the bundle ξ. Fix a lo
al
oordinate system (x1, . . . , xn) = (xi) on X and a basis (e1, . . . , em) = (eα) in the �bersof the bundle ξ. Any di�erential form ω1 ∈ Ω1(X; ξ) 
an be represented as
ω1 = (1f

α
i (x)eα)dxi.If we have another form

ω2 = (2f
α
i (x)eα)dxi,the s
alar produ
t is de�ned as

(ω1, ω2)g,u
def
=

∫

X

((1f
α
i )(2f

β
j )uαβg

ij(x)) dµ,where dµ is the di�erential form whi
h determines the measure on X, asso
iated withthe Riemannian metri
 gij ,
dµ

def
=
√

det(gij)dx
1 ∧ · · · ∧ dxn.The s
alar produ
t (ω1, ω2)g,u is symmetri
 and nondegenerate.The form (•, •)g,u 
an be extended to spa
es of forms of other dimensions: let ω1, ω2 ∈

Ωk(X, ξ),
ω1 =

∑

i1,i2,...,ik

(∑

α

1f
α
i1,i2,...,ik

(x)eα

)
dxi1 ∧ dxi2 ∧ · · · ∧ dxik ,

ω2 =
∑

i1,i2,...,ik

(∑

α

2f
α
i1,i2,...,ik

(x)eα

)
dxi1 ∧ dxi2 ∧ · · · ∧ dxik .Then

(ω1, ω2) =

∫ ( ∑

i1,i2,...,ik

j1,j2,...,jk

(∑

αβ

1f
α
i1,i2,...,ik

(x)2f
β
j1,j2,...,jk

(x)uαβ

)
gi1j1gi2j2 · · · gikjk

)
dµ.



K-THEORY OVER C∗-ALGEBRAS 251Thus on the spa
e Ω∗(X; ξ) =
⊕n

k=0 Ωk(X; ξ) one has two forms: 〈•, •〉 and (•, •)g,u,both nondegenerate. Hen
e there is an invertible operator* : Ω∗(X; ξ)→ Ω∗(X; ξ), *k : Ωk(X; ξ)→ Ωn−k(X; ξ),su
h that
〈ω1, ω2〉 = (* ω1, ω2)g,u.The metri
 tensor u 
an be 
hosen su
h that(5) *n−k · *k = ε(−1)(n−k)kId.Really, any metri
 tensor v in the bundle ξ de�nes the form

(ω1, ω2)g,v = (Aω1, ω2)g,u.Putting A =
√
|*2|, for the new operator with respe
t to the form v,

〈ω1, ω2〉 = (*vω1, ω2)g,v,one has the relation *v = A−1*,that is,
(*v)2 = |*2|−1*2.The 
ondition (5) 
an be 
he
ked at ea
h point.Further, if ω1 ∈ Ωk, ω2 ∈ Ωn−k−1, then

(*k+1(dkω1), ω2) = 〈dkω1, ω2〉 = (−1)k+1〈ω1, dn−k−1ω2〉

= (−1)k+1(*k(ω1), dn−k−1ω2) = (−1)k+1(d∗n−k−1*k(ω1), ω2),that is, *k+1dk = (−1)k+1d∗n−k−1*kor *k+1dk*n−k = ε(−1)k+1+(n−k)kd∗n−k−1or
δk = ε(−1)nk+1*n−k+1dn−k*k,where

δk = d∗k−1 : Ωk → Ωk−1.In other words
(−1)nk+1+(n−k+1)(k−1)*k−1δk = dn−k*k,or(6) *k−1δk = (−1)(n−k)dn−k*k,and(7) *k+1dk = (−1)(k+1)δn−k*k.Put αk = (−1)

k(k−1)
2 *k. Then
−(αk+1dk + *k−1δk) = (dn−k + δn−k)αk.



252 A. S. MISHCHENKOThis means that on the spa
e Ω∗ =
⊕

Ωk the relation* (d+ δ) = − (d+ δ) *holds. If n = 4s and ε = 1, then α2 = Id. If n = 4s+ 2 and ε = −1, then again α2 = Id.In both 
ases the signature of the quadrati
 form 〈•, •〉ϕ on 
ohomology, that is, on
Ker(d+ δ) = Ker d ∩Ker δ 
oin
ides with the index of the operator

d+ δ : Ω+ → Ω−,where Ω+ and Ω− are the eigenspa
es of the operator α, whi
h 
orrespond to the eigen-values 1 and −1.2. Continuous family of �nite dimensional representations. Let us 
onsider a
ontinuous family of representations(8) ρt : π → U(N), t ∈ T.This family generates a family of quadrati
 forms on the family of the homology spa
es
(H2k(X, ρt),∪).The problem is to des
ribe this family as a 
ontinuous family of quadrati
 forms. For thiswe need to in
lude the family (H2k(X, ρt),∪

) into a larger spa
e (see [Mis01℄).Given a 
ombinatorial stru
ture on X, let Ck = Ck(X) denote the group of k-dimensional 
hains of X with 
oe�
ients in CN . Then the representations ρt de�neboundary homomorphisms dk and the Poin
aré duality homomorphisms Dk whi
h are
ontinuous with respe
t to t ∈ T :
C0

d1←− C1
d2←− · · ·

dn←− CnxD0

xD1

xDn

C∗
n

d∗

n←− C∗
n−1

d∗

n−1
←− · · ·

d∗

1←− C∗
0The properties are

(9) dk−1dk = 0,

dkDk + (−1)k+1Dk−1d
∗
n−k+1 = 0,

Dk = (−1)k(n−k)D∗
n−k,

D indu
es an isomorphism in homology groups.Put(10) Fk = ik(k−1)Dk.Then a similar diagram
(11) C0

d1←− C1
d2←− · · ·

dn←− CnxF0

xF1

xFn

C∗
n

d∗

n←− C∗
n−1

d∗

n−1
←− · · ·

d∗

1←− C∗
0has more natural properties(12) dkFk + Fk−1d

∗
n−k+1 = 0, Fk = F ∗

n−k.



K-THEORY OVER C∗-ALGEBRAS 253Consider the 
one of F , whi
h is an a
y
li
 
omplex with respe
t to the total gradu-ation and the sum of di�erentials d and F :(13) 0←−A0
H1←−A1

H2←− · · ·
H2l←−A2l

H2l+1
←− A2l+1

H2l+2
←− · · ·

H4l←−A4l

H4l+1
←− A4l+1←− 0where(14) Ak = Ck ⊕ C

∗
n−k+1, Hk =

(
dk Fk−1

0 d∗n−k+2

)
.Put

A =

n+1⊕

k=0

Ak = Aev ⊕Aodd,where
Aev =

2l⊕

k=0

A2k, Aodd =

2l⊕

k=0

A2k+1.Then
Aev ≈ Aodd ≈

n⊕

k=0

Ck,and
d+ d∗ + F : Aev → Aoddis an isomorphism.Taking in a

ount that d = dt, F = Ft one hasTheorem 1.
sign(At) = sign(X, ρt)where At = dt + d∗t + Ft.2.1. New notion of signature for a 
ontinuous family At : Vt → Vt, Vt ≈ V. There is asplitting

V = V +
t ⊕ V

−
t ,su
h that At is positive on V +

t and negative on V −
t . Then

ξ+ =
∐

V +
t , ξ− =

∐
V −

tare subbundles. By de�nition
sign(At) = [ξ+]− [ξ−] ∈ K(T ).Thus

signρt
(X) = sign(dt + d∗t + Ft) ∈ K(T ).We have a generalization of the Hirzebru
h formula:(15) K(T ) ∋ signρt
X = 2k〈L(X) chX(ξρt

X×T ), [X]〉 ∈ K(T )⊗Q,where chX(ξρt

X×T ) ∈ H∗(X;K∗(T )⊗Q).



254 A. S. MISHCHENKO3. Algebrai
 setting. The most general pi
ture for the Hirzebru
h formula for orientedsmooth manifolds 
an be represented as follows (see [Mis70℄, [Mis95℄).Let Ω∗(Bπ) denote the bordism group of pairs (M, fM ). Re
all that Ω∗(Bπ) is amodule over the ring Ω∗ = Ω∗({pt}). One 
an 
onstru
t a homomorphism(16) sign : Ω∗(Bπ)→ L∗(Cπ)whi
h to every manifold (M, fM ) assigns the element sign(M) ∈ L∗(Cπ), where L∗(Cπ)is the Wall group for the group ring Cπ.3.1. Algebrai
 
onstru
tion of symmetri
 signature For 
ombinatorial manifolds we havea similar 
ombinatorial diagram
C0

d1←− C1
d2←− · · ·

dn←− CnxD0

xD1

xDn

Cn d∗

n←− Cn−1
d∗

n−1
←− · · ·

d∗

1←− C0where
Ck

def
= Ck(X̃), Ck def

= Ck
0 (X̃) ≈ HomCπ(Ck,Cπ).Here Ck(X̃) means the 
hain 
omplex of the universal 
overing X̃ with respe
t to the
ombinatorial stru
ture of X, Ck

0 (X̃) means the 
o
hain 
omplex with 
ompa
t supports,
Cπ is the group ring of the fundamental group π with 
oe�
ients in the �eld C of rational,real or 
omplex numbers.The homomorphism sign satis�es the following 
onditions:(a) sign(M) depends only on the homotopy equivalen
e 
lass of the manifold M .(b) If N is a simply 
onne
ted manifold and τ (N) is its signature then(17) sign(M ×N) = sign(M)τ (N) ∈ L∗(Cπ).We shall be interested only in the groups after tensor multipli
ation with the �eld ofrational numbers Q, in other words in the homomorphism

sign : Ω∗(Bπ)⊗Q→ L∗(Cπ)⊗Q.One has
Ω∗(Bπ)⊗Q ≈ H∗(Bπ;Q)⊗ Ω∗ ≈ Ωframe

∗ (Bπ)⊗Q⊗ Ω∗where Ωframe
∗ (Bπ) is the so 
alled �framed� bordisms, that is, bordisms whi
h are repre-sented by manifolds with trivial normal bundles. Therefore the homomorphism sign 
anbe 
onsidered as a produ
t of two homomorphisms
σ ⊗ τ : H∗(Bπ;Q)⊗ Ω∗ ≈ Ωframe

∗ (Bπ)⊗Q⊗ Ω∗ → L∗(Cπ)⊗Q.Here
σ : H∗(Bπ;Q) ≈ Ωframe

∗ (Bπ)⊗Q→ L∗(Cπ)⊗Q.is the restri
tion of σ to Ωframe
∗ (Bπ)⊗Q ⊂ Ω∗(Bπ)⊗Q. On the other hand the homo-morphism sign represents the 
ohomology 
lass

σ ∈ H∗(Bπ;L∗(Cπ)⊗Q) = Hom (H∗(Bπ;Q), L∗(Cπ)⊗Q)
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h that if M is a framed manifold, M ∈ Ωframe
∗ (Bπ), then

sign(M) = σ(M) = 〈f∗M (σ), [M ]〉.The key idea is that for any manifold (M, fM ) the signature 
an be represented by aversion of the general Hirzebru
h formula(18) sign(M, fM ) = 〈L(M)f∗M (σ), [M ]〉 ∈ L∗(Cπ)⊗Q.Indeed, let M = M1 ×M2, M1 ∈ Ωframe
∗ (Bπ), M2 ∈ Ω∗. Then

sign(M) = sign(M1)τ (M2) = 〈f∗M (σ), [M1]〉〈L(M2), [M2]〉

= 〈L(M1 ×M2)f
∗
M (σ), [M1 ×M2]〉 = 〈L(M)f∗M (σ), [M ]〉.3.2. Higher signature. Let x ∈ H∗(Bπ;Q) be an arbitrary 
ohomology 
lass. Then thenumber

signx(M, fM ) = 〈L(M)f∗M (x), [M ]〉 ∈ Qis 
alled the higher signature due to S. P. Novikov. In the 
ase of an additive fun
tional
α : L∗(Cπ)⊗Q→ Q the higher signature signx(M, fM ), where x = α(σ) ∈ H∗(Bπ;Q)arises from the Hirzebru
h formula (18) above.This gives a des
ription of the family of all homotopy-invariant higher signatures. Thisobservation is not a dire
t 
onsequen
e from theprevious argument but 
an be obtainedfrom the theory of non-simply 
onne
ted surgeries by [Wal71℄. Indeed, following [Wal71℄one 
an 
onstru
t an obstru
tion to the existen
e of surgery of normal mapping to ahomotopy equivalen
e whi
h is des
ribed as a di�eren
e of symmetri
 signatures (16) oftwo manifolds. Therefore all other higher signatures behind x = α(σ) are not homotopyinvariant.4. Fun
tional version of the Hirzebru
h formula. In�nite dimensional repre-sentations. Let C∗[π] be the C∗-group algebra of the group π. Any unitary representa-tion

ρ : π → End(H)of the group π, where H is a Hilbert spa
e, 
an be uniquely extended to a representation
ρ : C∗[π]→ End(H)of the algebra C∗[π]. Put A = Im ρ ⊂ End(H), ρ : C∗[π]→ A.By ξρ we denote the ve
tor bundle over Bπ with the �berA, whose transition fun
tionsare indu
ed by the a
tion of the group π on the algebra A by the representation ρ. Theve
tor bundle ξρ generates the element of the K-group

ξρ ∈ KA(Bπ).There is a generalization of the Chern 
hara
ter to ve
tor bundles over the C∗-algebra
A: chA ξ ∈ H

∗(X;KA(pt)⊗Q).Hen
e we 
an write the right side of the formula (4):
? = 2k 〈L(X) chA ξ

ρ
X , [X]〉 ∈ KA(pt)⊗Q.The left side of the formula 
an be 
al
ulated as a symmetri
 signature of the manifold

X by repla
ing of rings, indu
ed by the representation ρ, so we obtain the so 
alled
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h formula for an arbitrary C∗-algebra A:
KA(pt) ∋ signρ(X) = 22k 〈L(X) chA ξ

ρ
X , [X]〉 ∈ KA(pt)⊗Q.5. Smooth version of the Hirzebru
h formula. The left side of the Hirzebru
hformula (4) is des
ribed in terms of the 
ombinatorial stru
ture of the manifold X. Thereis a smooth version of this expression as well. Namely, 
onsider the de Rham 
omplex ofdi�erential forms on the manifold X with values in the �at ve
tor bundle ξρ:(19) 0→ Ω0(X, ξ

ρ)
d
→Ω1(X, ξ

ρ)
d
→ · · ·

d
→Ω4k(X, ξρ)→ 0.It is well known that the 
ohomology groups of the de Rham 
omplex (19) are isomorphi
to the 
ohomology groups H∗(X, ξρ).The ∪-produ
t is indu
ed by exterior produ
t of di�erential forms, so the Hermitianform whi
h de�nes the Poin
aré duality 
an be determined by(20) 〈ω1, ω2〉 =

∫

X

ω1 ∧ ω2.On the other hand using a Riemannian metri
 on the manifold X, (ω1, ω2), thePoin
aré duality (20) 
an be determined with a bounded operator ∗:
(ω1, ω2) =

∫

X

ω1 ∧ ∗ω2,where
∗ : Ωk(X)→ Ωn−k(X).Put

α = ik(k+1) ∗ .Then
αdα = −d∗; α2 = 1.Let

Ω+(X) = Ker (α− 1); Ω−(α+ 1).It is evident that
(d+ d∗)(Ω+(X)) ⊂ Ω−(X).Consider the ellipti
 operator

D = (d+ d∗) : Ω+(X)→ Ω−(X).Then we have
indexD = sign(X).Using the Atiyah�Singer index formula for ellipti
 operators we have(21) index(D ⊗ ξ) = 2k〈L(X) ch ξ, [X]〉.for arbitrary ve
tor bundle ξ over the manifold X.If the bundle ξ is �at, that is, if there is a representation ρ su
h that ξ = ξρ then

index (D ⊗ ξ) = signρ(X)
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h formula:
signρ(X) = index(D ⊗ ξρ) = 22k〈L(X) ch ξρ, [X]〉.6. The notion of almost �at ve
tor bundle. Combinatorial lo
al Hirzebru
hformula. A naive point of view is that all transition fun
tions ϕαβ(x), x ∈ Uαβ = Uα∩Uβfor a ve
tor bundle ξ are almost 
onstant. Then one 
an 
onstru
t a so 
alled almostalgebrai
 Poin
aré 
omplex of formal dimension n whi
h 
onsists of 
hains and 
o
hainswith values in �bers of the bundle ξ:

C0(ξ)
d1←− C1(ξ)

d2←− · · ·
dn←− Cn(ξ)xD

xD

xD

Cn(ξ)
d∗

n←− Cn−1(ξ)
d∗

n−1
←− · · ·

d∗

1←− C0(ξ)su
h that
‖d2‖ ≤ ε, ‖Dd∗ ± dD‖ ≤ ε

‖D‖ ≤ 
onst, D∗ = ±D.If ε is su�
iently small and the number of neighbors for ea
h 
ell is bounded then theoperator
d+ d∗ +D : C∗(ξ)→ C∗(ξ)is invertible and a version of the Hirzebru
h formula (lo
al 
ombinatorial Hirzebru
hformula) holds:

signC∗(X, ξ) = 22k 〈L(X) ch ξ, [X]〉 .If moreover the size of all 
ells is su�
iently large then we 
ome to the notion of almost�at bundle for whi
h the signature signC∗(X, ξ) is homotopy invariant (see [Gro95℄,[Mis99℄).7. Almost �at bundles from the point of view of C*-algebras (jointly withN. Teleman). Connes, Gromov and Mos
ovi
i [CGM90℄ showed that for any almost�at bundle α over the manifold M, the index of the signature operator with values in αis a homotopy invariant of M. It follows that a 
ertain integer multiple n of the bundle α
omes from the 
lassifying spa
e Bπ1(M). Geometri
 arguments show that the bundle αitself, and not ne
essarily a 
ertain multiple of it, 
omes from an arbitrarily large 
ompa
tsubspa
e Y ⊂ Bπ1(M) through the 
lassifying mapping.For this we modify the notion of almost �at stru
ture on bundles over smooth mani-folds and extend this notion to bundles over arbitrary CW -spa
es using quasi-
onne
tionsof N. Teleman ([Tel04℄).Using a natural 
onstru
tion by B. Hanke and T. S
hi
k ([HS04℄), one 
an present asimple des
ription of su
h bundles as a bundle over a C∗-algebra and 
larify the homotopyinvarian
e of 
orresponding higher signatures.Moreover it is possible to 
onstru
t a so 
alled 
lassifying spa
e for almost �at bundles(see [MT05a℄, [MT05b℄).
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ription of almost �at bundles in terms of C∗-algebras due to B. Hanke andT. S
hi
k. Due to [CGM90℄ an element α ∈ K(M) over a smooth manifold M is 
alledan almost �at bundle if for any ε > 0 there are two ve
tor bundles ξ, η with linear
onne
tions ∇ξ, ∇η su
h that:1. α = ξ − η ∈ K(M),2. ‖Θξ‖ < ε, ‖Θη‖ < ε, where(22) ‖Θ‖ = sup
x∈M

{‖Θx(X ∧ Y )‖ : ‖X ∧ Y ‖ ≤ 1},and Θx(X ∧ Y ) = [∇X ,∇Y ]−∇[X,Y ] is the 
urvature form of the 
onne
tion ∇.If α is an almost �at bundle and β is a trivial bundle then α ⊕ β is also an almost�at bundle. This means that without loss of generality one 
an 
onsider elements from
K whi
h are represented by real ve
tor bundles.In other words we 
an 
onsider two sequen
es of ve
tor bundles ξ = {ξk} and η = {ηk}with �xed 
onne
tions ∇1

k and ∇2
k su
h that(23) ξk = ηk ⊕ α,

dimα = d, dim ξk = nk, dim ηn = mk = nk − d.Assume that(24) lim
k→∞

‖Θi
k‖ = 0, i = 1, 2.So instead of a bundle α we shall 
onsider a �ner stru
ture namely so 
alled almost�at bundle stru
ture whi
h 
onsists of the following:1. Sequen
es of bundles ξ = {ξk} and η = {ηk} with �xed 
onne
tions ∇1

k and ∇2
ksu
h that(25) lim

k→∞
‖Θi

k‖ = 0, i = 1, 2,2. A sequen
e of isomorphisms(26) fk : ξk ≈ ηk ⊕ α.The same bundle α may admit several almost �at bundle stru
tures. We say that twoalmost �at bundle stru
tures
P = {α; ξ = {ξk,∇

1
k}; η = {ηk,∇

2
k}, f = {fk}}and

′P = {′α; ′ξ = {′ξk,
′∇1

k};
′η = {′ηk,

′∇2
k};

′f = {′fk}},are equivalent if one stru
ture 
an be obtained from the other stru
ture by a sequen
e ofthe following operations:1. Passing to a subsequen
e;2. Homotopy of linear 
onne
tions ∇1
k and ∇2

k in the 
lass of 
onne
tions whi
h satisfythe 
onditions (25), and homotopy of isomorphisms f = {fk};3. Stabilization of all bundles, that is, adding trivial bundles both to ξ = {ξk}, η =

{ηk}, and to α with natural extension of the 
onne
tions ∇1
k and ∇2

k and isomorphisms
f = {fk} to dire
t sums.
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e 
lass of almost �at bundle stru
tures is 
alled an almost �at bundleon the manifold M . Among almost �at bundles a trivial bundle is marked out whi
h isrepresented by the trivial almost �at bundle stru
ture
P0 = {α0; ξ0 = {ξ0k,∇

1,0
k }; η

0 = {η0
k,∇

2,0
k }, f

0 = {f0
k}},where all bundles α0, ξ0k, η0

k and 
onne
tions ∇1,0
k , ∇2,0

k are trivial and the isomorphisms
f0

k are identi
al. The set of all almost �at bundles is endowed with the operation ofdire
t sum P ⊕′ P, the trivial bundle being the neutral element. So the set Ve
taf (M) ofequivalen
e 
lasses of almost �at stru
tures forms a semigroup with respe
t to the dire
tsum. The Grothendie
k group is denoted by Kaf (M).7.2. Classifying spa
e for almost �at bundles. The groups Ve
taf (M) yield a fun
torfrom the 
ategory of CW -spa
es to the 
ategory of abelian groups. Therefore the naturalquestion arises about existing of 
lassifying spa
e for almost �at bundles. This meansthat there should be a spa
e BAF with �xed almost �at bundle ξB = {ξB
k }, ηB = {ηB

k },
fB

k : ξB
k ≈ η

B
k ⊕α

B su
h that any almost �at bundle ξ = {ξk} , η = {ηk}, fk : ξk ≈ ηk⊕αover M 
an be 
onstru
ted by a 
ontinuous map ϕ : M → BAF up to homotopy.First of all, 
onsider a des
ription of almost �at bundles due to [HS04℄ using spe
ialstru
tural groups.Put A =
∏∞

i=1K
+, where K+ = K+(H) = C ⊕ K(H) is the algebra of 
ompa
toperators with an adjoined identi
al operator in the Hilbert spa
e H. The algebra A is aunital subalgebra in the algebra of all bounded operators B(H), H =

⊕∞
i=1H.Consider a sequen
e of bundles ξ = {ξk}, dim ξk = nk, and �x 
oordinate skewprodu
ts on the bundles by transition fun
tions

ϕk
ij(x) ∈ GL(nk,C), x ∈ Uijfor a 
hart atlas Ui.Consider the 
anoni
al imbedding of GL(nk,C) in the group G(K+) of invertibleelements, by assigning ea
h matrix Φ ∈ GL(nk,C) to its diagonal extension in theHilbert spa
e H = Cnk ⊕ (Cnk)⊥ as(27) Φ̃ =

(
Φ 0

0 Id ) ∈ K+(H).Then the sequen
e ϕk
ij(x) de�nes the fun
tion

(28) Φij(x)
def
=

∞∏

k=1

ϕ̃k
ij(x) =




ϕ̃1
ij(x) 0 0 0 · · ·

0 ϕ̃2
ij(x) 0 0 · · ·

0 0
. . . 0 · · ·

0 0 0 ϕ̃k
ij(x) · · ·... ... ... ... . . .




∈ G(A).

Consider the quotient algebra Q def
= A/A0, where A0 ⊂ A 
onsists of elements x ∈ A,

x = {xi ∈ K
+}, su
h that(29) lim

i→∞
‖xi‖ = 0.



260 A. S. MISHCHENKOLet Φij(x) ∈ Q be the image of the element Φij(x). Then {Φij(x)} is a family oftransition fun
tions for a bundle ξQ over the algebra Q.If the fun
tions ϕk
ij(x) satisfy the 
ondition of almost �at stru
ture, that is,(30) lim

k→∞
sup

x,y∈Uij

‖ϕk
ij(x)− ϕ

k
ij(y)‖ = 0,then the fun
tions Φij(x) don't depend on the argument x ∈ X. This means that thebundle ξQ is �at.To an individual bundle α one 
an assign the bundle αQ over Q, by de�ning thesequen
e α̃ = {αk}, αk = α, and αQ

def
= α̃Q.Now, 
onsider an almost �at bundle, that is, sequen
es ξ = {ξk} and η = {ηk} with�xed transition fun
tions

ϕk,s
ij (x), x ∈ Uij , s = 1, 2,for a 
hart atlas Ui su
h that(31) lim

k→∞
sup

x,y∈Uij

‖ϕk,s
ij (x)− ϕk,s

ij (y)‖ = 0, s = 1, 2,and a sequen
e of isomorphisms(32) fk : ξk ≈ ηk ⊕ α.Let ϕk,1
ij (x) ∈ GL(nk,C), ϕk,2

ij (x) ∈ GL(mk,C), nk = mk + d. Let the bundle α bede�ned by the transition fun
tions ψij(x) ∈ GL(d,C). Then the dire
t sum ζk = ηk ⊕ αhas transition fun
tions χij(x) ∈ GL(nk,C) of the following form(33) χij(x) =

(
ϕk,2

ij (x) 0

0 ψij(x)

)
.Turning to the algebra Q one has three bundles ξQ, ηQ and ζQ and the isomorphism

F : ξQ → ζQ, generated by the sequen
e (32). On the other hand the bundle ζQ isisomorphi
 to the dire
t sum of ηQ and αQ,(34) ξQ
F
≈ ζQ ≈ ηQ ⊕ αQ.The se
ond bundle is de�ned by the transition fun
tions Ψij(x),

(35) Ψij(x) =

∞∏

k=1

ψ̃ij(x) =




ψ̃ij(x) 0 0 0 · · ·

0 ψ̃ij(x) 0 0 · · ·

0 0
. . . 0 · · ·

0 0 0 ψ̃ij(x) · · ·... ... ... ... . . .



.

7.3. Simple proof of homotopy invarian
e of higher signatures of almost �at bundles.Using the des
ription above one 
an obtain a simple and elegant proof of the homotopyinvarian
e of the higher signature of an almost �at bundle, whi
h was �rst established byA. Connes, M. Gromov and H. Mos
ovi
i ([CGM90℄).Namely, if α is an almost �at bundle then the bundles ξQ and ηQ in (34) are �atbundles over the algebra Q. Sin
e the bundles ξQ and ηQ are �at, the following higher
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(36) signx(M) ∈ K∗

Q(pt)⊗Q,

signy(M) ∈ K∗
Q(pt)⊗Q,

x = chQ(ξQ) ∈ H∗(M ;K∗
Q(pt)⊗Q),

y = chQ(ηQ) ∈ H∗(M ;K∗
Q(pt)⊗Q).Hen
e the higher signature(37) signz(M) ∈ K∗

Q(pt)⊗Q,

z = chQ(αQ) ∈ H∗(M ;K∗
Q(pt)⊗Q),is also homotopy invariant.Consider the homomorphism(38) θ : K∗(M)→ K∗

Q(M),whi
h asso
iates to a �nite dimensional bundle α the bundle αQ over the algebra Q. Inthe paper ([HS04, Proposition 3.5℄) it was shown that(39) K∗
A(pt) =

∞∏

k=1

Z, K∗
Q(pt) =

( ∞∏

k=1

Z
)
/J,where J =

∑∞
k=1 Z. Similarly one 
an show that the homomorphism (38) for M = ptmaps the group K∗(pt) = Z by the formula(40) θ(a) =

[ ∞∏

k=1

a
]
∈
( ∞∏

k=1

Z
)
/J.Hen
e the homomorphism(41) θ ⊗Q : K∗(M)⊗Q→ K∗

Q(M)⊗Qis a monomorphism. This 
ompletes the proof of the homotopy invarian
e of highersignatures for almost �at bundles sin
e(42) signz(M) = θ(signu(M)),where u = ch(α).7.4. Geometri
 
onstru
tion of 
lassifying spa
e for almost �at bundles. Almost �at bun-dles (without �xed almost �at stru
ture) are unlikely to be 
onstru
ted using a 
lassifyingspa
e sin
e they do not form a homotopy fun
tor. On the other hand, almost �at bundleswith �xed almost �at stru
ture 
an be represented by the inverse image of a 
ontinuousmap into a 
lassifying spa
e. A
tually, it was shown above that with ea
h almost �atstru
ture there is asso
iated a pair of �at bundles ξQ and ηQ over the algebra Q and anisomorphism of Q-bundles(43) F : ξQ → (ηQ ⊕ αQ) .The presen
e of �at bundles ξQ and ηQ and the isomorphism F 
an be interpretedusing maps into 
lassifying spa
es. Namely, the bundles ξQ and ηQ a

ording to thede�nition have the stru
tural group G(Q), whi
h 
onsists of all invertible elements of thealgebra Q. In other words, we 
an 
onsider the bundles ξQ and ηQ as one-dimensional



262 A. S. MISHCHENKObundles over the algebra Q, with the �ber Q. Therefore the bundles are 
lassi�ed by
ontinuous maps from the base M into the 
lassifying spa
e BG(Q). Sin
e the bundles
ξQ and ηQ are �at, we should take as the 
lassifying spa
e not BG(Q), but BĜ(Q), where
Ĝ(Q) is the same group G(Q) with dis
rete topology. The identity map ι : Ĝ(Q)→ G(Q)is 
ontinuous, whi
h indu
es the natural 
ontinuous map of 
lassifying spa
es(44) Bι : BĜ(Q)→ BG(Q).Let(45) ⊕ : BG(Q)×BG(Q)→ BG(Q)be the map that 
orresponds to dire
t sum of bundles. Then the bundles ξQ and ηQ
an be represented as inverse images of the 
anoni
al �at Q-bundle ÊQ over the spa
e
BĜ(Q) by 
ontinuous maps

fξ, fη : M → BĜ(Q),(46)
ξQ = f∗ξ (ÊQ), ηQ = f∗η (ÊQ).(47)Sin
e the bundle ÊQ is the inverse image of the 
anoni
al bundle EQ over BG(Q)with respe
t to the map Bι,(48) ÊQ = B∗

ι (EQ),the presen
e of the isomorphism (43) means that the maps(49) M
fξ
−→BĜ(Q)

Bι−→BG(Q)and(50) M
fη×fα
−→ BĜ(Q)×BG(K+)

Bι×θ
−→BG(Q)×BG(Q)

⊕
−→BG(Q)are homotopi
.The 
lassifying spa
e BG(Q) is determined uniquely up to homotopy equivalen
e.Therefore it is appropriate to repla
e the spa
e BG(Q) by the homotopy equivalentspa
e that is the union of two mapping 
ylinders(51) B̃G(Q)

def
= (BG(Q) ∪(Bι,0) ([0, 1]×BĜ(Q)))

∪(⊕·(Bι×θ),0)([0, 1]× (BĜ(Q)×BG(K+))),and repla
e the maps Bι and ⊕ · (Bι × θ) by the imbeddings
(52) i0 = (Id, 1) : BĜ(Q) →֒ ((0, 1]×BĜ(Q)) ⊂ B̃G(Q),

i1 = (Id, 1) : (BĜ(Q)×BG(K+)) →֒

((0, 1]× (BĜ(Q)×BG(K+))) ⊂ B̃G(Q).Consider the spa
e of 
ontinuous paths(53) BAF
def
= Γ(BĜ(Q); B̃G(Q); (BĜ(Q)×BG(K+))),that 
onsists of all 
ontinuous paths(54) γ : [0, 1]→ B̃G(Q),
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e B̂G(Q), that is,(55) γ(0) ∈ BĜ(Q) = Im i0,and �nish in the subspa
e (BĜ(Q)×BG(K+)), that is,(56) γ(1) ∈ (BĜ(Q)×BG(K+)) = Im i1.Ea
h bundle α, endowed with almost �at stru
ture 
orresponds to a 
ontinuous mapfrom M to the spa
e BAF. Indeed, sin
e the maps (49) are (50) homotopi
, the 
ompo-sitions i0 · fξ and i1 · (fη × fα) are also homotopi
. It follows that there is a 
ontinuousmap(57) Φ : M × [0, 1]→ B̃G(Q),for whi
h one has(58) Φ(x, 0) = i0fξ(x), Φ(x, 1) = i1(fη × fα)(x).This means that the map Φ indu
es a map(59) Φ̃ : M → BAFby the formula(60) Φ̃(x)(t) = Φ(x, t), x ∈M ; t ∈ [0, 1].Conversely, the same formula (60) de�nes two homotopi
 maps(61) Φ(x, 0) : M → BĜ(Q),

Φ(x, 1) : M → (BĜ(Q)×BG(K+)),whi
h in turn de�ne a �at stru
ture on the bundle generated by the mapping of these
ond 
omponent of the map Φ(x, 1).Moreover, on the spa
e BAF there is a bundle, the inverse image of whi
h under themapping (59) 
oin
ides with the �at bundle des
ribed above.Now we 
an des
ribe homotopy properties of the spa
e BAF using standard Serre�brations. Let us denote by(62) p0 : BAF → BĜ(Q),

p1 = (p′1 × p
′′
1) : BAF → (BĜ(Q)×BG(K+))two standard maps that take ea
h path γ ∈ BAF to its initial or �nal points with respe
tto the 
onditions (55) and (56). The 
ombined map(63) p = (p0 × p1) : BAF→ BĜ(Q)× (BĜ(Q)×BG(K+))is the Serre �bration whose �ber is the loop spa
e V = Ω(B̃G(Q)) ≈ Ω(BG(Q)) ≈ G(Q).On the other hand 
onsider another Serre �bration(64) p̃ = (p0 × p
′
1) : BAF

Γ0−→BĜ(Q)×BĜ(Q),whose �ber is the spa
e Γ0 = Γ(x0; B̃G(Q);BG(K+)) of paths in the spa
e B̃G(Q) ≈

BG(Q), that start at a �xed point x0 and �nish in the spa
e BG(K+)) ⊂ B̃G(Q). The
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e Γ0 is foliated by the proje
tion(65) p′1 : Γ0
V
−→BG(K+),the �ber being the spa
e of loops V = Ω(BG(Q)) ≈ G(Q)

i0
⊂ Γ0.Lemma 1. The proje
tion (65) is homotopi
 to the 
onstant mapping.In other words the identi
al mapping of Γ0 is homotopi
 to ϕ : Γ0 → G(Q), ϕ◦i0 ∼ Id.Proof. The statement of the lemma is equivalent to the inje
tivity of the homomorphism(38)

θ : K∗(M)→ K∗
Q(M),whi
h takes a �nite dimensional bundle α to the bundle αQ over the algebra Q. In fa
t,let (38) be inje
tive. Consider the bundle ξ over the spa
e Γ0 generated by the mapping(65). Then θ(ξ) is the bundle over the algebra Q generated by the mapping(66) i′1 · p

′
1 : Γ0 → BG(K+) ⊂ B̃G(Q).This mapping is homotopi
 to the 
onstant mapping as the spa
e Γ0 = Γ(x0;BG(Q);

BG(K+)) is the spa
e of paths in the spa
e B̃G(Q) ≈ BG(Q) that start at the �xedpoint x0 and �nish in the subspa
e BG(K+)) ⊂ B̃G(Q). It follows that we 
an map ea
hpath γ to an intermediate point γ(t), 0 ≤ t ≤ 1 (in 
ontrast to the end point γ(1) in themapping (66)).Conversely, assume that the mapping p′1 is homotopi
 to a 
onstant mapping. Let ξbe a bundle over M su
h that θ(ξ) is trivial. The bundle ξ is generated by the mapping
q : M → BG(K+)) and the bundle θ(ξ) is generated by i′1 · q : M → B̃G(Q). Sin
e thebundle θ(ξ) is trivial, the mapping i′1 · q is homotopi
 to a 
onstant mapping. This meansthat the homotopy F (x, t), x ∈M , 0 ≤ t ≤ 1, de�nes the mapping F̃ : M → Γ0, and the
omposition p′1 · F̃ is equal to q. Consequently, q is homotopi
 to a 
onstant mapping.Let ξ be a bundle su
h that the bundle θ(ξ) is trivial over the algebra Q, {Ui} be a
hart atlas and {ϕij(x) ∈ G(K+)} be transition fun
tions of the bundle ξ. Without lossof generality we 
an assume that all transition fun
tions are unitary, that is, {ϕij(x) ∈

U(K+)}. The triviality of the bundle θ(ξ) means that there are fun
tions hi(x) ∈ U(Q)su
h that(67) [ϕij(x)] = hi(x)h
−1
j (x), x ∈ Uij .The element hi(x) ∈ U(Q) = (

∏
k U(K+))/(

∑
k U(K+)) 
an be realized as a 
ontinuousse
tion in the group (

∏
k U(K+)) of the form hk

i (x) ∈ U(K+). The 
ondition (67) 
an bewritten as(68) lim
k→∞

‖ϕij(x)h
k
j (x)− hk

i (x)‖ = 0.One 
an use the standard te
hnique of the Urysohn lemma for extension of 
ontinuousfun
tions. And, for a su�
iently large k, we 
an deform the fun
tions hi(x) to fun
tions
h̃i(x) su
h that(69) ϕij(x) = h̃i(x)h̃

−1
j (x), x ∈ Uij .



K-THEORY OVER C∗-ALGEBRAS 265Corollary 1. Lemma 1 shows that ea
h almost �at bundle over a simply 
onne
ted
CW -spa
e is trivial.Proof. An almost �at stru
ture is de�ned by a 
ontinuous mapping f : M → BAF. Sin
ethe 
omposition p · f : M → BĜ(Q)×BĜ(Q) of the proje
tion (64) and f is homotopi
to a 
onstant mapping for a simply 
onne
ted spa
e M , the mapping f is homotopi
 toa mapping into a �ber Γ0. The latter is mapped into the spa
e BG(K+) by means of p′1that is also homotopi
 to a 
onstant mapping.8. Fredholm operators for twisted K-theory due to M. Atiyah and G. Segal(jointly with A. Irmatov). In the paper [AS05℄ M. Atiyah and G. Segal have 
onsid-ered families of Fredholm operators parametrized by points of a 
ompa
t spa
e K whi
hare 
ontinuous in a topology weaker than the uniform topology, i.e. the norm topologyin the spa
e of bounded operators B(H) in a Bana
h spa
e H.Therefore, it is interesting to establish whether the 
onditions, 
hara
terizing familiesof Fredholm operators, from the paper [AS05℄ pre
isely des
ribe the families of Fred-holm operators whi
h form a Fredholm operator over the C∗-algebra A = C(K) of all
ontinuous fun
tions on K.It is not supposed by the authors of the paper [AS05℄ that an operator over A admitsthe adjoint operator or in their terminology, 
ontinuity of the adjoint family.Here we aim to 
larify the problem of a des
ription of the 
lass of Fredholm operatorswhi
h in general 
ase do not admit the adjoint operator. For the �rst time, operatorswhi
h play the role of Fredholm operators and may not have adjoints were 
onsideredin the paper [MF79℄. Sin
e the main 
lass of operators 
onsidered in the paper [MF79℄is the 
lass of pseudodi�erential operators for any element of whi
h the adjoint operatorautomati
ally is bounded, it follows that existen
e of the adjoint operator was not thea
tual question for the main goals of that paper.However, in their paper [AS05℄ the authors have 
onsidered operators, whi
h maynot have adjoints, in the form of families of operators 
ontinuous in the 
ompa
t-opentopology, the adjoint families of whi
h, in general 
ase, may not be 
ontinuous.We 
an show that the 
lass of Fredholm operators over an arbitrary C∗-algebra, whi
hmay not admit adjoints, 
an be extended to a bigger 
lass. This bigger 
lass is de�nedby the 
lass of 
ompa
t operators both with and without adjoints (see [IM05℄).In the 
ase where the C∗-algebra is a 
ommutative algebra of 
ontinuous fun
tions ona 
ompa
t spa
e appropriate topologies in the 
lassi
 spa
es of Fredholm and 
ompa
toperators in the Hilbert spa
e 
an be 
onstru
ted. These topologies fully des
ribe thesets of Fredholm and 
ompa
t operators over the C∗-algebra without the assumption ofexisten
e of bounded adjoint operators over the algebra.
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