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Abstract. The contents of the article represents the minicourse which was delivered at the 7th
conference “Geometry and Topology of Manifolds. The Mathematical Legacy of Charles Ehres-
mann”, Bedlewo (Poland), 8.05.2005 — 15.05.2005. The article includes the description of the so
called Hirzebruch formula in different aspects which lead to a basic list of problems related to
noncommutative geometry and topology. In conclusion, two new problems are presented: about
almost flat bundles and about the Noether decomposition of the Fredholm operators which may
not admit the adjoint operator.

Introduction. In the second half of the last century a new research field was developed
intensively, which is customarily referred to as “noncommutative geometry”. As a matter
of fact this notion covers the circle of problems and methods that are primordially based
on a fairly simple idea: to reformulate topological properties of spaces and mappings in
terms of corresponding algebras of continuous functions. Though this idea is very old (it
goes back to the classical Gelfand—Naimark theorem about one-to-one correspondence
between the category of locally compact topological spaces and the category of com-
mutative C*-algebras) and was developed by many authors both in commutative and
noncommutative setting, this idea was proclaimed more or less manifestly as a program
by A. Connes in his book “Noncommutative geometry” ([Con94]).

In spite of its self-evidence this idea to consider, along with commutative C'*-algebras,
also noncommutative algebras as a family of functions on a non-existing “noncommuta-
tive” space has become very productive and therefore allowed to join together a variety of
different concepts and methods from many areas such as topology, differential geometry,
functional analysis, representation theory, asymptotic methods in analysis. They allowed
also to mutually enrich all these areas with new theorems and properties.
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Problems of differential topology considered in the sixties were the sources of non-
commutative geometry. In essence, the description of topological and homotopy invariants
of smooth and piecewise linear manifolds was only one solved problem. The typical in-
variants for smooth and piecewise linear manifolds were so called characteristic classes,
which were known of three types: the Stiefel-Whitney classes, the Chern classes and the
Pontryagin classes. They are closely related also to vector bundles.

Hence the problem can be formulated as follows: to what extent one or another char-
acteristic class depends on smooth structure of manifolds by means of which it is deter-
mined? As an answer in the fifties it was established that the Stiefel-Whitney classes are
homotopy invariants. More or less using the same methods one can establish that rational
Pontryagin classes are topological invariants.

As to homotopy invariance of the Pontryagin classes this problem until now is not clear
and continues to intrigue many mathematicians. This problem finally was known as the
Novikov conjecture and was one of essential sources of the generation of noncommutative
geometry.

0.1. From Poincaré duality to the Hirzebruch formula. The Pontryagin classes are not
homotopy invariant but have close relation to the problem of a description of smooth
structures of given homotopy type. Hence the problem of finding all homotopy Pontryagin
classes was considered vital. In reality, another problem happened to be more natural.
From the point of view of a classification of smooth structures on a manifold the most
appropriate equivalence relation between manifolds turned out to be so called internal
homology or bordism of manifolds.

In 1945 Pontryagin suggested that internal homology can be described in terms of cer-
tain algebraic expressions in characteristic Pontryagin classes—the Pontryagin numbers
([Pon45], 1945), and established that the Pontryagin numbers are invariant with respect
to internal homology ([Pon47], theorem 3). Using the surgery theory for smooth manifolds
W. Browder and S. Novikov proved that the unique homotopy invariant characteristic
Pontryagin number coincides with the signature of an oriented compact manifold with
respect to the Poincaré duality. The formula that identifies the signature of a manifold
with a certain characteristic Pontryagin number is now known as the Hirzebruch for-
mula ([Hir53]), though its special case was established by V. A. Rokhlin a year before
([Rok52]).

The Poincaré duality and the Hirzebruch formula have a long history, partly con-
nected with coming into being of noncommutative geometry and results of the Moscow
topological school of the second half of the 20th century. The study of these problems
began with the prominent paper “Analysis situs” by H. Poincaré in 1895 ([P0i95]). There
H. Poincaré in particular for the first time formulated the theorem known now as the
Poincaré duality for closed oriented manifolds. Although the complete statement and the
proof of the Poincaré duality were presented considerably later, H. Poincaré undoubtedly
discovered the theorem. Certainly H. Poincaré oversimplified the statement. He meant
the coincidence of the Betti numbers that were equidistant from the ends ([Poi95], p.
490). In any case the notion of the Betti numbers requires a more precise definition
which H. Poincaré partly gave in his subsequent papers. There is the excellent paper
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by P. S. Alexandroff containing his speech devoted to the centennial of H. Poincaré’s
birthday on the special meeting of the International Congress of Mathematicians (Ams-
terdam, 1954) (see [AleT2], p. 813). We can hardly add anything more to this excellent
characterization of the contribution of H. Poincaré to the homology theory of manifolds.

We should especially point out the following new important objects in algebraic topol-
ogy: the homology groups (E. Noether, 1925), the cohomology groups (J. Alexander,
A. N. Kolomogorov, 1934), duality between them (L. S. Pontryagin). The most signifi-
cant event was the creation of characteristic classes (Stiefel, Whitney, 1935; Pontryagin,
1947; Chern, 1948). Everything became prepared to connect the Poincaré duality and
integral invariants of characteristic classes. This connection is now known as the Hirze-
bruch formula. The Hirzebruch formula gives us an excellent example of the application
of categorical methods in algebraic and differential topology. After introduction of the
notion of homology group, the Poincaré duality was meant as coincidence of ranks of
homology groups. For the Betti numbers it was inessential what kind of homology groups
were considered—integer or rational, since the rank of the integer homology groups co-
incides with the dimension of the rational homology groups. But the notion of homology
groups allowed to enrich the Poincaré duality by considering the homology groups with
coefficients in finite fields. Therefore, coincidence of Betti numbers can be interpreted as
isomorphism of rational homology groups. Taking into account the torsion one should
interpret the coincidence of the torsion as an isomorphism of new groups. But these
new groups cannot be homology groups because the torsion coincides in the dimensions
different from the coincidence of the Betti numbers. This apparent inconsistency was
understood after the creation of the cohomology groups and their relations to the homol-
ogy groups. Finally, the Poincaré duality was interpreted as an isomorphism between the
homology groups and the cohomology groups of complementary dimensions:

(1) Hy(M;Z) =~ H"*(M; Z).

The crucial understanding here is that this isomorphism is not abstract but is gener-
ated by a natural geometric operation. For example, in the case of the middle dimension
where dim M = n = 2m the condition (1) becomes a trivial one since

(2) H™(M;Q) = Hom(H,,(M;Q),Q) = Hn(M; Q).

But in the equality (1) the isomorphism is not accidental. This isomorphism is generated
by the intersection operation with the fundamental homology class [M]:

N [M]: H"F(M; Q) — Hy(M; Q).

This means that to the manifold M one can assign the nondegenerate quadratic form
which has an additional invariant—the signature of the quadratic form.

The Hirzebruch formula is the expression of the relation between the signature of the
manifold M and some characteristic number of the same manifold M.

The Hirzebruch formula says that for a 4k—dimensional orientable compact closed
manifold X the equality

(3) sign X = 2"(L(X), [X])
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holds. Here sign X = sign(H?*(X, C),U) is the signature of the nondegenerate quadratic
form in the cohomology groups H?*(X, C), defined by the U-product:

([wr), [wal) & ([wr] U [wal, [X]) = (fwr A wal, [X]) = /le Aws.

The class /2
t .
L(X) = —
=150
is the Hirzebruch characteristic class defined by formal generators ¢; such that
Uk(tlv s 7tn) = Ck (CTX) € H2k(X; Z)a

where o is an elementary symmetric polynomial.

There are different ways to generalize the Hirzebruch formula—mainly for non-simply
connected manifolds which play a crucial role in different problems of noncommutative
geometry and topology.

1. Finite dimensional representations
1.1. Finite dimensional unitary representations. Let X be a closed orientable non simply
connected manifold and let 7 = 71 (X),

fx:X — Br
be the canonical mapping defined up to homotopy that induces an isomorphism of fun-
damental groups

(fx)s:m(X) > .

Consider a finite dimensional representation

p:m— U(N).
Using the representation p one can construct several objects:

1) The flat (complex) vector bundle &” over B, induced by the representation p.
2) The flat (complex) vector bundle 5 over X induced by the same representation

P f* ¢p
pa X — fX€ .
3) The cohomology groups H?*(X, p) with the local system of coefficients induced by
the representation p
H?(X,p) = H* (X, &%).

The U-product induces a nondegenerate Hermitian form in the group H?*(X, p):
H(X,64) x HM(X, &%) -5 B (X, ¢, @ ¢5) ) H* (X, 0) ~ C.
The signature of this form will be denoted by
sign, X = sign(H?*(X, p), ).
It is easy to check that
(4) sign, X = 2"(L(X) ch &%, [X]).

Since &7 is a flat bundle one has ch&? = dim &P = N. Hence both the left side and right
side of the formula (4) coincide with that of (3) up to an integer factor N.
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This means at least that the signature sign, X depends only on the dimension of
the finite dimensional unitary representation p. Nevertheless this case might be useful
for further generalizations. Namely one can construct at least the right hand side of the
formula (4) for more general representations of the fundamental group .

1.2. Finite dimensional unitary representations with respect to a pseudo Hermitian struc-
ture of the type (p,q). Consider a representation
p:m—U(p,q)

into the matrix group U(p, ¢) that preserves an indefinite Hermitian nondegenerate form
of the type (p,q). Then again one can construct the operation of the type U which
generates a nondegenerate Hermitian form into middle cohomologies H?*(X; p).

On the other hand the flat vector bundle &% can be split into the direct sum

K=o,
such that on each summand the form is (positive and negative) definite. Then the Hirze-
bruch formula has the following form:

sign, X = 2"(L(X) ch(&} — €2), [X]).
Here the Chern character of the bundles £} may be nontrivial (Lusztig [Lus72, 1972]).
1.3. Finite dimensional unitary representations with respect to a skew Hermitian struc-

ture. Taking a skew Hermitian form ¢ on CV and the matrix group Sp(/N) which pre-
serves this form one can consider a representation

pim— Sp(N)

and a flat vector (complex) bundle &% . If dim X = 4k + 2 then in the middle dimension
one has a nondegenerate Hermitian form in the group H2?**!(X,p) generated by the
U-product:

HPHL(X €0) x HP4U(X,€8) - H%+2(X, ¢80 ¢0) “LH*+2(X C) ~ C.
The flat vector bundle % can be split into the direct sum
=& o,

such that on each summand the Hermitian form i - ¢ is (positive and negative) definite.
Then again the Hirzebruch formula has the following form:

sign, X = 2" (L(X) ch(&? - ¢7),[X])
(see M. Gromov [Gro95, § 81]).

1.4. Construction of splitting of flat vector bundles for calculation of the signature. For
all three cases above a similar construction is available and is based on the construction
of the Hodge operator.

Let X be an oriented compact manifold, dim X = n, £ — X be a flat (real) vector
bundle with a (skew)symmetric form (e, ®),, in the fiber R™, that is

(u,v), =e(v,u)y, € R, u,veR™, e==£1,
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and constant transition functions preserve this form. This means in particular that the
form (e, ), forms a bilinear (skew)symmetric map

E@E—EREST
Consider the de Rham complex of differential forms on the manifold X valued in the
bundle &:
0 Q0(X;6) 5 QX3 S (X0 5 - SQN(X36) - 0,
The corresponding cohomology complex
0 — H(X:6) % H'(X;) > H (X:) % - S H'(X:6) = 0

possesses the Poincaré duality with respect to the pairing
def *
(wi,wa) = / p(wi Awa), wi,we € H(X;E).
X

This form is nondegenerate and (skew)symmetric. Namely,
<w2’ w1> — 5(71)dimw1-dimw2 <W1’ w2>'

We intend to calculate the signature of the form in terms of characteristic classes.

For that let us consider an analogue of the scalar forms generated by a Riemannian
metric g = (g;j(z)) on X and a metric tensor u = (uqg(x)) in the bundle {. Fix a local
coordinate system (x!,...,2") = (%) on X and a basis (e1,...,en) = (ey) in the fibers
of the bundle ¢. Any differential form w; € Q!(X;&) can be represented as

wi = (1ff(x)eq)dz".
If we have another form

wy = (off(x)eq)dx’,
the scalar product is defined as

(w1, w2)g < / (L) o Y09 (2)) dp

X
where dp is the differential form which determines the measure on X, associated with

du = \/det(gij)dzt A Ada™.

The scalar product (wq,ws)g, is symmetric and nondegenerate.
The form (e, ), , can be extended to spaces of forms of other dimensions: let wy,ws €

QOF(X,9),

the Riemannian metric g;;,

W = Z (Zl o o ik(ac)e,l)daci1 Adz2 A - A dat®

11,8250k [ed

Wy = Z (ZQ 101‘12 11111 i (m)ea)dxil Adxt2 A Adrie,

11,82, 0,0k o

Then
o) = [ (5 (Efiin @2l @ias)g g™ g5 )di

t1,82,000k a3
J15J253Jk
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Thus on the space Q*(X; &) = P, _, 2*(X;€) one has two forms: (e, e) and (e, e), ,,
both nondegenerate. Hence there is an invertible operator

% QX6 - (X8, e QF(XGE) - QR(XGY),
such that
(wi,w2) = (% wi,w2)g,u-
The metric tensor u can be chosen such that
(5) *_p, - kg, = e(—1)""HFId.
Really, any metric tensor v in the bundle £ defines the form
(w1, wa)gw = (Awr, wa)g,u-
Putting A = , /| %2|, for the new operator with respect to the form v,
(w1, wa) = (kypw1,wa) g0,

one has the relation

that is,
(%)% = |37 %2
The condition (5) can be checked at each point.
Further, if w; € QF, wy € Q%=1 then

(k 1 (dpwr), w2) = (dpwr,w2) = (1) Nwi, dpp—p—1w2)

= (1M (R p(w1) dnporwe) = (1) my ku(wr), we),

that is,
*pp1de = (DM ke
or
*pp1dy o g = 6(—1)k+1+(n_k)kdz,k,1
or
Op = e(=1)" sk piidn_i %,
where

Sp=di_,:QF = QF L

In other words

(=)D =D g 5 e
or
(6) *p-100 = (=1) "V dg ks,
and
(7) kpprdp = (1) P8, %y,

k(k—1)

Put a, = (—1)" =  %y. Then
—(agq1dr + ¥5-10;) = (dpn—k + On—k) .
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This means that on the space Q* = @ QF the relation
* (d+0)=—(d+9) %

holds. If n = 4s and € = 1, then a? = Id. If n = 4s + 2 and € = —1, then again o? = Id.
In both cases the signature of the quadratic form (e, e),, on cohomology, that is, on
Ker(d + ¢) = Kerd N Ker § coincides with the index of the operator

d+6:Q7 = Q,

where QT and Q~ are the eigenspaces of the operator o, which correspond to the eigen-
values 1 and —1.

2. Continuous family of finite dimensional representations. Let us consider a
continuous family of representations

(8) pt:m—U(N), teT.
This family generates a family of quadratic forms on the family of the homology spaces
(H2k(X7 pt)ﬂ U)

The problem is to describe this family as a continuous family of quadratic forms. For this
we need to include the family (H?*(X, p;),U) into a larger space (see [Mis01]).

Given a combinatorial structure on X, let Cy = Cy(X) denote the group of k-
dimensional chains of X with coefficients in C". Then the representations p; define
boundary homomorphisms dj and the Poincaré duality homomorphisms D which are

continuous with respect to t € T

dy do dy

Co o L,
b, T L I
oA S B We
The properties are
di—1d =0,
(9) dDy, + (=)' Dy_rdyy_ypy =0,

Dy, = (-)""=HDy_,

D induces an isomorphism in homology groups.

Put
(10) Fy, = i**=Dp,.
Then a similar diagram
Co < O <o g,
(11) TFU TFl TFn
o s B o 5

has more natural properties

(12) dpFyp + Fr_ady 01 =0, Fp,=F;_,.
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Consider the cone of F', which is an acyclic complex with respect to the total gradu-
ation and the sum of differentials d and F*:

(13) 0‘—ANﬂfh‘ﬁ ‘ﬂz‘bll‘{zilA2l+1[<{2i2 &Ale%lflzuﬂ‘—o
where
. di, Fi_
(14) Ay =Cpe®Cl_pyy, Hi= (Ok df ' ) :
n—k+2
Put
n+1
A=A = Acy ® Aoaa,
k=0
where
21 21
Aev = @ A2k’7 Aodd = @AZIH-I-
k=0 k=0
Then
Aev ~ Aodd ~ @Ck;
k=0
and

d+d"+F:Acy — Aodd

is an isomorphism.

Taking in account that d = d;, F = F; one has

THEOREM 1.
sign(A4;) = sign(X, p;)

where Ay = dy + df + F.

2.1. New notion of signature for a continuous family Ay : Vi — Vi, Vi = V. There is a
splitting
V=VvleV,

such that A; is positive on Vt+ and negative on V,~. Then

¢ =1Iv" ¢ =1Iw
are subbundles. By definition

sign(A;) = [¢7] — [6-] € K(T).
Thus
sign,, (X) = sign(d; + dj + F}) € K(T).

We have a generalization of the Hirzebruch formula:
(15) K(T) > sign,, X =2"(L(X) chx (£, 7), [X]) € K(T) ® Q,
where chy (&5, 1) € H*(X; K*(T) ® Q).
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3. Algebraic setting. The most general picture for the Hirzebruch formula for oriented
smooth manifolds can be represented as follows (see [Mis70], [Mis95]).

Let Q.(Bm) denote the bordism group of pairs (M, far). Recall that Q.(Bw) is a
module over the ring Q. = Q. ({pt}). One can construct a homomorphism

(16) sign : Q,(Bw) — L.(Cn)

which to every manifold (M, fys) assigns the element sign(M) € L.(Cn), where L,.(Cm)
is the Wall group for the group ring Crr.

3.1. Algebraic construction of symmetric signature For combinatorial manifolds we have
a similar combinatorial diagram

d d d,
Co oo L Ao
Cnﬂcn—l(f"_*l oA o0

where

O Y 0uX), oF Y k(X)) ~ Homex(Ch, Cr).

Here Cy, ()? ) means the chain complex of the universal covering X with respect to the

combinatorial structure of X, C%(X) means the cochain complex with compact supports,
Cr is the group ring of the fundamental group 7 with coefficients in the field C of rational,
real or complex numbers.

The homomorphism sign satisfies the following conditions:

(a) sign(M) depends only on the homotopy equivalence class of the manifold M.
(b) If N is a simply connected manifold and 7(N) is its signature then

(17) sign(M x N) = sign(M)7(N) € L.(Cm).

We shall be interested only in the groups after tensor multiplication with the field of
rational numbers Q, in other words in the homomorphism

sign : Q.(B7) ® Q — L.(C7) ® Q.
One has
Q.(BT) ® Q ~ H.(Bm;Q) ® Q. ~ Q/"*(Br) ® Q ® .

where QI""™¢(Br) is the so called “framed” bordisms, that is, bordisms which are repre-
sented by manifolds with trivial normal bundles. Therefore the homomorphism sign can
be considered as a product of two homomorphisms

oc®71:H,(Bm;Q)®Q, ~ Q" (Br)o Q® N, — L,(Cr)® Q.

Here
o:H,(Bm; Q) ~ Q"¢ (Br)® Q — L.(Cr) ® Q.
is the restriction of o to Q{"*™(Br) ® Q C Q. (B7) @ Q. On the other hand the homo-

morphism sign represents the cohomology class

o€ H(Bm; L.(Cr) ® Q) = Hom (H,(Bm;Q), L.(Cm) ® Q)
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such that if M is a framed manifold, M € QI"*™°(Br), then

sign(M) = o(M) = (f3,(2), [M]).
The key idea is that for any manifold (M, fis) the signature can be represented by a
version of the general Hirzebruch formula

(18) sign(M, far) = (L(M) f3,(7), [M]) € L.(Cm) ® Q.
Indeed, let M = My x My, My € Q{"™(Bx), My € Q,. Then
sign(M) = sign(Mi)7(M2) = (f3,(7), [M1]){(L(M2), [Ma])
= (L(My x Ma) f3;(7), [M1 x Ma]) = (L(M) f3(7), [M]).

3.2. Higher signature. Let x € H*(Bm; Q) be an arbitrary cohomology class. Then the
number

sign, (M, fur) = (L(M) fy,(x), [M]) € Q
is called the higher signature due to S. P. Novikov. In the case of an additive functional
a: L,(Cr) ® Q — Q the higher signature sign, (M, fyr), where z = a(c) € H*(B7; Q)
arises from the Hirzebruch formula (18) above.

This gives a description of the family of all homotopy-invariant higher signatures. This
observation is not a direct consequence from theprevious argument but can be obtained
from the theory of non-simply connected surgeries by [Wal71]. Indeed, following [Wal71]
one can construct an obstruction to the existence of surgery of normal mapping to a
homotopy equivalence which is described as a difference of symmetric signatures (16) of
two manifolds. Therefore all other higher signatures behind z = «(@) are not homotopy
invariant.

4. Functional version of the Hirzebruch formula. Infinite dimensional repre-
sentations. Let C*[r] be the C*-group algebra of the group 7. Any unitary representa-
tion
p:m— End(H)
of the group 7w, where H is a Hilbert space, can be uniquely extended to a representation
p: C*[r] — End(H)
of the algebra C*[r]. Put A=Im p C End(H), p: C*[r] — A.

By £” we denote the vector bundle over Br with the fiber A, whose transition functions
are induced by the action of the group 7 on the algebra A by the representation p. The
vector bundle £” generates the element of the K-group

&P € Ka(Bm).

There is a generalization of the Chern character to vector bundles over the C'*-algebra
A:cha €€ HY(X; Ka(pt) ® Q).

Hence we can write the right side of the formula (4):

7= 2" (L(X) cha £k [X]) € Ka(pt) @ Q.

The left side of the formula can be calculated as a symmetric signature of the manifold
X by replacing of rings, induced by the representation p, so we obtain the so called
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generalized Hirzebruch formula for an arbitrary C*-algebra A:

Ka(pt) > sign,(X) = 2°% (L(X) cha €%, [X]) € Ka(pt) ® Q.

5. Smooth version of the Hirzebruch formula. The left side of the Hirzebruch
formula (4) is described in terms of the combinatorial structure of the manifold X . There
is a smooth version of this expression as well. Namely, consider the de Rham complex of
differential forms on the manifold X with values in the flat vector bundle £°:

(19) 0— Qo(X, ) L0 (X, )L - L (X, ¢°) — 0.

It is well known that the cohomology groups of the de Rham complex (19) are isomorphic
to the cohomology groups H* (X, £7).

The U-product is induced by exterior product of differential forms, so the Hermitian
form which defines the Poincaré duality can be determined by

(20) (w1, wa) = /le Aws.

On the other hand using a Riemannian metric on the manifold X, (w,ws), the
Poincaré duality (20) can be determined with a bounded operator x:

(w1, w2) :/ w1 A *wa,
X

where
* 1 Qk(X) — Qn_k(X)
Put
a = P
Then
ada = —d*; o® = 1.
Let

OH(X)=Ker (a—1); Q (a+1).
It is evident that
(d+d*)(QT(X)) Cc Q (X).
Consider the elliptic operator
D= (d+d): Q"(X)— Q (X).

Then we have

index D = sign(X).
Using the Atiyah—Singer index formula for elliptic operators we have
(21) index(D ® &) = 2F(L(X) ch &, [X]).

for arbitrary vector bundle £ over the manifold X.
If the bundle £ is flat, that is, if there is a representation p such that £ = £” then

index (D ® &) = sign,(X)
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and we again obtain the Hirzebruch formula:

sign,,(X) = index(D ® £°) = 2°*(L(X) ch &”, [X]).

6. The notion of almost flat vector bundle. Combinatorial local Hirzebruch
formula. A naive point of view is that all transition functions @ag(z), © € Usg = UsNUp
for a vector bundle ¢ are almost constant. Then one can construct a so called almost
algebraic Poincaré complex of formal dimension n which consists of chains and cochains
with values in fibers of the bundle ¢:

do dn

Co(€) <& Ci(e) & ... & (9)
D D D
di @

Cr(e) L omge) =t A o)
such that

|d?|| <e, |Dd*+dD| <e
ID|| < const, D*==+D.

If € is sufficiently small and the number of neighbors for each cell is bounded then the
operator

d+d" + D :C.(§) — Cu(§)

is invertible and a version of the Hirzebruch formula (local combinatorial Hirzebruch

formula) holds:
sign C,. (X, &) = 2°% (L(X) ch &, [X]) .

If moreover the size of all cells is sufficiently large then we come to the notion of almost
flat bundle for which the signature sign C.(X,&) is homotopy invariant (see [Gro95],
[Mis99]).

7. Almost flat bundles from the point of view of C*-algebras (jointly with
N. Teleman). Connes, Gromov and Moscovici [CGM90] showed that for any almost
flat bundle o over the manifold M, the index of the signature operator with values in «
is a homotopy invariant of M. It follows that a certain integer multiple n of the bundle «
comes from the classifying space Bmy(M). Geometric arguments show that the bundle «
itself, and not necessarily a certain multiple of it, comes from an arbitrarily large compact
subspace Y C B (M) through the classifying mapping.

For this we modify the notion of almost flat structure on bundles over smooth mani-
folds and extend this notion to bundles over arbitrary CW-spaces using quasi-connections
of N. Teleman ([Tel04]).

Using a natural construction by B. Hanke and T. Schick ([HS04]), one can present a
simple description of such bundles as a bundle over a C*-algebra and clarify the homotopy
invariance of corresponding higher signatures.

Moreover it is possible to construct a so called classifying space for almost flat bundles
(see [MTO05a], [MTO5b]).
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7.1. Description of almost flat bundles in terms of C*-algebras due to B. Hanke and
T. Schick. Due to [CGM90] an element o € K (M) over a smooth manifold M is called
an almost flat bundle if for any € > 0 there are two vector bundles &£, n with linear
connections V¢, V" such that:

l.a=¢{—ne K(M),

2. |08 <&, ||©7] < &, where

(22) el = SEJPW{HGI(XAY)II HIXAY] <1,

and O,(X AY) = [Vx, Vy| = Vix,y) is the curvature form of the connection V.

If « is an almost flat bundle and [ is a trivial bundle then o @ 3 is also an almost
flat bundle. This means that without loss of generality one can consider elements from
K which are represented by real vector bundles.

In other words we can consider two sequences of vector bundles £ = {£;} and n = {nx}
with fixed connections V}, and V2 such that

(23) §e =Mk &,
dima = d, dim &, = ng, dimn, = m; = n; — d.
Assume that
(24) Jim |OLl =0, i=1,2.
So instead of a bundle o we shall consider a finer structure namely so called almost
flat bundle structure which consists of the following;:

1. Sequences of bundles £ = {{} and n = {n;} with fixed connections V} and V3
such that

(25) Jim |©L] =0, i=1,2,
2. A sequence of isomorphisms

(26) o &= @a.

The same bundle o may admit several almost flat bundle structures. We say that two
almost flat bundle structures

P={o;&={&. Vikin={m, Vi), f = {fi}}
and
"P={a; "¢ =& Vi) 'n={m' Vi) 'F={Fs}},
are equivalent if one structure can be obtained from the other structure by a sequence of
the following operations:

1. Passing to a subsequence;

2. Homotopy of linear connections V}, and Vi in the class of connections which satisfy
the conditions (25), and homotopy of isomorphisms f = {fx};

3. Stabilization of all bundles, that is, adding trivial bundles both to & = {&}, n =
{nx}, and to a with natural extension of the connections V} and V2 and isomorphisms
f={fr} to direct sums.
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An equivalence class of almost flat bundle structures is called an almost flat bundle
on the manifold M. Among almost flat bundles a trivial bundle is marked out which is
represented by the trivial almost flat bundle structure

PO = {a% " = {&, V" 1in® = {m, Vi°h 0 = {13},

. 1 2 - . .
where all bundles a?, £2, 79 and connections Vk’o, Vk’o are trivial and the isomorphisms

f2 are identical. The set of all almost flat bundles is endowed with the operation of
direct sum P &' P, the trivial bundle being the neutral element. So the set Vecty (M) of
equivalence classes of almost flat structures forms a semigroup with respect to the direct
sum. The Grothendieck group is denoted by /Cq s (M).

7.2. Classifying space for almost flat bundles. The groups Vect,;(M) yield a functor
from the category of CW-spaces to the category of abelian groups. Therefore the natural
question arises about existing of classifying space for almost flat bundles. This means
that there should be a space BAF with fixed almost flat bundle ¢& = {¢8}, B = {nF},

B ¢ ~ nP @aP such that any almost flat bundle € = {&}, n = {nc}, fr : & ~ M D a
over M can be constructed by a continuous map ¢ : M — BAF up to homotopy.

First of all, consider a description of almost flat bundles due to [HS04| using special
structural groups.

Put A = [[;2, K*, where KT = KT(H) = C & K(H) is the algebra of compact
operators with an adjoined identical operator in the Hilbert space H. The algebra A is a
unital subalgebra in the algebra of all bounded operators B(H), H = ;- H.

Consider a sequence of bundles ¢ = {{}, dim&, = ng, and fix coordinate skew
products on the bundles by transition functions

wfj(x) € GL(ng,C), z €Uy

for a chart atlas Uj;.

Consider the canonical imbedding of GL(ny, C) in the group G(K*) of invertible
elements, by assigning each matrix ® € GL(ng, C) to its diagonal extension in the
Hilbert space H = C™ & (C’"k)l as

(27) & — (‘(I)’ o ) € K*(H).

Then the sequence apfj (z) defines the function
Gijx) 0 0 0
=2
. 0 @) 0 0
def ~k .
(28) 0;(x) = [ 5(2) = 0 0 .0 - | €G(A).
k=1 0 0 0 @fj(x)

Consider the quotient algebra Q = A/ Ap, where Ag C A consists of elements x € A,
x = {x; € KT}, such that

(20) lim ;]| = 0.
11— 00
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Let ®;;(x) € Q be the image of the element ®;;(z). Then {®;;(x)} is a family of
transition functions for a bundle £g over the algebra Q.
If the functions <pfj (z) satisfy the condition of almost flat structure, that is,

(30) lim  sup [[¢f;(x) — o (y)] =0,

O z,yeU;;

then the functions ®;;(z) don’t depend on the argument x € X. This means that the
bundle &g is flat.

To an individual bundle « one can assign the bundle ag over Q, by defining the
sequence o = {ag}, ap = @, and ag = ag.

Now, consider an almost flat bundle, that is, sequences ¢ = {£;} and n = {n;} with
fixed transition functions

gafjs(:c), relUy, s=1,2,
for a chart atlas U; such that
(31) lim sup ol (@) — @i (W) =0, s=1,2,

k=002 yeUi;

and a sequence of isomorphisms

(32) Jr & = me @ o

Let gafj’l(x) € GL(ny, C), <p22(x) € GL(my,C), ny, = my + d. Let the bundle o be
defined by the transition functions v;;(z) € GL(d, C). Then the direct sum (; = nx & «
has transition functions x;;(z) € GL(n, C) of the following form

_ (@) 0
(33) Xij(i’?) = < 0 dh‘j(fﬂ) > .

Turning to the algebra Q one has three bundles £g, 1o and (g and the isomorphism

F : £&g — (o, generated by the sequence (32). On the other hand the bundle (g is
isomorphic to the direct sum of g and ag,

F
(34) fo~ (o~ e @ ag.
The second bundle is defined by the transition functions ¥;;(x),
ij(@) 00 0
(35) \Ilij(l'):H{/;ij(x)Z 0 0 ~0
k=1 0 0 0 P(z) -

7.3. Simple proof of homotopy invariance of higher signatures of almost flat bundles.
Using the description above one can obtain a simple and elegant proof of the homotopy
invariance of the higher signature of an almost flat bundle, which was first established by
A. Connes, M. Gromov and H. Moscovici ([CGM90]).

Namely, if « is an almost flat bundle then the bundles {u and 7o in (34) are flat
bundles over the algebra Q. Since the bundles {o and ng are flat, the following higher
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signatures are homotopy invariant:
sign,, (M) € K5 (pt) ® Q,
sign, (M) € K5 (pt) © Q,
z = cho(8o) € H*(M;Kp(pt) ® Q),
y = cho(ne) € H*(M; Ky(pt) ® Q).

Hence the higher signature

(36)

~— —

sign_ (M) € K5(pt) ® Q,
z = chg(ag) € H*(M;K§(pt) ® Q),

is also homotopy invariant.

(37)

Consider the homomorphism
(38) 6: K" (M) — Kg(M),

which associates to a finite dimensional bundle « the bundle ag over the algebra Q. In
the paper ([HS04, Proposition 3.5]) it was shown that

(39) K’ (pt) = Hz K} (pt) = (Hz)/J

where J = >"7 | Z. Similarly one can show that the homomorphism (38) for M = pt
maps the group K*(pt) = Z by the formula
(40) 0(a) = [ [T o] € (H z)/3.

k=1 k=1

Hence the homomorphism
(41) QK" (M)®Q—Kg(M)®Q

is a monomorphism. This completes the proof of the homotopy invariance of higher
signatures for almost flat bundles since

(42) sign, (M) = 0(sign,, (M)),
where u = ch(a).

7.4. Geometric construction of classifying space for almost flat bundles. Almost flat bun-
dles (without fixed almost flat structure) are unlikely to be constructed using a classifying
space since they do not form a homotopy functor. On the other hand, almost flat bundles
with fixed almost flat structure can be represented by the inverse image of a continuous
map into a classifying space. Actually, it was shown above that with each almost flat
structure there is associated a pair of flat bundles £g and 7ng over the algebra Q and an
isomorphism of Q-bundles

(43) F:&o — (ng®ag).
The presence of flat bundles £o and 7o and the isomorphism F' can be interpreted
using maps into classifying spaces. Namely, the bundles £n and 7g according to the

definition have the structural group G(Q), which consists of all invertible elements of the
algebra Q. In other words, we can consider the bundles {u and 7o as one-dimensional
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bundles over the algebra O, with the fiber Q. Therefore the bundles are classified by
continuous maps from the base M into the classifying space BG(Q). Since the bundles

&g and ng are flat, we should take as the classifying space not BG(Q), but B@, where
G(Q) is the same group G(Q) with discrete topology. The identity map ¢ : G(Q) — G(Q)
is continuous, which induces the natural continuous map of classifying spaces

(44) B, : BG(Q) — BG(Q).
Let
(45) @ : BG(Q) x BG(Q) — BG(Q)

be the map that corresponds to direct sum of bundles. Then the bundles &g and 79
can be represented as inverse images of the canonical flat Q-bundle Fg over the space

BG(Q) by continuous maps

(46) fﬁ’fn/\:Mg’Ba(—a)’A
(47) §o = f{(Eg), mno=fi(Eg).

Since the bundle E/’\Q is the inverse image of the canonical bundle Eg over BG(Q)
with respect to the map B,,

(48) Eq = B/ (Eo),
the presence of the isomorphism (43) means that the maps
(49) M4 BG(0) 24 BG(Q)
and

fnxfa B x 60

(50) M BG(Q) x BG(KT) Y BG(Q) x BG(Q)-2-BG(Q)

are homotopic.

The classifying space BG(Q) is determined uniquely up to homotopy equivalence.
Therefore it is appropriate to replace the space BG(Q) by the homotopy equivalent
space that is the union of two mapping cylinders

de <~
< (BG(Q) U, o) (10,1] x BG(Q)))
Ua-(B.x0),0) ([0, 1] X (BG(Q) x BG(KT))),
and replace the maps B, and & - (B, x 6) by the imbeddings

(51) BG(Q) ™

io = (Id.1) : BG(Q) = ((0.1] x BG(Q)) € BG(0).
(52) i = (Id,1) : (BG(Q) x BG(K*)) —
((0,1] x (BG(Q) x BG(KT))) C BG(Q).
Consider the space of continuous paths
(53) BAF ““/ I(BG(Q); BG(Q): (BG(Q) x BG(K™))),

that consists of all continuous paths

—_~—

(54) 7:[0,1] = BG(Q),
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that start in the subspace BG(Q), that is,

(55) 7(0) € BG(Q) = Im iy,

and finish in the subspace (BG(Q) x BG(K™*)), that is,

(56) 4(1) € (BG(Q) x BG(K*)) = Im i;.

Each bundle «, endowed with almost flat structure corresponds to a continuous map
from M to the space BAF. Indeed, since the maps (49) are (50) homotopic, the compo-
sitions ig - fe and 41 - (f, X fo) are also homotopic. It follows that there is a continuous

map
(57) ®: M x[0,1 — BG(Q),

for which one has

(58) O(w,0) = iofe(x), (w,1) = ir(fy x fu)(a).
This means that the map ® induces a map

(59) ®: M — BAF

by the formula

(60) () (t) = (x,t), xeM; telo,1].

Conversely, the same formula (60) defines two homotopic maps

®(z,0): M — BG(Q),

O(x,1): M — (BG(Q) x BG(K™T)),

which in turn define a flat structure on the bundle generated by the mapping of the

(61)

second component of the map ®(x,1).

Moreover, on the space BAF there is a bundle, the inverse image of which under the
mapping (59) coincides with the flat bundle described above.

Now we can describe homotopy properties of the space BAF using standard Serre
fibrations. Let us denote by

po : BAF — BG/(a),
p1 = (0} x p{) : BAF — (BG(Q) x BG(K™))

two standard maps that take each path v € BAF to its initial or final points with respect
to the conditions (55) and (56). The combined map

(63) p=(po x p1) : BAF — BG(Q) x (BG(Q) x BG(K™))

(62)

is the Serre fibration whose fiber is the loop space V- = Q(BG(Q)) ~ Q(BG(Q)) ~ G(Q).

On the other hand consider another Serre fibration
(64) 5= (po x 1) : BAF 1% BG(Q) x BG(Q),

whose fiber is the space I'y = I'(xo; BG(Q); BG(K™)) of paths in the space BE\(/Q) ~
BG(Q), that start at a fixed point o and finish in the space BG(K™)) C BG(Q). The
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space I'g is foliated by the projection
(65) Py To—= BG(KT),
the fiber being the space of loops V = Q(BG(Q)) ~ G(Q) ZCO Iy.
LEMMA 1. The projection (65) is homotopic to the constant mapping.
In other words the identical mapping of I’y is homotopic to ¢ : I’y — G(Q), poig ~ Id.

Proof. The statement of the lemma is equivalent to the injectivity of the homomorphism
(38)
6: K" (M) — K5(M),

which takes a finite dimensional bundle « to the bundle ag over the algebra Q. In fact,
let (38) be injective. Consider the bundle £ over the space I'y generated by the mapping
(65). Then 6(&) is the bundle over the algebra Q generated by the mapping

(66) it -p) : Tog — BG(KT) C BG(Q).

This mapping is homotopic to the constant mapping as the space Iy = I'(z; BG(Q);
BG(K™)) is the space of paths in the space BG(Q) ~ BG(Q) that start at the fixed

—_——

point g and finish in the subspace BG(K™)) C BG(Q). It follows that we can map each
path v to an intermediate point y(¢), 0 <t < 1 (in contrast to the end point v(1) in the
mapping (66)).

Conversely, assume that the mapping p} is homotopic to a constant mapping. Let &
be a bundle over M such that 6(¢) is trivial. The bundle ¢ is generated by the mapping
q¢: M — BG(K")) and the bundle 6(¢) is generated by i, - ¢ : M — BG(Q). Since the
bundle 0(§) is trivial, the mapping i} - ¢ is homotopic to a constant mapping. This means
that the homotopy F'(z,t), z € M, 0 <t < 1, defines the mapping F:M— Iy, and the
composition p] - Fis equal to gq. Consequently, ¢ is homotopic to a constant mapping.

Let £ be a bundle such that the bundle 6(¢) is trivial over the algebra Q, {U;} be a
chart atlas and {p;;(z) € G(K")} be transition functions of the bundle £. Without loss
of generality we can assume that all transition functions are unitary, that is, {¢;;(x) €
U(K*)}. The triviality of the bundle #(¢) means that there are functions h;(x) € U(Q)
such that

(67) [pij ()] = hi(2)h} ' (z), @ € Uy.

The element h;(z) € U(Q) = (I[, UKT))/(3_, U(K+)) can be realized as a continuous
section in the group ([, U(K™T)) of the form h¥(z) € U(K*). The condition (67) can be
written as

(68) Tim [y (@) (@) — W ()] = 0.

One can use the standard technique of the Urysohn lemma for extension of continuous
functions. And, for a sufficiently large k, we can deform the functions h;(x) to functions
h;(z) such that

(69) apij(ac) = hz(:v)hfl(x), x € U” [ ]
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COROLLARY 1. Lemma 1 shows that each almost flat bundle over a simply connected
CW -space 1is trivial.

Proof. An almost flat structure is defined by a continuous mapping f : M — BAF. Since
the composition p- f : M — B@ X Ba(-a) of the projection (64) and f is homotopic
to a constant mapping for a simply connected space M, the mapping f is homotopic to
a mapping into a fiber T'g. The latter is mapped into the space BG(K™) by means of p}

that is also homotopic to a constant mapping. =

8. Fredholm operators for twisted K-theory due to M. Atiyah and G. Segal
(jointly with A. Irmatov). In the paper [AS05] M. Atiyah and G. Segal have consid-
ered families of Fredholm operators parametrized by points of a compact space K which
are continuous in a topology weaker than the uniform topology, i.e. the norm topology
in the space of bounded operators B(H) in a Banach space H.

Therefore, it is interesting to establish whether the conditions, characterizing families
of Fredholm operators, from the paper [AS05] precisely describe the families of Fred-
holm operators which form a Fredholm operator over the C*-algebra 4 = C(K) of all
continuous functions on K.

It is not supposed by the authors of the paper [AS05] that an operator over A admits
the adjoint operator or in their terminology, continuity of the adjoint family.

Here we aim to clarify the problem of a description of the class of Fredholm operators
which in general case do not admit the adjoint operator. For the first time, operators
which play the role of Fredholm operators and may not have adjoints were considered
in the paper [MF79]. Since the main class of operators considered in the paper [MFT79]
is the class of pseudodifferential operators for any element of which the adjoint operator
automatically is bounded, it follows that existence of the adjoint operator was not the
actual question for the main goals of that paper.

However, in their paper [AS05] the authors have considered operators, which may
not have adjoints, in the form of families of operators continuous in the compact-open
topology, the adjoint families of which, in general case, may not be continuous.

We can show that the class of Fredholm operators over an arbitrary C*-algebra, which
may not admit adjoints, can be extended to a bigger class. This bigger class is defined
by the class of compact operators both with and without adjoints (see [IMO05]).

In the case where the C*-algebra is a commutative algebra of continuous functions on
a compact space appropriate topologies in the classic spaces of Fredholm and compact
operators in the Hilbert space can be constructed. These topologies fully describe the
sets of Fredholm and compact operators over the C*-algebra without the assumption of
existence of bounded adjoint operators over the algebra.
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