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1. Introduction. Let (Mn, g) be closed, oriented, with triangulation K. Then the char-

acteristic numbers

〈ωi11 . . . ωinn , [M ]〉 = ωi1...in , 1i1 + · · · + nin = n (1.1)

and for n = 4k
〈pi11 . . . pikk , [M ]〉 = pi1...ik , 1i1 + · · · + kik = k, (1.2)

are well defined. Here ωi are the Stiefel–Whitney and pi the Pontrjagin classes.

They characterize the elements of ΩSOn . More generally, the numbers

〈pi11 . . . pikk f
∗h(m), [M ]〉, (1.3)

where m = n − 4k, h(m) ∈ Hm(X,Z), X a finite CW-complex and f : Mn → X

characterize the singular bordism class of [(M, f)] ∈ ΩSOn (X) modulo torsion.

If Mn is open (hence K infinite) then ωi1...in and pi1...ik are in generally not defined.

More generally, we have the following simple

Proposition 1.1. There does not exist any nontrivial number valued (vector valued)

invariant which is defined for all connected oriented manifolds and which is additive

w.r.t. connected sums.

There are several ways out from this situation.

1) One should admit more general ranges of definition, e.g. K-groups (Mishchenko, Roe

et al.) and give up the condition of additivity.

2) One could impose certain restrictions, i.e. define invariants not for ”all” manifolds.

3) One could work with other definitions of characteristic numbers, e.g. more analytical

ones.

4) One could introduce relative characteristic numbers.
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The fundamental criterion for establishing such numbers should be their geometrical

meaning and the applicability.

We define in section 2 analytical characteristic numbers, study their invariance prop-

erties and applications. Section 3 is devoted to combinatorial characteristic numbers. In

section 4, we define relative characteristic numbers and apply them to bordism theory

and we study bordism theory of manifolds with nonexpanding ends and relate it with the

growth of the signature. Finally, section 5 is devoted to suitable versions of the Novikov

conjecture.

2. Absolute characteristic numbers for open manifolds. Let (M4k, g) be closed,

oriented, g an arbitrary Riemannian metric, pi(M, g) the associated by Chern–Weil con-

struction Pontrjagin classes, e(M, g) the Euler class, Lk the Hirzebruch polynomial. Then

there are the well known equations

σ(M4k) =

∫
Lk(M, g) =

∫
Lk(p1(M, g), . . . , pk(M, g)) = σ(M, g) (2.1)

and for (Mn, g) oriented

χ(Mn) =

∫
e(M, g) = χ(M, g). (2.2)

These equations express in particular that the r.h.s. are in fact independent of g and are

homotopy invariants. We proved that the space of Riemannian metrics on a manifold

splits w.r.t. a canonical uniform structure into ”many” components and that on a com-

pact manifold there is only one component (cf. e.g. [7]). The independence of g can be

reformulated as the r.h.s. depend only on comp(g), since the space of Riemannian metrics

on a closed manifold consists only of one component. We will extend the definitions of

the l.h.s. and the r.h.s. to certain classes of open manifolds. In some cases there even

holds equality. The main questions connected with such an extension are

1) the invariance properties,

2) applications, the geometrical meaning.

It is clear that the definition of characteristic numbers via Chern–Weil construction can

be extended to an open manifold if the Chern–Weil integrand is ∈ L1, as a very special

case if this integrand is bounded and (Mn, g) has finite volume.

Let (Mn, g) be an open complete manifold, G a compact Lie group with Lie algebra

G, ̺ : G→ UN or ̺ : G→ SON a faithful representation, P = P (M,G) a principal fibre

bundle and E = P×GEN the associated vector bundle which is endowed with a Hermitean

or Riemannian metric. According to the faithfulness of ̺, the connections on P and E are

in a one-to-one correspondence, ω ↔ ∇ω = ∇. Denote by C(P,B0, f, p) = C(E,B0, f, p)

the set of all connections ω ↔ ∇ω = ∇ with bounded curvature, i.e. satisfying (B0):

|R| ≤ C, where R denotes the curvature and | | the pointwise norm, and having finite

p-action ∫
|R∇ω |p dvolx(g) <∞.
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We fix P and E and write therefore simply C(B0, f, p). Let δ > 0 and set

Vδ = {(∇,∇′) ∈ C(B0, f, p)
2|b,1|∇ −∇′|∇,p,1 = b|∇ −∇′| + b|∇(∇−∇′)|

+|∇ − ∇′|p + |∇(∇−∇′)|p < δ}
Lemma 2.1. B={Vδ}δ>0 is a basis for a metrizable uniform structure b,1Up,1(C(B0, f, p)).

Proof. We start with (U ′
2): For each V ∈ B there exists V ′ ∈ B such that V ′ ⊆ V −1.

b,1|∇′ −∇|∇′,p,1 = b|∇′ −∇| + b|∇′(∇′ −∇)| + |∇′ −∇|p + |∇′(∇′ −∇)|p.
Hence we have to estimate only

b|∇′(∇′ −∇)| ≤ b|(∇′ −∇)(∇′ −∇)| + b|∇(∇′ −∇)| ≤ C b,1|∇′ −∇|2 + b,1|∇′ −∇|
and

|∇′(∇′ −∇)|p ≤ |(∇′ −∇)(∇′ −∇)|p + |∇(∇′ −∇)|p
≤ C2

b|∇′ −∇||∇′ −∇|p + |∇(∇′ −∇)|p,
i.e.

b,1|∇′ −∇|∇′,p,1 ≤ P1(
b,1|∇′ −∇|∇,p,1),

where P1 is a polynomial without constant term. (U ′
2) is done.

For (U ′
3): For each V ∈ B there exists W ∈ B such that W ◦W ⊆ V we have to

estimate in

b,1|∇1 −∇2|∇1,p,1 ≤ b,1|∇1 −∇|∇1,p,1 + b,1|∇ −∇2|∇1,p,1 (2.3)

only the term b,1|∇ −∇2|∇1,p,1. But

b,1|∇ −∇2|∇1,p,1 = b|∇ −∇2| + b|∇1(∇−∇2)| + |∇ −∇2|p + |∇1(∇−∇2)|p
≤ b|∇ −∇2| + b|(∇1 −∇)(∇−∇2)| + b|∇(∇−∇2)| + |∇ −∇2|p

+|(∇1 −∇)(∇−∇2)|p + |∇(∇−∇2)|p
≤ b,1|∇ − ∇2|∇,p,1 + 2b,1|∇1 −∇|∇1,p,1 · b,1|∇ −∇2|∇,p,1,

together with (2.3)

b,1|∇1 −∇2|∇1,p,1 ≤ P2(
b,1|∇1 −∇|∇1,p,1, |∇ −∇2|∇,p,1),

where P2 is a polynomial without constant term. (U ′
3) is done.

Denote by b,mΩq(GE) or Ωq,p,r(GE) or b,mΩq,p,r(GE) the completion of

b
mΩq(GE) =

{
η ∈ Ωq(GE) | b,m|η| :=

m∑

µ=0

sup
x

|∇µη|x <∞
}

or

Ωq,pr (GE) :=

{
η ∈ Ωq(GE) | |η|p,r :=

( ∫ r∑

i=0

|∇iη|px dvolx(g)

) 1
p

<∞
}

b
mΩq,pr (GE) = b

mΩq(GE) ∧ Ωq,pr (GE)

with respect to b,m| | or | |p,r or b,m| |p,r = b,m| |+ | |p,r, respectively. We obtain Ωq,p,d etc.

by replacing ∇ → d.

Denote by b,1Cp,1(B0, f, p) the completion w.r.t. b,1Up,1.
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Theorem 2.2. a) b,1Cp,1(B0, f, p) is locally arcwise connected.

b) In b,1Cp,1(B0, f, p) components and arc components coincide.

c) b,1Cp,1(B0, f, p) has a decomposition as a topological sum

b,1Cp,1(B0, f, p) =
∑

i∈I

b,1compp,1(∇i).

b,1compp,1(∇) = {∇′ ∈ b,1Cp,1(B0, f, p) | b,1|∇ − ∇′|∇,p,1 <∞}d)

= ∇ + (completion of b1Ω
1(GE ,∇) ∩ Ω1,p

1 (GE ,∇)

w.r.t.b,1| |∇,p,1) = ∇ + b,1Ω1,p,1(GE ,∇).

Proof. The only fact to prove is a). b) and c) are consequences of a) and d) follows

from ∇′ = ∇ + (∇′ − ∇). Let ε > 0 be so small that in Uε(∇) b,1| · − · |∇,p,1 and the

metric of b,1Cp,1(B0, f, p) are equivalent. Put for ∇′ ∈ Uε(∇), b,1|∇−∇′|∇,p,1 < ε, ∇t :=

(1−t)∇+t∇′ =∇+t(∇′−∇). If ∇ν ∈ b
1Ω(GE ,∇)∩Ω1,p

1 (GE ,∇) and b,1|∇ν−∇|∇,p,1 −→
ν→∞

0

then ∇ν,t = ∇+ t(∇ν −∇) → ∇ + t(∇′ −∇) = ∇t, i.e. ∇t ∈ b,1Cp,1(B0, f, p). Moreover,
b,1|∇t1 −∇t2 |∇,p,1 = |t1 − t2| · b,1|∇′ −∇|∇,p,1 −→

t1→t2
0.

Lemma 2.3. The elements ∇ of b,1Cp,1(B0, f, p) satisfy (B0) and
∫

|R∇|px dvolx(g) <∞.

Proof. By the definition of b,1Cp,1 its elements are C1 (since they arise by uniform con-

vergence of 0-th and 1rst derivatives) hence R∇ is defined. If ∇ν → ∇, ∇ν ∈ C(B0, f, p),

∇ = ∇ν + (∇−∇ν), then, for fixed ν,

R∇ = R∇ν+(∇−∇ν) = R∇ν + d∇(∇−∇ν) +
1

2
[∇−∇ν ,∇−∇ν ]. (2.4)

Each term of the r.h.s. of (2.4) is bounded, hence R∇. Moreover |R∇ν | ∈ Lp, d
∇(∇−∇ν)|

∈ Lp and [∇−∇ν ,∇−∇ν ] ≤ C · b|∇ −∇ν | · |∇ −∇ν | ∈ Lp.

Now let ω ↔ ∇ω = ∇ be given. After choice of a bundle chart with local base

s1, . . . , sN : U → E|U the curvature Ω will be described as Ωsi =
∑
j Ωij ⊗ sj , where

(Ωij) is a matrix of 2-forms on U , Ωij(sk, sl) = Ωij,kl = Rij,kl. An invariant polynomial

P : MatN → C defines in the well known manner a closed graded differential form

P = P (Ω) = P0 + P1 + · · · , where Pν is a homogeneous polynomial, Pr(Ω) = 0 for

2r > n. The determinant is an example for P . If ω is not smooth then P (Ω) is closed in

the distributional sense. Let σr(Ω) be the 2r-homogeneous part (in the sense of forms)

of det(1 + Ωij).

Lemma 2.4. Each invariant polynomial is a polynomial in σ1, . . . , σN .

Lemma 2.5. If ω ∈ b,1Cp,1(B0, f, p) and r ≥ 1 then
∫

|σr(Ω)|px dvolx(g) <∞. (2.5)

Proof. For the pointwise norm | |x we have |Ω|2x = 1
2

∑
i,j

∑
k<l |Ωij,kl|2x, where Ωij,kl =

Ωij(ek,el) and e1, . . . , en is an orthogonal base of TxM . According to our assumption we
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have |Ω|pp =
∫
|Ω|px dvol < ∞ and |Ω|x ≤ b for all x ∈ M . The proof is done if we could

estimate |σr(Ω)|x from above by |Ω|x. By definition

σr(Ω) =
1

r!

∑
εi1...irj1...jr

Ωi1j1 ∧ · · · ∧ Ωirjr , (2.6)

where summation runs over all 1 ≤ i1 < · · · < ir ≤ N and all permutations (i1 . . . ir) →
(j1 . . . jr). ε denotes the sign of this permutation. We perform induction. For r = 1

σ1(Ω) =
∑

Ωii. The inequality

|Ωij |2x ≤
∑

s,t

|Ωst|2x = 2|Ω|2x (2.7)

implies in particular |σ1(Ω)|2x ≤ 2N |Ω|2x. For arbitrary forms ϕ, ψ we have

|ϕ ∧ ψ|x ≤ |ϕ|x · |ψ|x. (2.8)

For forms with values in a vector bundle we have to multiply the r.h.s. of (2.8) with a

constant. (2.6), (2.7), (2.8) and the induction assumption thus give

|σr(Ω)|2x ≤ a · |Ω|2rx , (2.9)

together with |Ω|2x ≤ b2 finally |σr(Ω)|x = c · |Ω|x.
Corollary 2.6. Let P be an invariant polynomial, ω ∈ b,1Cp,1(B0, f, p), r ≥ 1. Then

each form Pr(Ω) is an element of b,1Ω2,rp,1.

Proof. This follows from 2.4, 2.5 and (2.8).

Denote by H∗,p or bH∗ the Lp or bounded cohomology, respectively.

Corollary 2.7. Under the assumptions of 2.6, P and ω define well defined classes

[P̺(Ω
ω)] ∈ H2̺,p(M), [P̺(Ω

ω)] ∈ bH2̺(M).

Now the natural question arises: how does [P̺(Ω
ω)] depend on ω? We denote I = [0, 1],

it : M → I ×M the imbedding it(x) = (t, x) and furnish I ×M with the product metric(
1
0

0
g

)
. Here we write Hq,p,{d} ≡ Hq,p etc.

Lemma 2.8. For every q ≥ 0 there exists a linear bounded mapping K : Ωq+1,p,d(I ×M)

→ Ωq,p,d(M) resp. K : bΩq+1,d(I ×M) → bΩq,d(M) such that dK +Kd = i∗1 − i∗ − 0.

Proof. Since gI×M =
(

1
0

0
g

)
is an isometric imbedding and i∗t is bounded. i∗t maps into

Ωq,p,d(M) because |di∗ϕ|x= |i∗dϕ|x≤C·|dϕ|x. DenoteX0 = ∂
∂t

and for ϕ∈Ωq+1,p,d(I×M)

ϕ0(X1, . . . , Xq) := ϕ(X0, X1, . . . , Xq). Then ϕ0 ∈ Ωq,p,d(I ×M), |ϕ0|(t,x) ≤ |ϕ|(t,x), and

we define

Kϕ(X1, . . . , Xn) :=

∫ 1

0

i∗tϕ0(X1, . . . , Xq)dt.

Thus K is bounded too. The equation dK +Kd = i∗1 − t∗0 is standard. Replacing Ωq,p,d

by bΩq,d gives the same conclusions.

Lemma 2.9. Let f, g : M → N be smooth mappings, F : I×M → N a smooth homotopy,

f∗, g∗ : Ωq,p,d(N) → Ωq,p,d(M), F ∗ : Ωq,p,d(N) → Ωq,pd(I×M) resp. f∗, g∗ : bΩq,d(N) →
bΩq,d(M), F ∗ : bΩq,d(N) → bΩq,d(I ×M) bounded and ϕ ∈ Ωq,p,d(N) resp. ϕ ∈ bΩq,d(N)

closed, i.e. ϕ ∈ Zq,p(N) resp. ϕ ∈ bZq(N). Then we have (g∗ − f∗)ϕ ∈ Bq,p(M) resp.

(g∗ − f∗)ϕ ∈ bBq(M).
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Proof. We consider the case Ωq,p,d. According to our assumption we have Kϕ := KF ∗ϕ ∈
Ωq−1,p,d(M) and (g∗−f∗)ϕ = ((F ◦ t1)∗− (F ◦ i0)∗)ϕ = (i∗1F

∗− i∗0F ∗)ϕ = (i∗1− i∗0)F ∗ϕ =

(dK + Kd)F ∗ϕ = dKF ∗ϕ = dKϕ. The case of bounded forms will be treated by the

same equation.

Now we are able to prove one of our main theorems.

Theorem 2.10. Let Q : MN (C) → C be an invariant polynomial, r ≥ 1, p = 1

or 2. Then each component U of b,1Cp,1(B0, f, p) determines uniquely a cohomology class

[Qr(Ω
U )] ∈ Hp,2r(M) resp. [Qr(Ω

U )] ∈ bH2r(M).

Proof. Assume ω0, ω1 ∈ U . Then, according to theorem 2.2, d) η := ω1 − ω0 ∈
b,1Ω1,p,1(GE , ω0) and ωt = ω0 + tη, −δ < t < 1 + δ, is contained in U . We have to

show [Qr(Ω
ω0)] = [Qr(Ω

ω1)]. Consider

Ωt := Ωω, Ωt = Ω0 + tdω0η +
1

2
t2[η, η]. (2.10)

For all t ∈] − δ, δ + 1[ we have
∫
|Ωt|p dvol < ∞ and |Ωt|x is bounded at M . This

follows from (2.10) and the assumption ω0, ω1 ∈ U . If p :] − δ, 1 + δ[×M → M denotes

the projection (t, x) → x, P ′ = p∗P resp. E′ = p∗E the liftings of the bundles to

] − δ, 1 + δ[×M , p (which covers p) the associated mapping of the bundle spaces, then

p∗ω0, p
∗ω1 are connections for the lifted bundles.

tp∗ω1+(1−t)p∗ω0 = p∗ω0+tp∗η is again a connection ω′. According to (2.10), we have

Ωω
′

= p∗Ω0 + t∂p
∗ω0p∗η+ t2

2 [p∗η, p∗η]. p∗ is bounded. Thus Ωω
′

is surely p-integrable and

bounded if this holds for dp
∗ω0p∗η. But this follows from the equation (p∗ω0)ij = p∗(ω0,ij)

for the connected matrix, η ∈ b,1Ω1,p,d(GE , ω0) and from the boundedness of p∗. ω′, Ωω
′

define well determined p-integrable resp. bounded cocycles at ]−δ, 1+δ[×M . Let it again

be the mapping x→ (t, x). Then i∗0(E
′, ω′) resp. i∗1(E

′, ω′) can be identified with (E,ω0)

resp. (E,ω1). it, 0 ≤ t ≤ 1, is a smooth bounded homotopy between i0 and i1. According

to 2.9, i∗0Ωr(Ω
′) and i∗1Ωr(Ω

′) are cohomologous in H2r,p resp. bH2r, i.e. Qr(Ω0) and

Qr(Ω1) are cohomologous in H2r,p resp. bH2r.

Definition. For a component U of b,1Cp,1(B0, f, p) we define the r-th Chern class

cr(PU, p) by

cr(E,U, p) = cr(P,U, p) :=
1

(2π)r
[σr(Ω

U )].

Then we have cr ∈ H2r,p, cr ∈ bH2r.

Remark 2.11. For ω0, ω1 ∈ b,1Cp,1(B0, f, p) the cocycles σr(Ω
ω0/(2πi)r, σr(Ω

ω1/(2πi)r

are contained in the Chern class cr(E) and therefore they are cohomologous, but they

do not need to be cohomologous in H2r,p. Take for example an ω ∈ Ωp,1(B0, f, p) and

apply a gauge transformation g with ω − g∗ω /∈ b,1Ωp,1,d(GE , ω). Then |Ωω|x = |Ωg∗ω|x.
An explicit example is given by M = R2, P = M × UN , ω the canonical flat connection,

the gauge transformation g at the point (x, y) given by ei(x
2+y2) · id, where id denotes the

unit matrix. Then |ω− g∗ω|(x,y) = |g−1dg|(x,y) = |i(x dx− y dy) · id |(x,y) = |N(x2 + y2)| 12
is neither bounded nor p-integrable. For this reason our approach above seems to be

suitable for the general situation on noncompact Riemannian manifolds.
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Definition. For ̺ : G → ON , E = P ×G RN denote by Ec or P c the complexification

of E or P , respectively. Any connection ω on E resp. P extends in a canonical man-

ner to a connection on Ec resp.P c and we have an inclusion of the components U of
b,1Cp,1(P,B0, f, p) into the components Uc of b,1Cp,1(PC , B0, f, p). Then we define the

k-th Pontrjagin class pk(P,U, p) by

pk(P,U, p) = pk(E,U, p) := (−1)kc2k(P
c, Uc, p).

Let P be the Pfaff polynomial for skew symmetric 2N -matrices, ̺ : G → SO2N ,

E = P ×G R2N . Then for a component U of b,1Cp,1(PC , B0, f, p) we call

e(E,U, p) :=
1

(2π)N
Pf(ΩU )

the Euler class of U . Then e ∈ H2N,p(M), e ∈ bH2N (M).

Now come in characteristic numbers. Consider ̺ : G → UN , let dimM = 2k and Q

an invariant polynomial, ω ∈ b,1Cp,1(PC , B0, f, p), Q(Ωω) = a + Q1(Ω) + · · · + Qk(Ω).

Then Qi1...ik := Qi1 ∧ · · · ∧ Qik with i1 + · · · + ik = k defines a characteristic 2k-form

and a characteristic number
∫
Qi1...ik = Qi1...ik(P, ω)(M) if the latter integral exists. In

particular we consider the classes ci1...ik := ci1 ∧· · ·∧cik and have to ensure the existence

of the corresponding integral.

Lemma 2.12. a) If k = 1 and ω ∈ b,1C1,1(B0, f, 1), then
∫
M
c1 converges.

b) If k > 1 and ω ∈ b,1C1,1(B0, f, 1) or ω ∈ b,1C2,1(B0, f, 2) then
∫
M
ci1...ik converges.

Proof. a) is clear. We have to prove b). At each x ∈M , ci1...ik is a sum of monomials a.

Ωi1j1∧· · ·∧Ωikjk . According to lemma 2.5 |Ωi1j1∧· · ·∧Ωikjk |x ≤ D1 ·|Ω|x resp. ≤ D2 ·|Ω|2x
if p = 1 resp. p = 2.

Corollary 2.13. Under the assumption of 2.12, for any invariant polynomial Q, the

integral
∫
M
Qi1...ik converges.

Proof. This follows from 2.4 and the proof of 2.12.

Lemma 2.12 b) is also valid in the case ̺ : G → ON , dimM = 4k for pi1...ik , i1 +

· · · + ik = k, k ≥ 1, resp. in the case ̺ : G → SO2N , dimM = N for the Euler form

e(E,ω, 1, g) (2.12 a) for N = 1, 2.12 b) for N > 1).

The above characteristic numbers until now are defined only for a chosen connection

ω. One would like that the characteristic numbers are constant on least on the components

of b,1Cp,1(B0, f, p). This is in fact the case for p = 1.

Theorem 2.14. The characteristic numbers are constant on the components of the space
b,1C1,1(B0, f, 1).

Proof. If ω, ω′ are contained in the same component U , then according to 2.10, Qi1...ik(ω)

and Qi1...ik(ω′) define the same cohomology class in H2k,1(M) resp. H4k,1(M), i.e. there

exists an absolutely integrable ϕ with dϕ = Qi1...ik(ω) − Qi1...ik(ω′). A fundamental

result of Gaffney then says
∫
M
dϕ = 0 for (M, g) complete and dϕ itself absolutely

integrable ([12]).

Thus one gets characteristic numbers Qi1...ik(P,U)(M).
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Remark 2.15. For ω, ω′ ∈ b,1C2,1(B0, f, 2) and deg(Qi1...ik) ≥ 4 the characteristic num-

bers Qi1...ik(ω)(M), Qi1...ik(ω′)(M) are defined. If Qi1...ik(ω), Qi1...ik(ω′) define the same

cohomology class in H2k,1(M2k) resp. H4k,1 resp. H2N,1, then the characteristic numbers

coincide.

A very special but interesting case in our considerations is the case vol(M) < ∞.

Consider b,1C(B0). It is defined by means of B = {Vδ}δ>0, where Vδ = {(∇,∇′) ∈
C(B0)

2 | b,1|∇ −∇′|∇ < δ}.
Theorem 2.16. If vol(M) < ∞ then characteristic numbers are constant on each com-

ponent of b,1C(B0).

Proof. According to 2.10 each component U of b,1C(B0) determines uniquely a cohomol-

ogy class [Qi1...ik ] in bH2k(M2k) or bH4k or bH2N respectively. Taking two cocycles of

this class, there exists a bounded C1-form ϕ such that there difference equals to dϕ. ϕ,

dϕ are bounded, vol(M) < ∞, thus ϕ, dϕ are absolutely integrable and the theorem of

Gaffney gives the desired result.

Remark 2.17. vol(M) < ∞ implies b,1C(B0) = b,1Cp,1(B0, f, p). Thus the conclusion

of 2.16 also holds for the components of b,1Cp,1(B0, f, p).

We call the quasi isometry class of g the uniform structure US(g) generated by g. For

all metrics of US(g) the cohomology spaces H∗,p(Mn, g′) coincide. The same holds for
bH∗(Mn, g′). This leads immediately to

Theorem 2.18. The cohomology classes Qi1...ik(ω) resp. the characteristic numbers

Qi1...ik(ω)(M) in 2.10 respectively 2.3, 2.5 are the same for all metrics g′ ∈ US(g).

The situation completely changes if ω itself depends on g. Then it is not true in

general that for g′ ∈ US(g), c(ω(g)) ∼ c(ω(g′)). The case ω = ω(g) is essentially the case

P = bundle of orthogonal frames of (Mn, g), ∇ = Levi-Civita connection ∇g. Therefore

we briefly describe the metrics which come into question and describe their admitted

variation (for fixed M).

Let

M(B0, p, f) =

{
g | g complete, satisfies (B0) and

∫
|Rg|px dvolx(g) <∞

}
,

b,2|g − g′|g,p,2 = b,2|g − g′|g + |g − g′|g,p,2
= b|g − g′|g + b|∇g −∇g′ |g + b|∇g(∇g −∇g′)|

+

( ∫ (
|g − g′|pg,x +

1∑

i=0

|(∇g)i(∇g −∇g′)|pg,x
)

dvolx(g)

) 1
p

and set

Vδ = {(g, g′) ∈ M(B0, p, f)2 |C(n, δ)−1g ≤ g′ ≤ C(n, δ)g and b,2|g − g′|g,p,2 < δ}.
Here C(n, δ) = 1 + δ + δ

√
2n(n− 1).

Lemma 2.19. B = {Vδ}δ>0 is a basis for a metrizable uniform structure.

Denote by b,2Mp,2(B0, p, f) its completion.
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Proposition 2.20. a) b,2Mp,2(B0, p, f) is locally arcwise connected.

b) In b,2Mp,2(B0, p, f) coincide components with arccomponents.

c) b,2Mp,2(B0, p, f) has a representation as a topological sum

b,2Mp,2(B0, p, f) =
∑

i∈I

b,2compp,2(gi).

d) comp(g) = {g′ ∈ b,2Mp,2(B0, p, f) | b,2|g − g′|g,p,2 <∞}.
Proposition 2.21. If g′ ∈ comp(g) then ∇g′ ∈ comp(∇g) is the sense of theorem 2.2, d).

Hence we obtain well defined characteristic classes C(∇g) = C(g) and characteristic

numbers C . . . (∇g)(M) = C . . . (g)(M) as above. The main important cases are the Euler

form e = E(g),

χ(Mn, g) :=

∫

M

E(g)

and the signature case

σ(Mn, g) :=

∫

M

L(g),

where L(g) is the Hirzebruch genus.

The following natural questions arise.

1) How does E(g) depend on g?

2) What is the topological meaning of χ(Mn, g)?

3) Under which conditions, χ(Mn, g) = χ(Mn), i.e. the Gauß–Bonnet formula holds?

The same questions should be put for σ(Mn, g), σ(Mn). To the first question we have a

partial answer.

Proposition 2.22. If g′ ∈ b,2comp1,2(g) then

χ(Mn, g) = χ(Mn, g′)

and

σ(Mn, g) = σ(Mn, g′).

In the case g′ /∈ b,2comp1,2(g) we can’t say anything. The examples in [3] for

χ(Mn, g) 6= χ(Mn, g′), σ(Mn, g) 6= σ(Mn, g′) are of this kind, i.e. g′ does not lie in

the component of g.

Concerning the second question, we start with a simple case in dimension two which

has been discussed by Cohn–Vossen [5] and Huber [16] and has been endowed with

particular short proofs by Rosenberg [22], which we present below for completeness.

Theorem 2.23. Let (Mn, g) be a finitely connected complete noncompact Riemannian

surface with curvature K.

a) If K ∈ L1 then χ(M) ≥
∫
M
K dvolx(g).

b) If vol(M2, g) <∞ and K ∈ L1 then

χ(M) =

∫

M

K dvolx(g) = χ(M, g).



278 J. EICHHORN

Proof. M2 is diffeomorphic to a compact surface with p points deleted. A neighbor-

hood of each point is diffeomorphic to S1 × R+ and the metric can be put in the form

g11(θ, t)dθ
2 + dt2. Set Mk = M \ ⋃p

1 S
1×]k,∞[. The Gauß–Bonnet theorem for surfaces

with boundary yields χ(Mk) =
∫
Mk

K dvolx(g) +
∫
∂Mk

ω12, where ω12 is the connection

1-form associated to an orthonormal frame on M . χ(M) = χ(Mk), hence one has to

show limk→∞

∫
∂Mk

ω12 ≥ 0 for a) and limk→∞

∫
∂Mk

ω12 = 0 for b). W.r.t. the orthonor-

mal frame θ1 =
√
g11dθ and θ2 = dt the first structure equation dθ1 = ω12 ∩ θ2 gives

ω12 = d
dt

(
√
g11)dθ and the second one gives K dvolx(g) = Ω12 = dω12 = d2

dt2
(
√
g11)dθdt.∫

M
K dvolx(g) < ∞ implies limk→∞

∫
∂Mk

d2

dt2
√
g11dθ = 0 or limk→∞

∫
∂Mk

d2

dt2
√
g11dθ =

const = C. In the case b), vol(M, g) < ∞, i.e.
∫
M

√
g11dθdt < ∞ which implies

limk→∞

∫
∂Mk

√
g11dθ = 0, hence limk→∞

∫
∂Mk

ω12 = limk→∞
d
dt

∫ √
g11dθ = C, C = 0.

In the case a),
∫
∂Mk

√
g11dθ ∼ C · k+D as k → ∞. C < 0 would imply

∫
∂Mk

√
g11dθ = 0

for k sufficiently large. But this is impossible for a positive integrand.

In the case of arbitrary n, there are many approaches to study the equation χ(M, g) =

χ(M). To have χ(M) defined, one must require that each homology group over R is finitely

generated. Sufficient for this is that M has finite topological type, i.e. it has only finitely

many ends ε1, . . . , εs, each of them collared, U(εi) ∼= ∂Ui × [0,∞[. Then M can be given

a boundary ∂M to get a compact manifold M . The case of n odd is absolutely trivial.

Proposition 2.24. Assume (M2k+1, g) is of finite topological type, g arbitrary. Then

χ(M) =

∫

M

E(g) = χ(M, g) if and only if χ(∂M) = 0.

Proof. For n = 2k + 1, the Euler form E(g) vanishes since the Pfaffian of an odd di-

mensional skew symmetric matrix is zero,
∫
E(g) = χ(M, g) = 0. On the other hand,

0 = χ(M ∪
∂M

M) = 2χ(M) − χ(∂M) = 2χ(M) − χ(∂M).

The more interesting case are even dimensional manifolds. We recall some definitions.

For a local orthonormal frame θ1, . . . , θn the connection 1-forms ωij satisfy the equa-

tions

dθi =
∑

j

ωij ∧ θj and ωji = −ωij .

They are related with the curvature 2-forms Ωij by

Ωij = dωij −
∑

k

ωik ∧ ωkj .

Denote by S(M) the tangent sphere bundle which is a (2n − 1)-dimensional manifold.

For a point (x, ξ) ∈ S(M) let θ1, . . . , θn be a frame such that θ1 is dual to ξ. We put

(2.11) II(g) :=∑

0≤k<n

ck
∑

α

sign(α)Ωα(2)α(3) ∧ · · · ∧ Ωα(2k)α(2k+1) ∧ ωα(2k+2)1 ∧ · · · ∧ ωα(n)1,

where we will not specify the ck and
∑
α means the sum over all permutations α of

{2, . . . , n}. II(g) can be understand as pull back on an (n − 1)-form on M to S(M) by

means of pr : S(M) → M . If X ∈ TS(M) at (x, ξ), X = X1 + X2 with X1 tangent to
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M and X2 tangent to Sn−1
x then Ωij(X) = Ωij(X1) and similarly for ωi1(X). If M is

compact with boundary ∂M and ̺ is the section of S(M) over ∂M given by the outward

normal vector, then ̺∗Ωij(X) = Ωij(X1), the same for ωi1. Then, according to Chern,

χ(M) =

∫

M

E(g) +

∫

∂M

̺∗II(g) =

∫

M

E(g) +

∫

∂M

II(g). (2.12)

Assume now that (Mn, g) = (M2m, g) is even-dimensional and of finite topological

type. By gradient flow of an appropriate Morse function we can introduce coordinates

(x1, . . . , xn−1, xn = r) at each end such that 0 ≤ r <∞, gin = 0, 1 ≤ i ≤ n− 1, gnn = 1.

Let as above Mk be characterized by xn = r ≤ k. Then

χ(M) = χ(Mk) =

∫

Mk

E(g) +

∫

∂Mk

II(g). (2.13)

At each end ε TM |ε splits as TM = W ⊕ R. Suppose additionally that W splits as

W = W2 ⊕ · · · ⊕Wrε
, rε ≥ 2, [Wi,Wj ] = 0 if i 6= j, (2.14)

and that with respect to this splitting g has the form

g = f2
2 (r)g2 ⊕ · · · ⊕ f2

rε
(r)grε

+ dr2. (2.15)

Then S. Rosenberg calculated in [23] the expression (2.11) at each end can could show if

fj(r) −→
r→∞

0, f ′j(r) −→
r→∞

0, then
∫
Mk

E(g) →
∫
M
E(g) and

∫
∂Mk

II(g) → 0. We will not

repeat the really simple calculations but state Rosenberg’s

Theorem 2.25. Let (Mn, g) be open, complete and of finite topological type. Assume

that in an open neighborhood of each end ε M splits as a product manifold N2 × · · · ×
Nrε

× R with the metric f2
2 (r)g2 ⊕ · · · ⊕ f2

rε
(r)grε

+ dr2, where gj is a metric on Nj . If

fj(r) −→
r→∞

0 and f ′j(r) −→
r→∞

0, then χ(M) =
∫
M
E(g) ≡ χ(M, g). In particular, any even-

dimensional manifold of finite topological type admits complete warped product metrics

satisfying Gauß–Bonnet (setting N2 = ∂M).

Corollary 2.26. Assume the hypothesis of 2.25 and additionally g ∈ b,2M1,2(B0, f, 1).

If g′ ∈ b,2comp1,2(g) then χ(M) =
∫
M
E(g′) ≡ χ(M, g′).

Remark 2.27. We see in 2.26 a considerable improvement of 2.25 since now the admitted

class of metrics is much larger.

If one gives up the integrability of the W s in (2.14), i.e. the product structure of the

εs then one must strengthen the conditions to the fj . This has been done by Rosenberg

too.

Theorem 2.28. Let (Mn, g) be open, complete and of finite topological type. Assume

that in an open neighborhood of each end ε, TM |ε = W2 ⊕ · · · ⊕Wrε
⊕R and the metric

is of the form f2
2 (r)g2 ⊕ · · · ⊕ f2

rε
(r)grε

+ dr2 with gi a metric on Wi. If fi(r) −→
r→∞

0,

f ′i(r) −→
r→∞

0 and fjf
−1
i and (fjf

−1
i )′ are bounded for all r, i, j then

χ(M) =

∫
E(g).
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Example. Let M\G/K be an arithmetic quotient of an even-dimensional split rank-one

symmetric space. Then at each component ∂Mi of ∂M , ∂M is the total space of a fibration

over a torus T1 with a torus T2 as fiber. We have TM |V×R = W1 ⊕W2 ⊕ R for open

V ⊂ ∂M where the fibration restricted to V is trivial. Wi is the tangent space to the

torus Ti. But in general the G-invariant metric g does not respect this splitting. Donnelly

has shown in [6] that each end ε has the structure N ×R, N at most two-step nilpotent.

The Lie algebra n of N splits as a sum n = V2 ⊕ V3 of root spaces, V3 = Z(n), and the

invariant metric at the identity of N has the form

e−2rg2 + e−4rg3 + dr2, (2.16)

where g2 is a metric on V2, g3 a metric on V3. [n, n] ⊂ Z(n) and theG-invariant distribution

V2 is not integrable. Hence theorem 2.25 is not applicable in general. In the hyperbolic

case G/K = SO(n, 1)/SO(n), one has V2 = n, which yields Gauß–Bonnet.

Corollary 2.29. Assume that the hypotheses of theorem 2.28 hold and additionally

g ∈ b,2M1,2(B0, f, 1). If g′ ∈ b,2comp1,2(g) then χ(M) =
∫
E(g′) ≡ χ(M, g′).

There is another Gauß–Bonnet case which does not fall under 2.2–2.29.

Proposition 2.30. Let (M2m, g) be open, complete, of finite topological type and the

metric at ∞ constant with respect to r, i.e. there exists an r0 ≥ 0 such that g(r1, x) =

g(r2, x) for all x ∈ ∂M and r1, r2 > r0. Then

χ(M) =

∫

M

E(g) ≡ χ(M, g).

Proof. Let k > r0 + δ. Then Mk ∪Mk yields a smooth closed manifold. Hence

χ(Mk ∪Mk) =

∫

Mk∪Mk

E(gMk∪Mk
) = 2

∫

Mk

E(gMk
),

χ(Mk ∪Mk) = 2χ(Mk) − χ(∂Mk) = 2χ(M)

χ(M) =

∫

Mk

E(gMk
). (2.17)

Forming limk→∞ in (2.17) gives the desired result.

A special case of 2.28 would be a metric cylinder at infinity, g|U(∞) = g∂M ⊗ +dr2.

This is simultaneously a warped product with warping function f(r) = 1. f(r) = 1

does not satisfy f(r) −→
r→∞

0, 2.25 is not applicable. Clearly, such an (M2m, g) satisfies

(B0) but either
∫
U(∞)

|R|p dvolx(g) = 0 or
∫
U(∞)

|R|p dvolx(g) = ∞, similarly either∫
U(∞)

|E(g)| dvolx(g) = 0 or
∫
U(∞)

|E(g)| dvolx(g) = ∞. In the second case
∫
E(g) exists

but |E(g)| /∈ Lp, p ≥ 1.

Another class of examples which yields very useful insights are surfaces of revolution.

We state from [23] without proof

Proposition 2.31. Let f : ]0,∞[ → R be smooth, f(0) = f ′(0) = 0 and (M2 = {z =

f(x2 + y2)}, induced metric from R3) be the associated surface of revolution. Then

χ(M) =
1

2π

∫

M

K dvolx(g) = χ(M, g) (2.18)
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if and only if

r
1
2 f ′(r) −→

r→∞
±∞.

Hence, if f is for all r > 0 strongly convex or concave, (2.18) holds. In both cases M

has for r > 0 positive curvature and infinite volume. On the other hand, we have 2.15 in

the case of 2.23 (b) in the finite volume case, i.e. one can have χ(M) = χ(M, g) as in the

finite volume case. For this reason we should find additional conditions which assure in

the finite volume case or the infinite volume case, respectively, that

1) χ(M, g) is a (proper) homotopy invariant,

2) χ(M, g) = χ(M) if M has finite topological type.

We start with vol(Mn, g) <∞ and |K| ≤ 1 where the latter (after rescaling) is equivalent

to (B0). Then

χ(M, g) =

∫

M

E(g)

is well defined and for g′ ∈ b,2comp1,2(g)

χ(M, g) = χ(M, g′). (2.19)

Lemma 2.32. Let (Mn, g) be complete, vol(M, g) <∞ and |K| ≤ 1. Then Mn admits an

exhaustion by compact manifolds with smooth boundary, Mn
1 ⊂Mn

2 ⊂ · · · , ⋃
kM

n
k = M ,

such that vol(∂Mn
k ) → 0 and for which the second fundamental forms II(∂Mn

k ) are

uniformly bounded.

Proof. This is just a corollary of theorem 2.33 below.

If we take such an exhaustion as just described then

χ(Mn
k ) = χ(Mn

k , g) +

∫

∂Mn
k

II(∂Mn
k ). (2.20)

∫
∂Mn

k

II(∂M, g) −→
k→∞

0, χ(Mn
k ) ∈ Z, hence for k sufficiently large χ(Mn

k , g) ∈ Z, but

we are far from a certain convergence of (χ(Mn
k , g))k and don’t know anything about

the topological properties of such a limit if it exists. To obtain more insight and definite

results we follow [3] and consider the following additional hypothesis.

For some neighborhood U(∞) ⊂ M , some profinite or normal covering space Ũ(∞)

has the injectivity radius at least (say) 1 for the pull back metric,

rinj(Ũ∞)) ≥ 1. (2.21)

Together with |K| ≤ 1 on Ũ(∞) we write geo∼
∞

(M) ≤ 1. If U = M then we denote

geo(M̃) ≤ 1. In any case we assume in this hypothesis that Ũ or M̃ are profinite or

normal coverings.

Here M̃ → M is profinite if there exists a decreasing sequence {Γj}j of subgroups of

finite index, Γj ⊂ π1(M), such that
⋂

Γj = π1(M̃).

The key for everything is the following very general theorem which assures the exis-

tence of sufficiently ”smooth” exhaustions and which yields 2.32 in the case of

vol(M, g) <∞.
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Theorem 2.33 (Neighborhoods of bounded geometry). Let (Mn, g) be complete, X⊂Mn

a closed subset and 0 < r ≤ 1. Then there is a submanifold Un with smooth boundary

∂Un such that for some constant c(n) depending only on n

a) X ⊂ U ⊂ Tr(x) = r-tubular neighborhood of X,

b) vol(∂U) ≤ c(n) · vol(Tr(X) \X) · r−1, (2.22)

c) |II(∂U)| ≤ c(n) · r−1. (2.23)

We refer to [4] for the proof.

Now we will discuss χ(M, g) in the profinite or normal case, geo(M̃) ≤ 1. Here

we follow [3]. Put for j : A1 ⊂ A2 and real coefficients βi(A1, A2) = dim{j∗(Hi(A2))

⊂ Hi(A1)} and βi(A) = dim{j∗(Hi(A, ∂A)) ⊂ Hi(A)}. bi shall denote the usual Betti

number. Then for A1 ⊂ A2 ⊂ A3 ⊂ A4 and A ⊂ Y a finite closed and f : Y → Z,

g : Z → Y simplicial, determining a homotopy equivalence,

βi(A1) ⊆ βi(A2) ≤ βi(A2, A4) ≤ βi(A3, A4) (2.24)

and

βi(A, Y ) ≤ βi(f(A), Z) ≤ βi(g ◦ f(A), Y ). (2.25)

Put for p : Ỹ n → Y n profinite with ind(Γj) = dj and corresponding covering spaces

pj : Ỹ nj → Y n

sup χ̃(Y n) := lim
A→∞

lim
j→∞

n∑

i=1

(−1)i
1

dj
βi(P−1

j (A), Ỹ nj ) ≤ ∞ (2.26)

and define inf χ̃(Y n) similarly. A → ∞ is defined by partial ordering of finite subcom-

plexes induced by inclusion. Using (2.24) and a diagonal argument, there are subsequences

S = Ỹ nj(e) s.t.

∞ ≥ β̃i(Y n, S) := lim
A→∞

lim
e→∞

1

dj(e)
βi(P−1

j(e)(A), Ỹ nj(e))

= lim
A→∞

lim
e→∞

1

dj(e)
βi(P−1

j(e)(A), Ỹ nj(e)) (2.27)

exists. From (2.25) we infer immediately that β̃i(Y n, S) is a homotopy invariant. Suppose

β̃i(Y n, S) <∞, i = 0, . . . , n and sup χ̃(Y n) = inf χ̃(Y n), then the latter number is also a

homotopy invariant.

Theorem 2.34. Suppose (Mn, g) complete, vol(Mn, g) <∞, M̃ either profinite or nor-

mal and geo(M̃) ≤ 1.

a) Then χ(Mn, g) is a proper homotopy invariant,

b) in the case M̃ profinite

χ(M, g) = sup χ̃(M) = inf χ̃(M),

c) if additionally M has finite topological type,

χ(M, g) = χ(M).
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Proof. Assume M̃→M profinite, let M1 ⊂M2 ⊂ · · · , ⋃
kMk =M be an exhaustion of M

by compact submanifolds with boundary and denoteMk−R= {x∈Mk|dist(x, ∂Mk)=R}.
For j sufficiently large, theorem 2.33 is applicable and we apply it to p−1

j (Mk)−1, p−1
j (Mk)

with ε = 1
2 . This yields submanifolds Ajk ⊂ p−1

j (Mk) ⊂ Bjk. Given ε > 0 arbitrary, there

exist k0, N(k) such that for k > k0, j > N(k)
∣∣∣∣χ(Mn, g) − 1

dj
χ(Bjk)

∣∣∣∣ ≤
∣∣∣∣χ(Mn, g) − 1

dj

∫

Bjk

E(g)

∣∣∣∣

+

∣∣∣∣
1

dj

∫

Bjk

E(g) − 1

dj
χ(Bjk)

∣∣∣∣ < ε. (2.28)

We see this immediately from (2.12) and (2.22), (2.23): χ(Mn, g) = χ(Mn
k , g) +

χ(Mn \Mn
k , g), here |χ(Mn \Mn

k , g)| becomes arbitrarily small for k sufficiently large.
∣∣∣∣χ(Mn, g) − 1

dj

∫

Bjk

E(g)

∣∣∣∣ ≤ |χ(Mn, g) − χ(Mn
k , g)| +

∣∣∣∣χ(Mn
k , g) −

1

dj

∫

Bjk

E(g)

∣∣∣∣
∣∣∣∣χ(Mn

k , g) −
1

dj

∫

Bjk

E(g)

∣∣∣∣ ≤
∣∣∣∣χ(Mn

k , g) −
1

dj

∫

P−1
j (Mn

k
)

E(g)

∣∣∣∣

+

∣∣∣∣
1

dj

∫

P
−1
j (Mn

k
)

E(g) − 1

dj

∫

Bjk

E(g)

∣∣∣∣

=

∣∣∣∣
1

dj

∫

Bjk\P
−1
j (Mn

k
)

E(g)

∣∣∣∣,

but this becomes arbitrarily small for j and k sufficiently large. Finally
∣∣∣∣

1

dj

∫

Bjk

E(g) − 1

dj
χ(Bjk)

∣∣∣∣ =

∣∣∣∣
1

dj

∫

∂Bjk

II(∂Bjk)

∣∣∣∣ −→
j,k→∞

0

according to (2.22). (2.28) is proven.

We obtain from (2.24)

βi(Ajk) ≤ βi(p−1
j (Mk)) ≤ βi(p−1

j (Mk), M̃j) ≤ bi(Bjk) (2.29)

and from the exact cohomology sequence of the pair (Bjk, Bjk \Ajk) together with the

excision property

|βi(Ajk) − bi(Bjk)| ≤ bi−1(Bjk \Ajk) + bi(Bjk \Ajk) :

· · · → Hi−1(Bjk \Ajk) → Hi(Bjk, Bjk \Ajk) → Hi(Bjk) → Hi(Bjk \Ajk) → · · ·
∼= Hi(Ajk, ∂Ajk)

The manifold Bjk \Ajk satisfies (B0), (I) for j > N(k) and for k sufficiently large,

vol(Bjk \Ajk) ≤ djε. (2.30)

According to a theorem of Gromov,
∑

i

βi(Bjk \Ajk) ≤ c(n) · vol(Bjk \Ajk). (2.31)
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We infer from (2.29)–(2.32) that we can replace in (2.28) χ(Bjk) by χ(p−1
j Mk, M̃j), hence

∣∣∣∣χ(Mn, g) − 1

dj
χ(p−1

k (Mk), M̃j)

∣∣∣∣
becomes arbitrarily small, any proper homotopy equivalence preserves a subsequence of(

1
dj
χ(p−1

j (Mk), M̃j

)
j,k

, χ(Mn, g) is a proper homotopy invariant. By the same argument

we conclude in the profinite case assertion b). If M has finite topological type then for k

sufficiently large βi(p−1
j (Mk), M̃j) = βi(M̃j) and

χ(p−1
j (Mk), M̃j) = χ(M̃j) ·

1

dj
χ(M̃j) = χ(Mj) = χ(M)

yields assertion c).

The case of a normal covering M̃ →M will be discussed in theorem 2.38.

The second characteristic number of particular importance is given by σ(M, g) =∫
M
L(M, g), where L(M, g) is the Hirzebruch genus. For closed M it is the topological

index of the signature operator, i.e. it coincides with the topological signature. For simple

open manifolds this equality does not longer hold in general, as we see in section 5.

Nevertheless, we could ask for σ(M, g) the same questions as for χ(M, g), the question

for the invariance properties and the topological significance of σ(M, g). Concerning the

invariance, a first answer is given by proposition 2.22.

But we consider also other derivations of g. A key role plays again the formula for the

compact case with boundary, ∂M = N ,

σ(M, g) + η(N, g) +

∫

N

IIσ(N, g) = σ(M), (2.32)

where IIσ(N, g) essentially involves the second fundamental form and η(N, g) is the eta

invariant. If Mn is open and M1 ⊂ M2 ⊂ · · · , ⋃
kMk = M , an appropriate exhaustion

such that
∫
IIσ(∂Mk) → 0 and η(∂Mk) → 0 then we would have in fact σ(Mk, g)

→ σ(M). Hence we should ask for conditions which assure η(∂Mk) → 0. There is a

clear (and for our case complete) answer.

Theorem 2.35. Let (N4l−1, g) be compact satisfying geo(N) ≤ 1. Then there is a con-

stant c = c(4l − 1) such that

|η(N4l−1)| ≤ c(4l − 1) · vol(N4l−1, g). (2.33)

We refer to [3], [7] for the proof.

Now we define sup σ̃(M), inf σ̃(M) quite analogous to the Euler characteristic as

follows. Let M4l be complete, M̃4l →M profinite and M4l
k ⊂M4l a compact submanifold

with boundary. Put

sup σ̃(Mk) := lim
j

sup
1

dj
σ(P−1

j (Mk)),

sup σ̃(M) := lim
Mk

sup sup σ̃(Mk))

and similarly inf σ̃(Mk), inf σ̃(M). Here as always σ(Mk) is defined as the signature of

the cup product pairing on j∗H2l(M4l
k , ∂M

4l
k ) ⊂ H2l(M4l

k ).
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Theorem 2.36. Let (M4l, g) be complete, vol(M, g) <∞ and suppose M̃ either profinite

or normal and geo(M̃) ≤ 1. Then we have

a) Assume M̃ normal. Then σ(M, g) is a proper homotopy invariant of M .

b) In the case M̃ → M profinite, for any exhaustion M1 ⊂ M2 ⊂ · · · , ⋃
kMk = M , by

compact manifolds,

σ(M, g) = sup σ̃(M) = inf σ̃(M).

c) If, additionally, M has finite topological type,

σ(M, g) = lim
j→∞

1

dj
σ(M̃j).

Proof. In the normal case M̃ → M below a) follows from theorem 2.38. The proof

of b) is quite analogous to that of theorem 2.34 b), using a chopping of M according

to theorem 2.33, (2.32) and theorem 2.35. c) then follows from b) and the fact that for

sufficiently large k, 1
dj
σ(p−1

j (Mk)) = 1
dj
σ(M̃j).

We now turn to the normal case M̃ → M , being even more explicit than in the

profinite case. The first key here is the extension of Atiyah’s L2-index theorem for normal

coverings M̃ → M of closed M to normal coverings M̃ → M , M = M̃/Γ, rinj(M̃) ≥ 1,

(Mn, g) complete, vol(Mn, g) < ∞, |K| ≤ 1. We denote by Hq,2(M̃) the space of L2-

harmonic q-forms, by PHq,2 : L2(Λ
qT ∗A) = Ωq,2 → Hq,2 the orthogonal projection.

PH has Schwartz kernel h̃q(x, y) which is a symmetric C∞ double form whose pointwise

norm satisfies

|hq(x, y)| ≤ c(n). (2.34)

(2.34) comes from geo(M̃) ≤ 1 and the elliptic estimate for the Laplacian. h̃q(x, y) is

invariant under the isomtries Γ, hence the pointwise trace tr h̃q(x, x) can be understood

as function on M and we put as usual

b̃q,2(M) := trΓ PHq,2(M̃) =

∫

M

tr h̃q(x, x) dvolx(g) <∞.

b̃q,2(M) is just the von Neumann dimension dimΓH
q,2

(M̃) of the Γ-module H
q,2

(M̃).

Now we define the L2-Euler characteristic and L2-signature by

χ̃(2)(M) :=

n∑

q=0

(−1)q b̃q,2(M) and σ̃(2)(M) := trΓ(∗PH2k,2(M̃4k)).

Now we state the L2-index theorem for open manifolds with finite volume and bounded

curvature.

Theorem 2.37. Suppose (M, g) complete with vol(Mn, g) < ∞, |K| ≤ 1 and M̃ → M

normal with geo(M̃) ≤ 1. Then

χ(M, g) = χ̃(2)(M) (2.35)

and

σ(M, g) = σ̃(2)(M). (2.36)
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We refer to [2], [7] for the proof.

We recall the existence of good chopping sequences M1 ⊂ M2 ⊂ · · · , ⋃∞
1 Mk = M ,

vol(∂Mk) → 0, |II(∂Mk)| ≤ c, |h̃qk(x, y) ≤ c(n)|, where h̃qk denotes the kernel correspond-

ing to projection on the harmonic q-forms for p−1(Mk) ⊂ M̃ . Then we obtain

lim
k→∞

b̃q,2(∂Mk) = 0 (2.37)

and

lim
k→∞

b̃q,2(M \Mk, ∂(M \Mk)) = 0. (2.38)

Define β̃q,2(B) by

β̃q,2(B) := dimΓ im(Hq,2(p−1(B), p−1(∂B)) ⊂ H
q,2

(p−1(B))) (2.39)

and for A ⊂ B

β̃q,2(A,B) := dimΓ im(H
q,2

(p−1(B)) ⊂ H
q,2

(p−1(A))). (2.40)

It follows from the properties of dimΓ that

β̃q,2(A) ≤ β̃q,2(B) (2.41)

and

β̃q,2(A) ≤ β̃q,2(A,B) ≤ b̃2,q(A). (2.42)

We remark that (2.41) and (2.42) are the reformulation of (2.24), (2.29) in the language of

dimΓ. We established in theorem 2.37 the equations χ(M, g) = χ̃(2)(M), σ(M, g) = σ̃2(M).

Now we discuss the invariance properties of the right hand sides. This is the content of

Theorem 2.38. Let (Mn, g) be complete, |K| ≤ 1, vol(M, g) <∞ and assume for some

normal covering geo(M̃) ≤ 1.

a) If M1 ⊂M2 ⊂ · · · , ⋃
Mk = M is an exhaustion then

lim
k→∞

β̃q,2(Mk) = lim
k→∞

lim
l→∞

β̃q,2(Mk,Ml) = b̃q,2(M). (2.43)

This implies the homotopy invariance of the b̃q,2(M).

b) χ(M, g) resp. σ(M, g) is a homotopy invariant resp. proper homotopy invariant of M .

c) If M has the topological type of some Mk ⊂M , then

b̃q,2(Mk) = b̃q,2(M) (2.44)

and

χ(M, g) = χ(Mk). (2.45)

Proof. b) follows immediately from theorem 2.37 and a). For c) suppose that M has finite

topological type. Then there exists an exhaustion M1 ⊂ M2 ⊂ · · · s.t. each inclusion

Mk →M is a homotopy equivalence. This implies

β̃q,2(Mk,Mk) = b̃q,2(Mk)

and we obtain (2.44) from (2.43) and moreover χ(M, g) = χ(Mk). Hence there remains

to show a). For this we must refer to [2].

We apply these results on characteristic numbers to 4-manifolds.
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Let (M4, g) be open, complete and oriented, ∗ : Λ2M → Λ2M the Hodge operator,

∗2 = 1, Λ2 = Λ2
+ ⊕ Λ2

−. The special orthogonal group acts on the space of algebraic

curvature tensors C2
b (cf. [21]). Let C2

b = U + S + W be the corresponding (fiberwise)

decomposition into irreducible subspaces. Then this induces for the curvature tensor

R = Rg a decomposition R = U + S +W . For R = Rg = R+ + R−, we denote as in I 1

by Ric = Ricg the Ricci tensor, by τ = τ g the scalar curvature, by K = Kg the sectional

curvature and by W = W g = W+ +W− the Weyl tensor. There are decompositions for

the pointwise norms | |x as follows:

|R|2 = |R+|2 + |R−|2 = |U |2 + |S|2 + |W |2 = 4|W+|2 + |W−|2 +2|Ric |2− 1

3
τ2, (2.46)

|Ric |2 = 6|U |2 + 2|S|2, (2.47)

τ2 = 24|U |2. (2.48)

We obtain other decompositions if we consider the curvature operator R as acting from

Λ2 = Λ2
+ ⊕ Λ2

− to Λ2
+ ⊕ Λ2

−, for an orthonormal basis e1, e2, e3, e4

R(ei ∧ ej) =
1

2

∑
Rijklek ∧ el = Ωij ,

Ω = (Ωij) = matrix of curvature forms, Ωij(ek, el) = Rijkl. We can write R with respect

to the orthogonal basis e1 ∧ e2 + e3 ∧ e4, e1 ∧ e4 + e2 ∧ e3, e1 ∧ e3 + e2 ∧ e4 in Λ2
+,

e1 ∧ e3 + e2 ∧ e4, e1 ∧ e2 − e3 ∧ e4, e1 ∧ e4 − e2 ∧ e3 in Λ2
−, as

R =

(
A B

C D

)

with A = A∗, C = B∗, D = D∗, trA = trD = τ
4 , B = Ric−1

4τg and
(
A
0

0
D

)
− τ

12 = W ,

W+ = A− τ
12 , W− = D − τ

12 . We obtain for the first Pontrjagin form p1

p1 = − 1

8π2
tr(R ∧R) = − 1

8π2
tr(A ∧A) + tr(D ∧D)

= − 1

8π2
(−2)(|W+|2 − |W−|2) dvol =

1

4π2
(|W+|2 − |W−|2) dvol

=
1

12π2
(|R+|2 − |R−|2) dvol

and for σ(M4, g) =
∫
L(g) =

∫
1
3p1 = 1

12π2

∫
(|W+|2 − |W−|2) dvol. Assuming g ∈

b,2M1,2(B0, 1, f), σ(M4, g) is well defined. The Euler form E(g) has the representation

E(g) =
1

8π2
tr(∗R)2 dvol =

1

8π2
(|U |2 − |S|2 + |W |2) dvol

=
1

8π2
tr(A2 − 2BB∗ +D2) dvol =

1

32π2
(|R|2 − 4|Ric |2 + τ2) dvol .

For g ∈ b,2M1,2(B0, 1, f),
∫
E(g) = χ(M, g) is well defined. Hence we obtain

Proposition 2.39. Let (M4, g) be open, complete, oriented and g ∈ b,2M1,2(B0, 1, f).

Then σ(M, g) and χ(M, g) are well defined and an invariant of comp(g).

Remark 2.40. According to (2.46)–(2.48),
∫
|Rg|2 dvol < ∞ would be sufficient for the

existence of σ(M, g) and χ(M, g). But this condition would not establish a uniform

strucutre, we would not have components and invariance properties (where we used in
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particular Gaffney’s theorem). Moreover, we need the bounded curvature property for

the connection with the theorems 2.37, 2.38.

We obtain from proposition 2.39 and its proof the simple

Corollary 2.41. If (M4, g) is additionally Einstein then χ(M, g) ≥ 0 and |σ(M4, g)|
≤ 2

3χ(M4, g). Moreover, χ(M4, g) = 0 if and only if (M4, g) is flat.

Proof. If (M4, g) is Einstein then S ≡ 0, B ≡ 0 and 1
12π2 (|W+|2 − |W−|2) ≤

2
3

1
8π2 (|U |2 + |W+|2 − |W−|2). Hence σ(M4, g) ≤ 2

3χ(M, g). Changing the orientation

replaces σ(M4, g) by −σ(M4, g) and we get altogether |σ(M4, g)| ≤ 2
3χ(M4, g)

The same estimate holds for 2
3 -pinched Ricci curvature.

Proposition 2.42. Suppose the hypotheses of 2.39 and additionally that the Ricci cur-

vature of (M4, g) is negative and 2
3 -pinched, i.e. there exists A > 0 s.t.

−Ag ≤ Ric ≤ −2

3
Ag. (2.49)

Then for all g′ ∈ comp(g) ⊂ b,2M1,2(B0, 1, f),

|σ(M4, g′)| ≤ 2

3
χ(M4, g′). (2.50)

Proof. We have

|σ(M4, g)| =

∣∣∣∣
∫
L(g)

∣∣∣∣∣ ≤
∫

|L(g)| dvol =
1

12π2

∫
(|W+|2 + |W−|2) dvol

and

χ(M4, g) =

∫
E(g) =

1

8π2

∫
(|U |2 − |S|2 + |W |2) dvol .

Sufficient for (2.50) would be |S|2 ≤ |U |2 and sufficient for this is (2.49) as pointed out

by [21].

Examples 2.43. 1) Examples for 2.39 with infinite volume are e.g. manifolds M4 of the

smooth type M4 = M4
0 ∪ ∂M4

0 × [0,∞[ where the curvature at the cylinder ∂M4
0 × [0,∞[

is bounded and asymptotically flat in the sense
∫
∂M4

0×[0,∞[
|R| dvol < ∞. This can be

easily realized by warped product metrics.

2) Examples for 2.39, 2.41, 2.42 with finite volume are given by hyperbolic 4-manifolds

of finite volume.

3) Generalizations of these examples are given by variation of g inside comp(g).

Theorem 2.44. Let (M4, g) be open, complete, vol(M4, g) < ∞, |K| ≤ 1 and suppose

that (M4, g) admits a normal covering ˜(M, g) satisfying geo(M̃) ≤ 1.

a) If χ(M4, g) < 0 then M4 does not admit a complete Einstein metric g′ satisfying

vol(M4, g′) <∞, |Kg′ | ≤ 1, geo( ˜M4, g′) ≤ 1 for some normal covering.

b) If χ(M4, g) > 0 and |σ(M4)| > 2
3χ(M4, g) then M4 does not admit a complete Einstein

metric g′, s.t. vol(M4, g′) < ∞, |Kg′| ≤ 1, geo( ˜M4, g′) ≤ 1. Moreover, there does not

exist a complete metric g′ satisfying

−Ag′ ≤ Ric(g′) ≤ −2

3
Ag′

and |Kg′| ≤ 1, vol(M4, g′) <∞ and geo( ˜M4, g′) ≤ 1 for some normal covering.
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Proof. a) Suppose the existence of an Einstein metric g′ with the required properties.

Then χ(M4, g), χ(M4, g′) are well defined. χ(M4, g) = χ(M4, g′), according to theo-

rem 2.38 b). But this contradicts χ(M4, g′) = 1
8π2

∫
(|U |2 + |W |2) dvol ≥ 0. b) and c):

Quite analogously we derive by means of theorem 2.38 b), corollary 2.41 and proposi-

tion 2.42 a contradiction.

Until now we defined characteristic numbers in the following cases:

1) R ∈ L1 and bounded, vol(M) arbitrary,

2) R bounded, vol(M) <∞.

There remains the case R bounded, vol(M) = ∞. It is clear that in this case we will

not get characteristic numbers by integration. (Mn, g) is called closed at infinity if for

any ϕ ∈ C(M), 0 < A−1 < ϕ < A, A > 0 some constant, the form ϕ · dvol generates

a nontrivial cohomology class in bHn(Mn, g). A fundamental class for M is a positive

continuous linear function m : bΩn(M) → R such that 〈m, dvol〉 6= 0 and 〈m, dψ〉 = 0.

Proposition 2.45. M has a fundamental class if and only if M is closed at infinity.

Proof. Write L(dvol) for the linear hull of dvol, 0 /∈ [dvol]∈ bHn(M) and set 〈m, dvol〉=1,

m| bBn ≡ 0. Then we obtain by linear extension m on L(dvol)⊕ bBn as positive continuous

linear functional. The Hahn–Banach theorem for the extension of such functionals yields

the desired m. The other direction is absolutely trivial.

Define the penumbra for K ⊂M by

Pen+(K, r) = CL(
⋃

x∈K

Br(x)), Pen−(K, r) = CL(M \ Pen+(M \K, r)).

We call an exhaustion M1 ⊂M2 ⊂ · · · , ⋃
iMi = M , by compact submanifolds a regular

exhaustion if for each r ≥ 0

lim
i→∞

vol(Pen+(Mi, r))/ vol(Pen−(Mi, r)) = 1.

It is clear that then automatically

lim
i→∞

vol(Pen+(Mi, r))/ vol(Mi) = 1, lim
i→∞

vol(Mi)/ vol(Pen−(Mi, r)) = 1.

Examples 2.46. 1) (Mn, g) = (Rn, gstandard) admits a regular exhaustion.

2) Any (Mn, g) with subexponential growth admits a regular exhaustion.

3) The hyperbolic space admits no regular exhaustion.

Let {Mi}i≥1 be a regular exhaustion and set for ω ∈ bΩn

〈mi, ω〉 :=
1

vol(Mi)

∫

Mi

ω.

Then |〈mi, ω〉| ≤ supx |ω|x = b|ω|, i.e. |mi| ≤ 1, the mi belong to the unit ball in (bΩn)∗.

This unit ball is compact in the weak star topology, according to the Banach–Alaoglu the-

orem, hence the sequence {mi}i has a weak star limit point m. m is then called associated

to the regular exhaustion {Mi}i.
Proposition 2.47. Let m be associated to a regular exhaustion {Mi}i. Then m is a

fundamental class for M .
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Proof. There remains only to show 〈m, dψ〉= 0. Let Φi ∈C∞(M) such that 0≤Φi(x)≤ 1,

Φi = 1 on Mi, Φi = 0 outside Pen+(Mi, 1), |∇Φi| ≤ 2. We obtain for ω ∈ bΩn

∣∣∣∣
∫

Mi

ω −
∫

M

Φiω

∣∣∣∣ ≤ (vol(Pen+(Mi, 1)) − vol(Mi))
b|ω|,

hence

lim
i→∞

1

vol(Mi)

( ∫

Mi

ω −
∫

M

Φiω

)
= 0.

Therefore we would be done if we could show

lim
i→∞

1

vol(Mi)

∫

M

Φidψ = 0.

Integration by parts yields
∫

Φidψ = −
∫
dΦi ∧ ψ,

∣∣∣∣
∫

Φidψ

∣∣∣∣ =

∣∣∣∣
∫
dΦi ∧ ψ

∣∣∣∣ ≤ 2(vol(Pen+(Mi, 1)) − vol(Mi))
b|ψ|,

which implies the assertion.

Define for ω ∈ b,1Cp(B0), [Qi1...ik(ω)] ∈ bHn(M) a (bounded) characteristic class

and a regular exhaustion {Mi}i with associated fundamental class m the characteristic

number

Qi1...ik(P, comp(ω))[m] := 〈m, [Qi1...ik ]〉 := lim
i→∞

1

vol(Mi)
(Qi1...ik).

Then, according to proposition 2.47, Qi1...ik(P, comp(ω))[m] is well defined. In particular

we obtain in this case average Euler numbers, average signatures, which are special cases

of Roe’s (average) topological index. Average characteristic numbers are also considered

in [17], [18], [15]. Some simple geometric examples are calculated in [17].

In all cases discussed until now, we restricted to the case of connections (or metrics)

with finite p-action or bounded curvature or both. The next proposition shows that this

is in fact a restriction.

Proposition 2.48. Let (Mn, g) be open, complete, satisfying (I), G a compact Lie

group, P = P (M,G) a G-principal fibre bundle, ̺ : G → U(N) resp. O(N) a faith-

ful representation, E the associated vector bundle, p ≤ 1. Then there exist G-connections

ω such that their p-action is infinite or the curvature is unbounded or both, respectively.

Proof. Consider the closed unit ball B1(0) ⊂ Rn and set up in B1(0) constant 1-forms

ωij , ωij = −ωji or ωij = −ωji, 1 ≤ i, j ≤ N , respectively, such that some Ωij = dωij −∑
k ωik ∧ωkj are 6= 0. Now consider an infinite sequence Uν = Uεν

(xν) of closed geodesic

balls with pairwise distance ≥ d > 0, introduce in each geodesic ball normal coordinates

u1, . . . , un,
∑
i(u

i)2 ≤ εν , choose over Uν orthonormal bases e1,ν , . . . , eN,ν and define

with respect to these bases local connection matrices ω′
ij,ν by ω′

ij,ν(u1, . . . , un) :=ωij . If∫
uν

|Ω′
ij,ν |px dvolx(g) = aν 6= 0, set ω′′

ij,ν = (aν + 1
aν

)
1
2pω′

ij,ν . This connection over
⋃
ν Uν is

smoothly extendable over the whole ofM and gives a connection with
∫
M

|Ω′′|px dvolx(g) ≥
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∑
ν

∫
Uν

|Ω′′|px dvolx(g) ≥
∑
ν 1 = ∞. Setting ω′′

ij,ν = ν · (aν + 1
aν

)
1
2p ·ω′′

ij,ν yields examples

for the other cases.

The conditions of finite p-action or boundedness can be reformulated in the language

of classifying spaces and classifying mappings.

We start with G = U(N). Let VN,k
U(k)−→ GN,k be the Stiefel bundle over the complex

Grassmann manifold GN,k of all k-subspaces ⊂ CN and S the matrix valued function

on VN,k defined by S(v1, . . . , vk) = aij := (bij)
t, where v1, . . . , vk is a unitary k-frame,

e1, . . . , eN the standard base in CN and vi =
∑N

j=1 bijej .

Proposition 2.49. a) γU = S∗dS is a U(N)-invariant connection form at VN,k.

b) Let be m = (n + 1)(2n + 1)k3. If P is a U(k)-principal fibre bundle over a manifold

of dimension ≤ n and ω a connection form for P , then there exists a smooth bundle

morphism fP : P → Vm,k = Pn,U(k) such that f∗P γ = ω.

We refer to [20], p. 564, 568 for the proof.

γ0 is called an n-universal connection for U(k). In a similar manner one defines on

the real Stiefel bundle V rm,k
O(k)−→ Grm,r an n-universal O(k)-connection γr0 .

For an arbitrary compact Lie group G one constructs by means of a faithful represen-

tation G → O(k) an n-universal connection γG on the n-universal bundle Pn,G → Bn,G
(cf. [20], p. 570).

According to proposition 2.49, we refine the bundle concept and consider instead of

a bundle P pairs (P, fP ), fP : P → Pn,G a C1-classifying bundle map.

(P, fP ) is called a (p, f)-bundle if f∗p γG ∈ C1Cp(f, p) = {ω a C1-connection|∫
|Ωω|px dvolx(g) < ∞}, i.e.

∫
|Ωf∗

pγG |px dvolx(g) < ∞. In the same manner we define

(P, fP ) to be a b-bundle if f∗pγG ∈ C1Cp(B0), i.e. b|Ωf∗

p γG | <∞.

Most interesting for applications is the case assuming (B0) and finite p-action. Hence

we assume (B0) for (Mn, g). (P, fP ) is a (b, p, f)-bundle, if f∗pγG ∈ b,1Cp,1p (B0, f, p). Two

(b, p, f)-bundles (P, fP ), (P, f ′P ) are called equivalent if f∗P γG, f ′
∗
P γG are contained in the

same component of b,1Cp,1P (B0, f, p). Assume G to be a subgroup of U(N), dimMn = 2k.

At the level of base spaces we consider classifying maps fM : M → Bn,G. A pair (M, fM )

is called a (p, c)-bundle if all classes f∗Mci1...ik , i1+ · · ·+ik = k, are elements of H2k,p(M).

(M, fM ) is called a (b, c)-bundle if all classes f∗Mci1...ik are elements of bH2k(M). (M, fM )

is called a (b, p, c)-bundle if all classes f∗Mci1...ik are elements of bH2k,p(M). It is clear

that a given fP : P → Pn,G uniquely determines fM : M → Bn,G.

The case G ⊆ O(N), dimM = 4k, is quite parallel. Then we consider the pi1...ik ,

i1 + · · · + ik = k and define (M, fM ) to be a (p, po)-bundle if all classes f∗Mpi1...ik ,

i1 + · · ·+ ik = k are elements of H4k,p(M). Analogously for (b, po)- and (b, p, po)-bundles

(M, fM ).

If we replace pi1...ik by the class of Hirzebruch genus Lk then we get the notion of a

(p, Lk)-, (b, Lk)- or (b, p, Lk)-bundle (M, fM ), respectively.

Theorem 2.50. a) Suppose G ⊂ U(N), dimM = 2k. (M, g) satisfying (B0), p ≥ 1.

A (b, p, f)-bundle (P, fP ) defines a unique (b, p)-bundle (M, fM ). If (P, fP ), (P, f ′P ) are
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equivalent then f∗Mci1...ik = f ′
∗
Mci1...ik for all ci1...ik , i1+· · ·+ik = k. If additionally p = 1

and (M, g) is complete then even the corresponding characteristic numbers coincide.

b) Suppose G ⊆ O(N), dimM = 4k, (M, g) satisfying (B0), p ≥ 1. A (b, p, f)-bundle

(P, fP ) defines a unique (b, p, po)-bundle (M, fM ) which is simultaneously a (b, p, Lk)-

bundle. If (P, fP ), (P, f ′P ) are equivalent then f∗Mpi1...ik = f ′
∗
Mpi1...ik and f∗MLk =

f ′
∗
MLk. If additionally p = 1 and (M, g) is complete then the corresponding characteristic

numbers coincide.

The proof follows immediately from the definitions and theorem 2.14.

Example 2.51. It is possible that b,1C1,1
p (B0, 1, f) = ∅. Let (M2, g) be an infinitely

connected open complete Riemannian manifold with bounded sectional curvature K,

K = K+ −K−,

K+ =

{
K, K ≥ 0,

0, K < 0,
K− =

{−K, K ≤ 0,

0, K > 0.

Then
∫
K− dvol = ∞ (cf. [16], theorem 13). In particular

∫
|K| dvol = ∞ which implies∫

|Ωω(g)| dvol = ∞. The proof essentially relies on the Gauß–Bonnet theorem (as one

would expect) for compact surfaces. But this theorem holds for any metrizable connection

in the orthogonal 2-frame bundle P (M2, O(2)) over M2 ([19], p. 305/306). The sectional

curvature K is defined by Ω1,2 = K dvol. As conclusion we obtain b,1Cp(B0, 1, f) = ∅.

3. Combinatorial characteristic numbers. Let (Mn, g) be open, complete, oriented.

We consider triangulations T : |K| ∼=−→ M . Let σn be a curved n-simplex in Mn. We

define the fullness θ(σ) by θ(σ) := vol(σ)/(diam(σ))n, where vol(σ), diam(σ) means

volume and diameter with respect to g. T : |K| ∼=−→ M will be called uniform if it

satisfies the following conditions:

a) There exists a θ0 > 0 such that for every curved simplex σn the fullness satisfies the

inequality θ(σ) ≥ θ0.

b) There exist constants c1 > c2 > 0 such that for every σn we have

c2 ≤ vol(σ) ≤ c1.

c) There exists a constant c > 0 such that for every vertex ν ∈ K the barycentric

coordinate function ϕν : M → R satisfies the condition |∇ϕν | ≤ c.

If one assumes a), then b) is equivalent to the existence of bounds d1 > d2 > 0 with

d2 ≤ diam(σ) ≤ d1 for all σ ∈ K. a) and b) are equivalent to the boundedness of the

volumes from below and the diameters from above.

Consider the Whitney transformation W ,

σq →W (σq) = ωσ := q!

q∑

i=0

(−1)iϕidϕ0 ∧ · · · ∧ d̂ϕi ∧ · · · ∧ dϕq,

ϕi the barycentric coordinates.

Theorem 3.1. If T : |K| → (Mn, g) is uniform then W induces topological isomorphisms

H∗,p(K) → H∗,p
dR (M), H∗,p(K) → H∗,p

dR(M).

We refer to [13] for the proof.
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The proof of 3.1 in [13] is performed even under weaker assumptions, K uniformly

locally finite and |dT |, |dT−1| ≤ C.

The point is the multiplicativity which is settled by

Theorem 3.2. Let [zq] ∈ Hq,p(K), [z′n−q] ∈ Hn−q,r(K), 1
p

+ 1
r

= 1. Then
∫

M

W (z) ∧W (z′) = C(n, q)〈[zq] ∪ [z′n−q], [K]〉. (3.1)

We refer to [8], [10] for the meaning of the r.h.s. of (3.1) and the proof of 3.2.

In the case of n = 4k, p = r = 2, iteration of (3.1) yields

Corollary 3.3. If (M4k, g) is open, oriented, g ∈ b,2M2,2(B0, 2, f) and satisfies the

condition rinj(M, g) > 0(I), then (Mn, g) admits uniform triangulations T : |K| ∼=−→ M

and

pi1...ik,c = C(4k)pi1...ik,a, (3.2)

where pi1...ik,c or pi1...ik,a are the combinatorial or analytical Pontrjagin numbers, respec-

tively.

4. Bordism and relative characteristic numbers. We consider oriented open man-

ifolds (Mn, g) satisfying

|∇iR| ≤ Ci, i = 0, 1, 2, . . . , k (Bk)

and

rinj(M, g) ≡ inf rinj(g, x) > 0. (I)

(Bn+1, gB) is a bordism between (Mn
1 , g1) and (Mn

2 , g2) if it satisfies the following con-

ditions.

1) (∂B, gB|∂B) ∼= (M1, g1) ∪ (−M2, g2),

2) there exists δ > 0 such that gB |Uδ(∂B)
∼= g∂B + dt2,

3) (B, gB) satisfies (Bk) and infx∈B\Uδ(∂B) rinj(gB, x) > 0,

4) there exists R > 0 such that B ⊂ UR(M1), B ⊂ UR(M2).

We denote (M1, g1) ∼
b

(M2, g2). (Bn+1, gB) is called a bordism. Sometimes we denote

additionally ∼
b,bg

, bg stands for bounded geometry, i.e. (I) and (Bk).

Lemma 4.1. a) ∼
b

is an equivalence relation. Denote by [Mn, g] the bordism class.

b) [M ∪M ′, g ∪ g′] = [M#M ′, g#g′].

c) Set [M, g] + [M ′, g′] := [M ∪M ′, g ∪ g′] = [M#M ′, g#g′]. Then + is well defined and

the set of all [Mn, g] becomes an abelian semigroup.

Denote by Ωncn the corresponding Grothendieck group. Similarly one defines Ωncn (X)

generated by pairs ((Mn, g), f : Mn → X), f bounded and uniformly proper.

Remarks 4.2. 1) Condition 4) above looks like dGH(M,M ′) ≤ R, where dGH is the

Gromov–Hausdorff distance (cf. [9]). But this is wrong.

2) There is no chance to calculate Ωncn .

3) One would like to have a geometric representative for 0 and for −[M, g].
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The way out from this is to establish bordism theory for special classes of open

manifolds or/and further restrictions on bordism.

Our first example is bordism with compact support. Here condition 1) above remains

but one replaces 2)–4) by the condition

There exists a compact submanifold Cn+1 ⊂ Bn+1

such that (B \ C, gB|B\C) is a product bordism, i.e.

(B \ C, g
B\C) ∼= (M \ C × [0, 1], g

M\C + dt2). (cs)

We write ∼
b,cs

. Then one gets a bordism group Ωncn (cs) (= Grothendieck group).

At a first glance, the calculation of Ωncn (cs) or at least the characterization of the

bordism classes seems to be very difficult. But we will see that this is not the case. For this,

we introduce still some uniform, structures. Denote by Mn(mf) := Mn(mf, nc) ⊂ ML

the set of isometry classes of complete, open, oriented Riemannian manifolds. Consider

pairs (Mn
1 , g1), (M

n
2 , g2) ∈ Mn(mf) with the following property:

There exist compact submanifolds Kn
1 ⊂Mn

1 and Kn
2 ⊂Mn

2

and an isometry M1 \K1
Φ−→M2 \K2. (4.1)

For such pairs, we define

bdL,iso,rel((M1, g1), (M2, g2)) :=

inf{max{0, log b|df |} + max{0, log b|dh|} + sup
x∈M1

dist(x, hfx) + sup
y∈M2

dist(y, fhy)|

f ∈ C∞(M1,M2), g ∈ C∞(M2,M1), and

for some K1 ⊂ K, f |M1\K1
is an isometry and g|f(M1\K = f−1}.

If (M1, g1) and (M2, g2) do not satisfy (4.1), then we define bdL,iso,rel((M1, g1), (M2, g2))

= ∞. We have bdL,iso,rel((M1, g1), (M2, g2)) = 0 if (M1, g1) and (M2, g2) are isometric.

Remarks 4.3. 1) The notions of Riemannian isometry and distance isometry coincide

for Riemannian manifolds. Furthermore, if f is an isometry f , then we have b|df | = 1.

2) Any f that occurs in the definition of dL,iso,rel is automatically an element of

C∞,m(M1,M2) for all m. The same holds true for g.

We write M
n
L,iso,rel(mf) = M

n(mf)/ ∼ where by definition (M1, g1) ∼ (M2, g2) if
bdL,iso,rel((M1, g1), (M2, g2)) = 0. Set

Vδ = {((M1, g1), (M2, g2)) ∈ (M)2L,iso,rel(mf))2 | bdL,iso,rel((M1, g1), (M2, g2)) < δ}.
Proposition 4.4. L = {Vδ}δ>0 is a basis for a metrizable uniform structure bUL,iso,rel.

Denote by bMn
L,iso,rel(mf) the corresponding uniform space.

Proposition 4.5. If rinj(Mi, gi) = ri > 0, r = min{r1, r2} and bdL,iso,rel((M1, g1),

(M2, g2)) < r then M1 and M2 are (uniformly proper) bi-Lipschitz homotopy equivalent.

Corollary 4.6. If we restrict ourselves to open manifolds with injectivity radius ≥ r,

then manifolds (M1, g1) and (M2, g2) with bdL,iso,rel-distance less than r are automatically

(uniformly proper) bi-Lipschitz homotopy equivalent.
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Remark 4.7. If (M1, g1) satisfies (I) or (I) and (Bk) and bdL,iso,rel(M1, g1), (M2, g2))

<∞ then (M2, g2) also satifies (I) or (I) and (Bk).

We cannot show that bMn
L,iso,rel is locally arcwise connected, that components are

arc components and bcompL,iso,rel(M, g) = {(M ′, g′)|bdL,iso,rel((M, g), (M ′, g′)) <∞} is

wrong. The reason is that we cannot connect non-homotopy-equivalent manifolds by a

continuous family of manifolds. A parametrization of nontrivial surgery always contains

bifurcation levels where we leave the category of manifolds. A very simple case comes

from corollary 4.6.

Corollary 4.8. If we restrict bUL,iso,rel to open manifolds with injectivity radius

≥ r > 0, then the manifolds in each arc component of this subspace are bi-Lipschitz

homotopy equivalent.

Proof. This subspace is locally arcwise connected and components are arc components.

Consider an (arc) component and two elements (M1, g1) and (M2, g2) of it, connect them

by an arc, cover this arc by sufficiently small balls, and apply 4.6.

By definition, we have

bdL,iso,rel((M1, g1), (M2, g2)) <∞ ⇒ dL((M1, g1), (M2, g2)) <∞,

where dL is the Lipschitz distance of [9]. Hence, (M2, g2) ∈ compL(M1, g1), i.e.

{(M2, g2) ∈ M
n(mf)|bdL,iso,rel((M1, g1), (M2, g2)) <∞} ⊆ compL(M1, g1). (4.2)

For this reason, we denote the left hand side {. . . } of (4.2) by gen bcompL,iso,rel(M1, g1) =

{. . . } = {. . . } ∩ compL(M1, g1), keeping in mind that this is not an arc component, but

a subset of (manifolds in) a Lipschitz arc component.

If we fix (M1, g1), then in a special case, we have a good overview of the elements in

gen bcompL,iso,rel(M1, g1).

Example 4.9. Let (M1, g1) = (Rn, gstandard). Then gen bcompL,iso,rel(M1, g1) is in a

1-1 correspondence with {(Mn, g)|Mn is a closed manifold and g is flat in an annulus

contained in a disk neighborhood of a point }.
This can be generalized as follows.

Theorem 4.10. Any component gen bcompL,iso,rel(M, g) contains at most countably

many diffeomorphism types.

Proof. Fix (M, g) ∈ gen bcompL,iso,rel(M, g) and an exhaustion K1 ⊂ K2 ⊂ . . . ,⋃
K1 = M , of M by compact submanifolds, and let (M ′, g′) ∈ bcompL,iso,rel(M, g). Then

there are K ′ ⊂M ′ and Ki ⊂M such that M \Ki and M ′ \K ′ are isometric. The diffeo-

morphism type ofM ′ is completely determined by that of the pair (K1

⋃
∂K1

∼=∂K′ K ′,K1),

but the set of types of such pairs (after fixing M and K1 ⊂ K2 ⊂ . . . ) is at most count-

able.

Thus, after fixing (M, g), the diffeomorphism classification of the elements in
bcompL,iso,rel (M, g) seems to be reduced to a ”handy” countable discrete problem. This

is in fact the case in a sense which is parallel to the classification of compact manifolds.
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Now we connect the calculation of Ωncn (cs) with the generalized components

gen bcompL,iso,rel(·) ⊂ b
M
n
L,iso,rel(mf).

Remark 4.11. If (M1, g1), (M2, g2) ∈ gen bcompL,iso,rel(M, g), then, in general, (M1, g1)

#(M2, g2) /∈ gen bcompL,iso,rel(M, g).

Let Ωncn (cs, gen bcompL,iso,rel(M, g)) ⊂ Ωncn (cs) be the subgroup generated by

{[M ′, g′]cs|(M ′, g′) ∈ gen bcompL,iso,rel(M, g)}.
We know Ωncn (cs) completely if we know all Ωncn (cs, gen bcompL,iso,rel(M, g)), and we

know

Ωncn (cs, bcompL,iso,rel(M, g))

completely if we know a corresponding generating set. However, the elements of such a

set are completely determined by their (relative) characteristic numbers.

Fix (Mn, g) ∈ gen bcompL,iso,rel(M
n, g), whereM is oriented. Assume that (M1, g1) ∈

gen bcompL,iso,rel(M
n, g), and let Φ : M \ K → M1 \ K1 be an orientation preserving

isometry. Define the (relative) Stiefel–Whitney numbers of the pair (M1,M) by

wr11 . . . wrn
n (M1,M) := 〈wr11 . . . wrn

n , [K1]〉 + 〈wr11 . . . wrn
n , [K]〉. (4.3)

Similarly, for (M1,M) and n = 4k, we define the (relative) Pontrjagin numbers

pr11 . . . prk

k (M1,M) :=

∫

K1

pr11 . . . prk

k (M1) −
∫

K

pr11 . . . prk

k (M) (4.4)

and the (relative) signature by

σ(M1,M) := σ(K1) + σ(−K). (4.5)

Lemma 4.12. The numbers wr11 . . . wrn
n (M1,M), pr11 . . . prk

k (M1,M), and σ(M1,M) are

well defined, and we have

wr11 . . . wrn
n (M1,M) = 〈wr11 . . . wrn

n (K1 ∪K), [K1 ∪K]〉, (4.6)

pr11 . . . prk

k (M1,M) = 〈pr11 . . . prk

k (K1 ∪ −K), [K1 ∪ −K]〉, (4.7)

and

σ(M1,M) = σ(K1 ∪ −K). (4.8)

Proof. The equations (4.3), (4.4) are clear. (4.5) comes from Novikov additivity of σ.

Hence we have only to show the well definedness, i.e. the independence of the choice of

K ⊂M , K1 ⊂M1. Start with (4.4). If K ′
1 ⊃ K1, K

′ ⊃ K, Φ|M\K′ : M \K ′
∼=−→M1 \K ′

1

orientation preserving isometric, then
∫

K′

1

· · · −
∫

K′

· · · =

∫

K′

1\
o
K1

· · · +
∫

K1

· · · −
( ∫

K′\
o
K

· · · +
∫

K

· · ·
)
. (4.9)

But
∫
K′

1\
o
K1

· · · −
∫
K′\

o
K
· · · = 0 since K ′

1 \
o

K1 and K ′ \
o

K are isometric under Φ by

assumption. The analogous conclusion can be done for K ′′
1 ⊂ K1, K

′′ ⊂ K, Φ : M \
o

K
′′
→

M1 \
o

K
′′

1 already an isometry. In the general case K1, K
′
1, K, K ′ one considers K ′

1 ∩K1,

K∩K ′ and reduces to the first two considerations after smoothing out K ′
1∩K1, K

′∩K by
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arbitrary small perturbations. The proof for (4.3) is quite similar replacing integrations

in (4.9) by application of cocycles to cycles. The independence of (4.5) comes again from

Novikov additivity, applying it several times.

Theorem 4.13. Fix (M1, g1), (M2, g2) ∈ gen bcompL,iso,rel(M, g). Then (M1, g1) ∼
b,cs

(M2, g2) if and only if all characteristic numbers of (M1,M) coincide with the corre-

sponding characteristic numbers of (M2,M).

Proof. Assume (M1, g1) ∼
b,cs

(M2, g2). Choose Cn+1 ⊂ Bn+1 large enough such that with

∂Cn+1 = ∂1C ∪ ∂2C ∪ ∂3C, ∂1C = K1 ⊂ M1, ∂2C = K2 ⊂ M2, ∂3C ∼= ∂K1 × [0, 1] we

have M1 \
o

K1
∼=
Φ1

M \
o

K, M2 \
o

K2
∼=
Φ2

M \
o

K. Then after smoothing out by arbitrary small

perturbations, ∂C is diffeomorphic ot K1 ∪
Φ
−K2, Φ = ∂(Φ−1

2 Φ1). Hence char.n.(K1 ∪
Φ

−K2) = char.n.(K1 ∪
Φ1

−K) + char.n.(K ∪
Φ−1

2

−K2) = char.n.(M1,M) + char.n.(M,M2) =

char.n.(M1,M) − char.n.(M2,M), i.e. char.n.(M1,M) = char.n.(M2,M). Conversely, if

char.n.(M1,M) = char.n.(M2,M) then char.n.(K1 ∪
Φ
−K2) = 0, K1 ∪

Φ
−K2 is 0-bordant,

K1∪
Φ
−K2 = ∂Cn+1. Form K1∪(∂K1× [0, 1])∪

Φ
−K2) which equals ∂Cn+1, glue (M1\

o

K1)

× [0, 1] ∼= (M \
o

K) × [0, 1] ∼= (M2 \
o

K2) × [0, 1] and smooth out (the topology and the

metrics). The result is a bordism (Bn+1, gB) with compact support between (M1, g) and

(M2, g).

Corollary 4.14. Description of all elements of Ωncn (cs) reduces to ”counting” the gen-

eralized components of bMn
L,iso,rel(mf).

Example 4.15. Consider Mi = (M ′
i ∪ ∂M ′

i × [0,∞[, gi), i = 1, 2, M ′
i compact, ∂M ′

1 =

∂M ′
2, (∂M ′

1 × [0,∞[, g1,a,∞) isometric to (∂M ′
2 × [0,∞[, g2,a,∞), gi,a,∞ = gi|∂M ′

i×[a,∞[.

Let M = (Dn ∪ Sn × [0,∞[, gstandard). If σ(M ′
1) 6= σ(M ′

2) then (M1, g), (M2, g) ∈
gen bcompL,iso,rel(M, g) are not cs–bordant.

There is a simple approach to calculate the local algebraic structure of Ωncn (cs). Con-

sider as above Ωncn (cs,M) := Ωncn (cs, gen bcompL,iso,rel(M)) and let Ωn be the usual

bordism group of closed oriented n-manifolds. Then there exists a map Φ = ΦM : Ωn →
Ωncn (cs,M), Φ([N ]) := [M#N, gM#N ]cs. Here the bordism class in Ωncn (cs,M) is inde-

pendent of the metric of N . Moreover, we have a map Ψ = ΨM : Ωncn (cs,M) → Ωn,

Ψ([M ′, g′]) := [K ′ ∪ −K], where (M ′ \
o

K
′
, g′|

M ′\
o
K

′) is isometric to (M \
o

K, g|
M\

o
K

).

It is very easy to see that ΨM is well defined: Let (M ′′, g′′) ∈ [M ′, g′]cs. Then there

exist K ′′
1 ⊂ M ′′, K ′

1 ⊂ M ′, K1 ⊂ M such that M ′′ \ K̇ ′′
1 , M ′ \ K̇ ′

1, M \ K̇1 are

isometric. By assumption and according to theorem 4.12 we have char.n.(M ′′,M) =

char.n.(M ′,M), i.e. char.n.(K ′′
1 ∪ −K1) = char.n.(K ′

1 ∪ −K1) = char.n.(K ′ ∪ −K),

[K ′′
1 ∪−K1]Ωn

= [K ′∪−K]Ωn
. We have ΨMΦM = id : (ΨΦ)[N ] = Ψ([M#N ]) = [N ] and

ΦMΨM = id : (ΦΨ)([M ′, g′]) = Φ([K ′ ∪K]) = [M#(K ′ ∪ −K), gM#(K′∪−K)] = [M ′, g′]

since char.n.(M ′,M) = char.n.(M#(K ′ ∪ −K),M). Here ΦM and ΨM are 1-1 maps.

Moreover we have maps
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ΦM × ΦM ′ : Ωn × Ωn → Ωncn (cs,M) × Ωncn (cs,M ′),

ΦM × ΦM ′([N1], [N2]) = ([M#N1, gM#N1
], [M ′#N2, gM ′#N2

]),

ΦM#M ′ : Ωn → Ωncn (cs,M#M ′),

[N ]Ωn
→ [M#M ′#N, gM#M ′#N ]cs,

Ωn × Ωn, ([N1], [N2])

↓ ↓
Ωn [N1#N2]

and

Ωncn (cs,M) × Ωncn (cs,M ′), ([M1, g1], [M
′
1, g

′
1])

↓ ↓
Ωncn (cs,M#M ′) [M1#M

′
1, g1#g

′
1]

Proposition 4.16. The diagrams

Ωn × Ωn
ΦM×ΦM′−→ Ωncn (cs,M) × Ωncn (cs,M ′)

↓ ↓ (4.10)

Ωn
ΦM#M′−→ Ωncn (cs,M#M ′)

and

Ωncn (cs,M) × Ωncn (cs,M ′)
ΦM×ΦM′−→ Ωn × Ωn

↓ ↓ (4.11)

Ωncn (cs,M#M ′)
ΦM#M′−→ Ωn

commute.

Remark 4.17. It is important that we consider (4.10), (4.11) at bordism class level.

In (4.11) e.g. (K1 ∪−K)#(K ′
1 ∪−K ′) 6= K1#K

′
1 ∪−(K#K ′), but their bordism classes

coincide.

The 1-1 property of ΦM , ΨM moreover implies

Proposition 4.18. Modulo torsion (which is well defined at the Ωn-level) we have

Ωncn (cs,Mn)=0 for n 6=4k, for n=4k, [M#P 2i1(C)×· · ·×P 2ik(C), gM#P 2i1(C)×···×P 2ik (C)]

are independent generators for Ωncn (cs,Mn) over Q, i1 + · · · + ik = k.

Remarks 4.19. 1) 4.13, 4.14, 4.18 provide sufficient means to characterize cs-bordism

classes and to calculate Ωncn (cs).

2) An analogous procedure can be applied to calculate e.g. Ωnc,spinn (cs,M), where
bcompL,iso,rel(M) is now a component consisting of Spin-manifolds.

As we pointed out, a contentful theory should be developed under three aspects.

1) A convenient characterization of bordism classes is desirable.

2) It should be possible to exhibit sets of independent generators, at least for the inter-

sections with gen-components.

3) A geometric realization of zero and the inverse are desirable.
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The general bordism group Ωncn did not satisfy any of these three wishes. Ωncn (cs) satisfies

the first two wishes. We develop below a bordism theory which satisfies the second and

the third wish. This will be the bordism theory for manifolds with a finite number of

ends, each of them nonexpanding.

Let ε be an isolated end of (Mn, g). A ray in ε is a geodesic γ defined on [0,∞[ which

is a shortest geodesic between any two of its points and such that some neighborhood

of ε contains up to a finite segment the whole of |γ|. Then the latter holds for any

neighborhood of ε.

Lemma 4.20. Let ε be an isolated end of (Mn, g).

a) Then there exists a ray in ε.

b) If (Mn, g) additionally satisfies (I) then there exists a ray in ε with a uniformly thick

neighborhood.

Proof. A proof of a) is e.g. contained in [11], p. 43. b) follows immediately from a) and

(I).

We call an end ε of (Mn, g) nonexpanding if there exist a ray γ in ε and an R =

RM > 0 and an element G ∈ ε such that G ⊆ UR(|γ|), roughly written ε ⊆ UR(|γ|).
In the sequel we restrict to open manifolds satisfying (I), B(∞), with finitely many

ends, each of them nonexpanding.

Examples 4.21. 1) Consider the sphere Sn−1
r ⊂ Rn ⊂ Rn+1 of radius r and

chcn(r) := (Sn−1
r × [0,∞[∪Dn

r , gst),

i.e. the closed half cylinder of radius r with a standard metric gst which should be the

product metric of Sn−1
r × [0,∞[ smoothly extended to the glued bottom Dn

r and with

standard orientation. Then chcn(r) is an open manifold with one nonexpanding end,

satisfying (I), (B∞).

2) #k
i=1 chc(ri) has finitely many nonexpanding ends.

3) Any manifold (Mn = M ′∪∂M ′×[0,∞[, gM ) whereM ′ is compact and gM |∂M ′×[a,∞[ =

dt2 + g∂M ′ satisfying (I), (B∞) and has finitely many nonexpanding ends.

4) The same is true if we allow gM of 3) to vary in compp,r(gM ) ∩ C∞.

5) If we consider M of smooth type of 3) and gM |∂M ′×[a,∞[ = dt2 + f(t)2g∂M ′ with

c2 ≥ f(t) ≥ c1 > 0, f
(ν)

f
bounded for all ν, t ≥ a then M has finitely many nonexpanding

ends.

We define now a slightly sharpened bordism relation.

Let (Mn, g), (M ′n, g′) be as above, each with finitely many nonexpanding ends

ε1, . . . , εs or ε′1, . . . , ε
′
s′ , respectively. Let γM,1, . . . , γM,s or γM ′,1, . . . , γM ′,s′ corresponding

rays as above. From (M, g) ∼
bg

(M ′, g′) and all ends nonexpanding follows in particular

that for all sufficiently large compact Cn+1 ⊂ Bn+1 there exists R = RB > 0 s.t.

Bn+1 \ Cn+1 ⊂
s⋃

1

UR(|γM,σ|), Bn+1 \ Cn+1 ⊂
s′⋃

1

UR(|γM ′,σ′ |).
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We require additionally the additive compatibility of the inner γ-distance and the (B\C)-

distance for points xγ , yγ on the γ’s.

There exist Cn+1 ⊂ Bn+1 and c′ > 0 s.t. for xγ , yγ ∈ |γ| \ C,

dγ(xγ , yγ) − c′ ≤ dB\C(xγ , yγ) ≤ dγ(xγ , yγ) + c′. (GH)

Here γ stands for γM,1, . . . , γM,s, γM ′,1, . . . , γM ′,s′ , respectively and d(·, ·) ≡ dist(·, ·).
We denote (M, g) ∼

ne
(M ′, g′) if they are bg-bordant by means of (B, gB) satisfy-

ing (GH).

Remarks 4.22. 1) The right hand inequality of (GH) trivially holds. We added it only

for symmetry reasons.

2) It was essentially Thomas Schick who pointed out to the author the meaning of

the condition (GH) or (GH1) and who proposed to include them into the definition of

bordism.

We consider instead of (GH) the condition:

There exist Cn+1 ⊂ Bn+1 and c′ > 0 s.t. for all x, y ∈ U(ε),

dUε
(x, y) − c ≤ dB\C(x, y) ≤ dU(ε)(x, y) + c. (GH1)

Here ε stands for ε1, . . . , εs, ε
′
1, . . . , ε

′
s′ and U(ε) for a neighborhood of ε, U(ε) ∩ C = ∅.

Lemma 4.23. (GH) and (GH1) are equivalent.

Proof. Assume (GH1). Then (GH) holds since for xγ , yγ ∈ |γ| ⊂ U(ε), U(ε) ∩ C = ∅,
dU(ε)(xγ , yγ) = dγ(xγ , yγ). If conversely x, y ∈ U(ε) then there exist xγ , yγ ∈ |γ| ⊂ U(ε)

s.t. dU(ε)(x, xγ) ≤ RM , dU(ε)(y, yγ) ≤ RM . Then the assertion follows from

dU(ε)(x, y) − dU(ε)(xγ , yγ) ≤ dU(ε)(x, xγ) + dU(ε)(y, yγ),

dU(ε)(x, y) − dU(ε)(x, xγ) − dU(ε)(y, yγ) ≤ dγ(xγ , yγ)

= dγ(xγ , yγ) − c′ + c′ ≤ dB\C(xγ , yγ) + c′,

dU(ε) − 2RM − c′ ≤ dB\C(xγ , yγ),

dU(ε) − 4RM − c′ ≤ dB\C(x, y).

Remark 4.24. (GH1) immediately implies that dGH(B \ C,U(ε)) <∞, where dG,H(·, ·)
is the Gromov–Hausdorff distance between proper metric spaces. This follows from the

following facts. dGH(B \ C,U(ε)) <∞ if we endow U(ε) with the induced length metric

and use B \ C ⊂ UR(U(ε)). Then we use dGH(U(ε)), its own length metric, U(ε), induced

length metric <∞, which follows from (GH1). As a matter of fact, we introduced (GH)

to assure dGH(B \ C,U(ε)) <∞.

Proposition 4.25. ∼
ne

is an equivalence relation.

Proof. Reflexivity ((B = m× [0, 1], dt2+gM )) and symmetry ((−B, gB)) are immediately

clear. For transitivity, the only point in the proof is (GH) or (GH1). Let (B12, g12) and

(B23, g23) be fe, ne-bordisms between (M1, g1), (M2, g2) and (M2, g2), (M3, g3), respec-

tively and set (B13, g13) = (B12 ∪B23, g12 ∪ g23). We assume w.l.o.g. global Riemannian

collars at the boundaries. Let Cn+1
12 ⊂ B12, C23 ⊂ B23 as required in (GH1) and choose
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C = Cn+1
13 ⊃ C12 ∪ C23. Let ε be one of the ends of M1, U(ε) ⊂ M1. Then we have to

show

dU(ε)(x, y) − c ≤ dB13\C(x, y). (4.12)

We write in the sequel di = dMi\C , i = 1, 2, d12 = dB12\C , d23 = dB23\C , d13 = dB13\C .

The required c in (4.12) exists for all pairs x, y ∈M1 \ C s.t. d1(x, y) can be realized

by a curve in B12 \ C. Let x, y ∈ M1 \ C be pair which does not have this property and

let z(t) be a curve in B13 \ C which realizes d13(x, y), z(0) = x = α1, z(1) = y ≡ y1.

Then there exists a first point x2 ∈M2 \ C on {zt}t and a last point y2 ∈M2 \ C on z.

Let moreover x′2 ∈ M2 \ C and y′2 ∈ M2 \ C be points which realize the distances

d13(x1,M2 \
o

C) and d13(y1,M2 \
o

C), respectively. Then

d13(x
′
2, y

′
2) − d13(x1, y1) ≤ d13(x1, x

′
2) + d13(y1, y

′
2),

d13(x
′
2, y

′
2) − 2R12 ≤ d13(x1, y1), (4.13)

Claim. There exists a c′ > 0 s.t.

d2(x
′
2, y

′
2) − c′ ≤ d13(x

′
2, y

′
2) (Cl)

for all x′2, y
′
2 ∈M2 \ C.

Lemma 4.26. (Cl) implies (4.12).

Proof. We infer from (4.13) and (Cl)

d2(x
′
2, y

′
2) − c′ − 2R12 ≤ d13(x1, y1). (4.14)

Moreover

d12(x
′
2, y

′
2) ≤ d2(x

′
2, y

′
2), (4.15)

d12(x1, y1) − 2R12 ≤ d12(x
′
2, y

′
2), (4.16)

d1(x1, y1) − c12 ≤ d12(x1, y1). (4.17)

Here (4.17) is the condition (GH1) for B12. (4.13)–(4.17) yield d13(x1, y1) ≥ d2(x
′
2, y

′
2)−

c′−2R12 ≥ d12(x
′
2, y

′
2)− c′−2R12 ≥ d12(x1, x2)−4R12− c′ ≥ d1(x1, y1)−4R12− c′− c12,

i.e. we obtain (4.12) with c = 4R12 + c′ + c12.

There remains to establish (Cl), i.e.

d2(x
′
2, y

′
2) − c′ ≤ d13(x

′
2, y

′
2). (Cl)

Unfortunately (Cl) is wrong and hence the whole approach to prove transitivity. Uwe

Abresch has constructed an explicit ingenious counterexample. Nevertheless, we per-

formed the proof of transitivity until (Cl) to indicate the crucial point. It is in fact

possible that an appropriate winding around the middle M2, M2 again and again pen-

etrating curve has a much shorter B13-length than the M2-distance of the initial and

the other intersection points in M2. From this it is clear that one should forbid such a

B13-distance diminishing curve. But this can be achieved by forbidding a distance real-

izing curve to move out from the collar. That is if x, y ∈ U(ε) ⊂ M1 or M3 (or x, y ∈
the corresponding geodesic ray, which is equivalent) then a B13-distance realizing curve

should remain in the collar of M1 or M3, respectively. For this we perform a conformal

change in the metric g12 ∪ g23 of B13.



302 J. EICHHORN

We consider in Uδ(∂B13) Gaussian normal coordinates which give for boundary points

∈ ∂B13 coordinates only for a half ball. Nevertheless we have still about x0 ∈ Uδ(∂B13)

a∂B13 (x0)|ξ|2 ≤ g13,ij(x)ξ
iξj ≤ b∂B13 (x0)|ξ|2, dist(x0, ∂B) ≤ dist(x, x0) ≤ δ/2

and about x0 ∈ B13 \ U 3
4 δ

(∂B13)

a∂B13 (x0)|ξ|2 ≤ g13,ij(x)ξ
iξj ≤ b∂B13 (x0)|ξ|2, dist(x0, x) ≤ δ/2.

Set a∂B13 = supx0∈Uδ(∂B) a
∂B
13 (x0), b

∂B
13 = infx0∈Uδ(∂B) b

∂B
13 (x0), a

B
13 = supx0 as above a

B
13(x0),

bB13 = infx0 as above b
B
13(x0). All these numbers are > 0. Then we have for x ∈ Uδ(∂B13),

y ∈ B13 \ U 3
4 δ

(∂B13) and 0 6= ξ ∈ Rn+1

g13,ij(x)ξ
iξj ≤ b∂B13 ≤ b∂B13 |ξ|2 =

b∂B13

a∂B13

aB13|ξ|2 ≤ b∂B13

a∂B13

g13,ij(y)ξ
iξj

<

(
b∂B13

a∂B13

+ 1

)
g13,ij(y)ξ

iξj . (4.18)
Define now ϕ ∈ C∞(B13) as follows:

ϕ = 1 on U 1
2 δ

(∂B).

ϕ =

(
b∂B13

aB13
+ 1

)
on B13 \ U 3

4 δ
(∂B).

ϕ is increasing in inward normal direction in Uδ(M1) and decreasing in outward normal

direction in Uδ(M3),

|∇iϕ| ≤ Di, i = 0, 1, 2, . . . .

The existence of such a ϕ in the case of bounded geometry is standard (cf. [1]).

Lemma 4.27. a) g̃13 = ϕ · g13 is a metric of bounded geometry.

b) (B12, g̃13) is a bordism between (M1, g1) and (M3, g3) in the bounded geometry nonex-

panding sense.

Proof. a) Inside the δ
2 -collar nothing changes. g and g′ are quasi isometric. Moreover for

i ≥ 1 |∇i(g̃ − g)| = |(∇iϕ · g)| ≤ ci for all i, i.e. g̃ ∈ b,∞comp(g). The assertion now

immediately follows.

b) By assumption B12 ⊂ UR12
(Mi) =

⋃
x∈Mi

UR12
(x), i = 1, 2, B23 ⊂ UR23

(Mi) =⋃
x∈Mi

UR23
(x), i = 2, 3, hence B13 = B12 ∪ B23 ⊂ ⋃

x∈Mi
UR12+R23

(x) = UR13
(Mi),

i = 1, 3. g and g′ are quasi isometric, hence B13 ⊂ UR̃13
(Mi), i = 1, 3. (B13, g̃13) satisfies

(GH) since for xγ , yγ ∈ |γ| \C in Mi no distance realizing or approximating curve in B13

will leave U 1
2 δ

(Mi), i = 1 or 3. This follows from indroducing normal charts and applying

(4.18). But in the collar U 1
2 δ

(Mi), (GH) holds. According to the Pythagoraen principle

the curve remains in Mi, it is even γ. This finishes the proof of proposition 4.25.

Ωncn (ne) ≡ Ωnc(fe, ne, bg) is again defined as Grothendieck group. Next we develop

geometric realizations for 0 and −[M, g]ne in Ωncn (ne).

Let (Mn, g) be as above, i.e. oriented, with (I), (B∞), finitely many ends ε1, . . . , εs,

each of them nonexpanding. Let ε be one of them, C ⊂M compact and so large that ε is

defined by one of the components of M \C, Uε ⊂M \C a neighborhood, γ a ray in U(ε).

γ admits a tubular neighborhood of radius δ3 > 0. Consider (B, gB) = (M×I, gM +dr2).

Then ε × I = {Uj(ε) × I}j∈J is an end of M × I, U(ε × I) = U(ε) × I a neighborhood



CHARACTERISTIC NUMBERS 303

disjoint from CM×I = C × I, and for 0 < δ1 < 1, the curve γδ1 = γ × {δ1} = (γ, δ1) is a

ray in U(ε× I). ε× I is nonexpanding. γδ1 admits a tubular neighborhood with a radius

δ2 > 0, Tδ2(γδ1).

Theorem 4.28. ∂Tδ2(γδ1) has bounded geometry, one nonexpanding end and

∂Tδ2(γδ1) ∼
ne

chcn(δ2), δ2 > 0.

Proof. First we show that ∂T = ∂Tδ2(γδ1) has bounded geometry. Consider the point

x = expγδ1
(t)(δ1 · u), δ1u ⊥ γ̇δ1(t), x ∈ ∂T , and the equation B′′

U + RM×IBU = 0

along σ(τ ) = expγδ1
(t) τ (δ1u) for the endomorphism valued function BU : τ → BU (τ ),

BU (τ ) : (γ̇)⊥ → (γ̇)⊥, with the initial conditions BU (0) =
(

1
0

0
0

)
, B′

U (0) =
(

0
0

0
In−1

)
.

Then |∇iBU |(δ1) ≤ Ci, Ci independent of u and t since the curvature tensor RM×I

satisfies (B∞). According to [24], p. 57, the second fundamental form Sγδ1
(x) at x =

expγδ1
(t)(δ1u) is given by

Sδ1(x) = (B′
UB

−1
U )(δ1).

Hence Sδ1 satisfies (B∞) since B does. According to Gauss’ equations, g∂T = gM×I |∂T
satisfies (B∞). Similarly it follows that ∂T satisfies (I) since γ, γδ1 and the fibres have

bounded from below diameter. We omit the trivial considerations at the bottom. (∂T, g∂T )

has one end and this end is nonexpanding: ∂T =
⋃
t Σt, where Σt is the geodesic δ2-sphere

in M × I about γδ1(t). Each such sphere intersects γδ1+δ2 = (γ, δ1 + δ2) once and there

is a common constant KΣ which uniformly bounds the circumference of all such geodesic

spheres. The latter comes from Rauch’s comparison theorem. Hence ∂T ⊆ UKΣ
2

(|γδ1+δ2 |).
Next we construct a bibounded diffeomorphism from chcn(δ2) onto ∂T .

Consider in Rn+1 the standard basis e1, . . . , en+1, the geodesic t · en+1, the parallel

translation of e1, . . . , en along t · en+1, and the map (x1, . . . , xn), x
2
1 + · · · + x2

n = δ2 →
x = expten+1

(x1e1 + · · ·+xnen). Do the same in M ×I: Let E1, . . . , En+1 be orthonormal

at the beginning of γδ1 , En+1 = γ̇δ1 , E1 = ∂t = ∂
∂t

, translate this parallel along γδ1 , and

consider the map (y1, . . . , yn), y
2
1 + · · · + y2

n = δ2 → y = expγδ1
(t)(y1E1 + · · · + ynEn).

Then we get a diffeomorphism Φ = expγδ1(t)
◦Ψ ◦ exp−1

ten+1
from chcn(δ2) onto ∂T , where

Ψ(x1e1 + · · ·+xnen) = x1E1 + · · ·+xnEn. We omit the very simple considerations at the

bottoms, respectively. According to [7], the exponential maps are C∞-bibounded, Ψ too,

hence Φ, and Φ∗g∂T is a second metric of bounded geometry on chcn(δ2). (∂T, g∂T ) and

(chcn(δ2),Φ
∗g∂T ) are isometric hence ne- (and bg-) bordant. Finally we want to show that

(chcn(δ2),Φ
∗g∂T ) and (chcn(δ2), gstandard) are ne-bordant. We perform this in two steps.

First we show that they are bg-bordant and thereafter we verify after conformal change

the conditions (GH1). Φ∗g∂T and gst live in the same b,∞component: For X ∈ T chcn(δ2)

we have
|X|Φ∗g∂T

= |Φ∗X|g∂T ≤ |Φ∗||X|gst
,

|X|gst
= |Φ−1

∗ Φ∗X|gst
≤ |Φ−1

∗ ||Φ∗X|g∂T = |Φ−1
∗ ||X|Φ∗g∂T

,

i.e. Φ∗g∂T and gst are quasi isometric. There remains to show that

|(∇gst)i(Φ∗g∂T − gst| = |(∇gst)i(Φ∗g∂T )| (4.19)
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remains bounded for all i. Here we use that the (Fermi) coordinates of x ∈ Dn
δ2

× [0,∞[

and of Φ(x) ∈ Tδ2(γδ1) are the same, where we extended Φ to the full tubes. But then

(4.19) follows.

According to theorem 4.28, (chcn(δ2),Φ
∗g∂T ) and (chcn(δ2), gst) are bg-bordant. Let

(Bn+1, gB) be a bg-bordism as in the proof of 4.28, i.e. (Bn+1, gB) = (chcn(δ2) ×
[0, 1], ϕ(t) + dt2), ϕ(t) = Φ∗g∂T , 0 ≤ t ≤ δ, ϕ(t) = gst, 1 − δ ≤ t ≤ 1, and ϕ(t) =

smooth convex combination of Φ∗g∂T and gst for δ ≤ t ≤ 1−δ (smoothed out at δ, 1−δ).
There remains to establish (GH) or (GH1). We prove (GH) and change for this the met-

ric in Bn+1 = chcn(δ2) × [0, 1]. Choose smooth functions ψ1, ψ2 : [0, 1] → [0, 1], ψ1 = 1,

0 ≤ t ≤ 1 − 3
4δ, decreasing on

[
1 − 3

4δ, 1 − 1
2δ

]
, = 0 on

[
1 − 1

2δ, 1
]
, ψ2 = 0, 0 ≤ t ≤ 1

2δ,

increasing on
[
1
2δ,

3
4δ

]
, = 1 on

[
3
4δ, 1

]
, and set our new gB = ψ1Φ

∗g∂T + ψ2gst + dt2.

Then again (B, gB) is a bg-bordism between (chcn(δ2),Φ
∗g∂T ) and (chcn, gst). We recall

that if γ is a ray in (Mn, gM ) then γλ = (γ, λ) is a ray in (M × [0, 1], gM + dt2), in

particular γδ1+δ2 ⊂ ∂Tδ2(γδ1) is a ray in (M × [0, 1], gM + dt2) and hence in ∂Tδ2(γδ1).

This can easily be proven by distinct methods. Hence Φ−1γδ1+δ2(δ2, 0, . . . , 0, τ ) is a ray in

(chcn(δ2),Φ
∗g∂T ). Let x = (δ2, 0, . . . , 0, τ1), y = (δ2, 0, . . . , 0, τ2) be ∈ (chcn(δ2),Φ

∗g∂T )

and {c(s)}0≤s≤σ be a curve in (B, gB) connecting x and y. The tangent vector ċ(s) of

ċ(s) = (xΣ(s), t(s)) decomposes as orthogonal sum ċ(s) = ẋΣ(s), ṫ(s) = ṫ(s)⊥ + ṫ(s) and

we obtain

length(c(s)) =

∫ σ2

0

|ṫ(s)⊥|gB
ds+

∫ σ2

0

|ṫ(s)|dt2ds

≥
∫ σ2

0

|ṫ(s)⊥|gB
ds =

∫ σ2

0

|ṫ(s)⊥|Ψ1Φ∗g∂T +Ψ2gst
ds. (4.20)

We consider several cases. The first case is that c(s) remains in chcn(δ2) ×
[
0, 1 − 3

4δ
]

which implies

|ṫ(s)⊥|ψ1Φ∗g∂T +ψ2gst
= |ṫ(s)⊥|Φ∗g∂T

. (4.21)

But xΣ(s), ẋΣ(s), is a curve in (chcn(δ2),Φ
∗g∂T ) and hence

length(xΣ(s)) =

∫ σ2

0

|ṫ(s)⊥|Φ∗g∂T
ds ≥ |τ1 − τ2| (4.22)

according to the ray property above. Altogether, in this case

length(c(s)) ≥ |τ1 − τ2| = d(chcn(δ2)·Φ∗g∂T )(x, y). (4.23)

The second case under consideration is the case that at s = s1, c(s) leaves chcn(δ2) ×[
0, 1− 3

4δ
]
, returns to it at s = s2 and then remains in chcn(δ2)×

[
0, 1− 3

4δ
]
. In this case

∫ σ2

0

|ṫ(s)⊥|gB
ds =

∫ s1

0

|ṫ(s)⊥|gB
ds+

∫ s2

s1

|ṫ(s)⊥|gB
ds+

∫ σ2

s2

|ṫ(s)⊥|gB
ds

≥
∫ s1

0

|ṫ(s)⊥|Φ∗g∂T
ds+

∫ σ2

s2

|ṫ(s)⊥|Φ∗g∂T
ds+

∫ s2

s1

|ṫ(s)⊥|gst
ds. (4.24)
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Let xΣ(s1) = (δ2, 0, . . . , 0, τ11), xΣ(s1) = (δ2, 0, . . . , 0, τ22). Then
∫ s1

0

|ṫ(s)⊥|Φ∗g∂T
ds ≥ |τ1 − τ11|, (4.25)

∫ σ2

s2

|ṫ(s)⊥|Φ∗g∂T
ds ≥ |τ2 − τ22|, (4.26)

∫ s2

s1

|ṫ(s)⊥|gst
ds ≥ |τ11 − τ22|, (4.27)

which immediately implies

length(c(s)) ≥
∫ δ2

0

|ṫ(s)⊥|gB
ds ≥ |τ1 − τ2|. (4.28)

The most general case would be that c(s) oscillates between (chcn(δ2),
[
0, 1− 3

4δ
]
) and its

complement. In this case we have many times inequalities of type (4.25) – (4.27), sum up,

apply the triangle inequality and end again at (4.28). Altogether for x, y ∈ Φ−1γδ1+δ2 ,

d(B,gB)(x, y) ≥ d(chcn(δ2),Φ∗g∂T )(x, y). (4.29)

If x, y ∈ γδ2 ⊂ (chcn(δ2), gst) then we replace in (4.20)–(4.28) Φ∗g∂T by gst and calculate

as above,

d(B,gB)(x, y) ≥ d(chcn(δ2),gst)(x, y). (4.30)

(GH) is established.

We shall see (chcn(δ), gst) will play the role of our zero in Ωncn (ne).

Lemma 4.29.

a) For r1 < r2 is chcn(r1) ∼
ne

chcn(r2). (4.31)

b) [
k

#
i=1

chcn(ri)]ne = [chcn(r)]ne for r > r1 + · · · + rk. (4.32)

Proof. a) is immediately clear (or follows from b)). Set for b) r = r1 + · · · + rk +

δ, place chcn(r1) ∪ · · · ∪ chcn(rk) all with parallel [0,∞[ direction into int(chcn(r)),

where int(chcn(r)) corresponds to
o

Dn
r×]0,∞[. Then CL(int(chcn(r))\ int(chcn(r1)∪· · ·∪

chcn(rk))) defines the desired ne-bordism.

Theorem 4.30. For any oriented manifold (Mn, g) of bounded geometry and a finite

number of ends, each of them nonexpanding, we have

[Mn, g]ne = [(Mn, g) ∪ (chcn(r), gst)]. (4.33)

Proof. We must construct a ne-bordism between (Mn, g) and −((Mn, g)∪(chcn(r), gst)).

Let (Bn+1, gB) = (M × [0, 1], gM + dt2), ε be an end of M , γ a ray in ε, form γδ1 =

(γ, δ1) ⊂ M × [0, 1], Tδ2(γδ1), δ2 < inf
{
δ1
2 , rinj(M)/2

}
and set Bγ = Bn+1 \ intTδ2(γδ1)

with the induced metric. From our assumption rinj > 0 it follows easily that ∂Tδ2(γδ1)

has a smooth collar Uδ(∂T ). Endow U δ
2

with the product metric g δ
2

and form on Uδ−U δ
2

the smooth bg-convex combination of g δ
2

and gB getting gBγ
. Endow ∂Tγ2(γδ1) with the

induced orientation. Then (Bγ , gBγ
) is a bg, ne-bordism between (Mn, g) and (Mn, g) ∪
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(∂Tδ2(γδ1), g∂T ). Theorem 4.28 yields

(Mn, g) ∪ (∂T, g∂T ) ∼
ne

(Mn, g) ∪ (chcn(δ2), gst).

Theorem 4.31. Ωncn (ne) ≡ Ωncn (bg, ne) is an abelian group with −[Mn, g] = [(−Mn, g)]

and 0 = [chcn(r), gst].

Our next goal is to produce independent generators of Ωncn (ne). As we shall see in the

sequel, infinite connected sums of complex projective spaces (or their cartesian products)

supply such elements. We prepare this by several assertions.

Lemma 4.32. Let (Mn
i , gi), i = 1, 2, be open, oriented of bounded geometry and with a

finite number of ends, each of them nonexpanding. Let further (Bn+1, gB) a ne-bordism

between them and K ⊂ B compact such that the ends of B coincide with the components

of B\K. Let Cε ⊂ B\K a component of B\K and x0 ∈ Cε. Then there exists a constant

C1 > 0 such that the diameter of any metric sphere

S̺(x0) = {x ∈ Cε|dB(x, x0) = ̺}
is ≤ C1. Here the diameter is with respect to the induced length metric dB of B.

Proof. We start with the case that Mi \K contains exactly one end of Mi, respectively.

Then there are geodesic rays γi ⊂Mi \K ⊂ Cε ⊂ B \K. For sufficiently large ̺, S̺(x0)

intersects γi in some points of a geodesic segment I̺,c1,i ⊂ |γi| of length at most c1,i,

where

dγi
(x, y) − c1,i ≤ dB(x, y)

for all x, y ∈ |γi|. Let xi = sup I̺,c1,i (|γi| is totally ordered), i = 1, 2. We would be

done if we could show that dB(x, x1) were uniformly bounded for all x ∈ S̺(x0) and

for all ̺ > 0. Since Cε ⊆ UR(|γi|) for some R > 0, there exists for each x ∈ S̺(x0) an

xi,γi
= xi,γi

(x) ∈ |γi| such that xi,γi
(x) ∈ |γi| (which is equivalent to x ∈ UR(xi,γi

(x))).

If dB(xi, xi,γi
(x)) were uniformly bounded then we would be done:

d(x, xi) ≤ d(xi, xi,γi
(x)) + d(xi,γi

(x), x) ≤ d(xi, xi,γi
(x)) +R.

Suppose x0 = γ1(0). If x1,γ1(x) < x1 then we obtain

dB(x0, x) ≤ dB(x1,γ1(x), x0) + dB(x1,γ1(x), x) ≤ dγ1(x1,γ1(x), x0) +R. (4.34)

̺ ≤ −dγ1(x1,γ1(x), x1) + ̺+R, (4.35)

dγ1(x1,γ1(x), x1) ≤ R, dB(x1,γ1(x), x1) ≤ R. (4.36)

In the case x1,γ1(x) > x1 we obtain

̺+ dγ1(x1, x1,γ1(x)) − c1,1 ≤ dB(x0, x) + dB(x, x1,γ1(x)) ≤ ̺+R, (4.37)

dB(x1, x1,γ1(x)) ≤ dγ1(x1, x1,γ1(x)) ≤ R+ c11. (4.38)

If x0 /∈ |γ1| then we have to add to the right hand sides in (4.36), (4.38) a constant. The

same estimates hold if we replace in (4.34)–(4.38) 1 → 2. Assume now that Mi \K splits

into a finite number of ends ei,1, . . . , ei,ri
, i = 1, 2. Then

Cε = B \K ⊂
r1⋃

1

UR(|γ1,i|), Cε = B \K ⊂
r2⋃

1

UR(|γ2,j |).
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S̺(x0) has uniformly bounded diameter if S̺(x0) ∩ UR(|γi,j |) has uniformly bounded

diameter. But the latter case we just solved above.

Now we recall the chopping theorem of Cheeger/Gromov (theorem 3.33 in section 3)

which is a consequence of Abresch’s habilitation.

Theorem 4.33. Suppose (Mn, g) open, complete with bounded sectional curvature |K| ≤
C. Given a closed set X ⊂ Mn and 0 < r ≤ 1, there is a submanifold, Un, with smooth

boundary, ∂Un, such that for some constant c(n,C)

X ⊂ U ⊂ Tr(X),

vol(∂U) ≤ c(n,C) vol(Tr(X) \X)r−1,

|II(∂U)| ≤ c(n,C)r−1.

Moreover, U can be chosen to be invariant under I(r,X) = group of isometries of

Tr(X) which fix X.

In our case, X = X̺ = B̺(x0) ⊂ Bn+1. To apply 4.33, we form (V n+1, gV ) =

(Bn+1∪Bn+1, gB∪gB) which is well defined and smooth since we assumed the Riemannian

collar gB |collar = g∂B + dt2. Now we set XV = X ∪ X and apply 4.33. Fix 0 < r ≤ 1.

Then we get UV , H̺,V,r = ∂UV .

XV ⊂ UV ⊂ Tr(XV )(= {x ∈ V |dV (x,XV ) ≤ r}), (4.39)

vol(H̺,V,r) = vol(∂UV ) ≤ c(n+ 1, C) vol(Tr(XV ) \XV )r−1 (4.40)

|II(∂UV )| ≤ c(n+ 1, C)r−1 (4.41)

and UV is invariant under I(r,XV ).

The main idea of the proof consists in considering the distance function F = d(·, XV )

where for points ∈ V \ XV , d(·, XV ) = d(·, X̺) = d(·, S̺). Then one applies Yomdin’s

theorem (cf. [Yomdin]) to F in Abresch’s smoothed out metric. All constructions are

invariant under the metric involution and this involution remains an isometry also with

respect to Abresch’s smoothed out metric.

Restricting the obtained UV , ∂UV to B, we obtain the desired result forX = B̺(x0) ⊂
B. Restricting for ̺ large to Cε and using the construction of U as preimage under the

smoothed F , we obtain in Cε a hypersurface H = H̺ which decomposes Cε into a

compact and noncompact part Cε,c and Cε,nc, respectively. Under our assumptions (∂B

is totally geodesic) it is possible to arrange that Hn intersects ∂B transversally under an

angle > δ and that there exists a constant C1 independent of ̺ such that

|II(∂Hn
̺ )| ≤ C1. (4.42)

We infer from (4.40), bounded curvature and lemma 4.32 that for fixed 0 < r ≤ 1 there

is a constant C2 > 0 such that

vol(Hn
̺ ) ≤ C2 (4.43)

for all ̺. Moreover, Hn
̺ has bounded geometry (at least of order 0) according to (4.41)

and to the bounded geometry of B.

Now we are able to present independent generators of Ωnc4k(ne). Let P 2k(C) be the

complex projective space with its standard orientation and with its Fubini–Study metric,
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fix two points z1, z2 and form by means of fixed spheres about z1, z2 the infinite connected

sum

M4k = (M4k, g) =
∞

#
1
P 2k(C), (4.44)

always with the same glueing metric. Then (M4k, g) is oriented, has bounded geometry,

one end which is nonexpanding.

Theorem 4.34. M4k = #∞
1 P

2k(C) defines a non zero bordism class in Ωnc4k(ne).

Proof. Suppose [M4k] = 0. Then there exists a bordism (Bn+1, gB), ∂B = M4k ∪
− chc4k(r), gB |Uδ(∂B) = g∂B + dt2, UR(M4k) ⊇ B, UR(chc4k(r)) ⊇ B and dB ≥ dM − c,

dB ≥ dchc − c. We choose z0 ∈ P 2k
1 (C), K = ∅ and obtain for any ̺ > 0 a com-

pact hypersurface H4k
̺ ⊂ B = B \ Φ = Cε which decomposes B into a compact and

noncompact part Bc and Bnc, respectively, and which satisfies (4.42), (4.43) and has

bounded geometry at least of order 0 with constants independent of ̺. Then ∂B4k+1
c =

(∂B4k+1
c ∩M4k)∪H̺ ∪ (∂B4k+1

c ∩ chc4k). Here σ(∂B4k+1
c ∩ chc4k) = 0. σ(∂B4k+1

c ) must

be zero since it is 0–bordant (if one wants, after smoothing out). Hence

0 = σ(∂B4k+1
c ∩M4k) − σ(H4k

̺ ). (4.45)

But

σ(H4k
̺ ) =

∫

H4k
̺

L+ η(∂H4k
̺ ) +

∫

∂H4k
̺

expression(II(∂H4k
̺ )). (4.46)

The first expression on the r.h.s. of (4.46) is bounded by a bound independent of ̺

according to (4.43) and (B0) for H4k
̺ . The same holds for the second expression according

to

|η(∂H4k
̺ )| ≤ C3 vol(∂H4k

̺ )

and for the third expression according to (4.42), (4.43). On the other hand, choosing ̺

sufficiently large, σ(∂B4k+1∩M4k) can be made arbitrary large. This contradicts (4.45).

Looking at the proof of theorem 4.34, we immediately infer

Theorem 4.35. Let (M4k, g) be open, oriented, of bounded geometry and with a finite

number of ends, each of them nonexpanding. If for any exhaustion M1 ⊂ M2 ⊂ · · · by

compact submanifolds,
⋃
Mi = M , we have

lim
i→∞

σ(M4k
i ) = ∞

then [M4k, g] 6= 0 in Ωnc4k(ne).

Corollary 4.36. #∞
1 P

2k(C), or, more generally, P 2i1(C)×· · ·×P 2ir1 #P 2j1(C)×· · ·×
P 2jr2 # · · · , i1 + · · · ir1 = k, j1 + · · ·+ jr2 = k, . . . are not torsion elements in Ωnc4k(ne).

A special case of theorem 4.35 is given by manifolds M4k of the type

M4k =
∞

#
1
M4k
i ,

vol(M4k
i ) ≤ C1, |K(gi)| ≤ C2, rinj(gi) ≥ C3 > 0, σ(M4k

i ) ≥ 0 for i ≥ i0 and > 0

for infinitely many i ≥ i0. Then, in particular, H2k,2(M
4k) is infinite-dimensional and

[M4k, g] 6= 0 in Ωnc4k(ne), i.e. adding a finite number of closed manifolds with negative
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signature and an infinite number of closed manifolds with zero signature (such that the

bg, ne-end struture remains preserved) does not transform a nonzero element into zero

in Ωnc4k(ne). A finer characterization of nonzero elements in Ωnc4k(ne) will be presented

elsewhere. Moreover there are very interesting specializations of the theory developed

until now and generalizations, e.g. the restriction to manifolds with warped product

structure at infinity or with prescribed volume growth of the ends etc. This will be the

topic of another investigation.

5. The Novikov conjecture for open manifolds. As is very well known, the Novikov

conjecture for closed manifolds stimulated many outstanding topologists to prove this and

on this road deep results in C∗ algebraic topology, C∗ K-theory and geometric group

theory have been achieved. Hence, the Novikov conjecture has not only its own meaning

but even more meaning as a stimulating question.

If Mn is open and we consider the classifying diagram

M̃

↓
M →

f
Bπ

and a ∈ H∗(Bπ) then

〈L(M) · f∗a, [M ]〉
will not be defined in general. For this reason, Gromov proposes to consider

σa(M) = 〈L(M) · f∗a, [M ]〉
for a ∈ H∗

c (Bπ). Then the NC for open manifolds would mean the ”invariance of σa(M)

under proper homotopy equivalences”. Probably much more appropriate would be an

approach in the sense of our ”open category”, i.e.

1) everything is uniformly metrized, we have (I), (Bk), uniform triangulations etc.,

2) maps are bounded and uniformly proper, in particular this holds for homotopy equiv-

alences,

3) one works within functional algebraic topology.

Hence one should consider

〈L(M) · f∗a, [M ]〉 with L(M) ∈ Lp, f
∗a ∈ Lq.

Of particular meaning would be the cases

L(M) ∈ bH∗(M) and a ∈ H∗,1(Bπ) (5.1)

or

L(M) ∈ H∗,2(M) and a ∈ H∗,2(Bπ), (5.2)

respectively. If we suppose (M, g) satisfying (B0) then automatically L(M) ∈ bH∗(M).

(B0) does not restrict to topological type since any open manifold admits a metric g

satisfying even (B∞) and (I).

In the second case one should additionally assume

inf σe(∆∗(M, g)|(ker∆∗)⊥) > 0, (5.3)
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i.e. there is a spectral gap of ∆∗ above zero. In this case H∗,2 = H∗,2 = L2-harmonic

forms, C∗,2, C∗,2 are L2-complexes and form an L2-Poincaré complex. Every L2-(co-)ho-

mology class can be represented by an L2-harmonic (co-)cycle. Bordism of L2-Poincaré

complexes can be defined easily.

We proved in [8] that (5.3) is invariant under bounded uniformly proper homotopy

equivalences. W.l.o.g., classifying maps can be assumed to be bounded and uniformly

proper,

Mn → Bπ = Mn ∪ cells.

We present now 3 versions of NC (for open manifolds).

First version. In the class of open oriented manifolds (Mn, g), g ∈ b,2M2,2(B0, 2, f) with

inf σe(∆∗(g)|(ker∆∗)⊥) > 0 is

〈L(M)f∗a, [M ]〉, a ∈ H∗,2(Bπ), f bounded and

uniformly proper classifying map, invariant under (NCO1)

bounded and uniformly proper homotopy equivalences.

Criticism. This version should hold only in very restricted cases. The starting point in

the compact case is the equality

σ(M4k) =

∫
Lk(M) (5.4)

where the l.h.s. is a priori a homotopy invariant and the r.h.s. is a certain characteristic

number. The L2-version of (5.4) is already wrong in simple open cases. Let (M4k, g) be

an open manifold with cylindrical ends, i.e. (M4k, g) = (M ′4k ∪ ∂M ′4k × [0,∞[, g) with

g|∂M ′4k×[0,∞[
∼= g|∂M ′ + dt2. Then it is well known that

σ(M4k) = σL2
(M4k) =

∫
Lk(M) − η(∂M ′4k),

i.e. already the starting point which guarantees the invariance of L(M) in the simplest

case is wrong. Hence the first version of NC for open manifolds makes sense only for those

classes of manifolds for which

σL2
(Mn) =

∫
L(M)

in the case n = 4k.

Second version of NC, relative version. Fix (Mn, g) and suppose that M1,M2 ∈
gen bcompL,iso,rel(M, g),

M1 \K1
∼= M \K, M2 \K2

∼= M \K
with a Riemannian collar at ∂K1, ∂K2, ∂K. Then we define

σ(Mi,M) :=

∫

Ki

L(Mi) −
∫

K

L(M),

σ(M1,M2) := σ(M1,M) − σ(M2,M) =

∫

K1

L(M1) −
∫

K2

L(M2) = σ(K1 ∪K2)

=

∫

K1

L(M1) − η(∂K1) −
( ∫

K2

L(M2) − η(∂K2))

)
= σ(K1) − σ(K2).
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The relative NC becomes ∫

K1

L(M1)f
∗
1 a =

∫

K2

L(M2)f
∗
2 a (NCO2)

if there exist Φ12 : M1 → M2, Φ21 : M2 → M1, bounded, uniformly proper, Φ21Φ12 ∼
idM1, Φ12Φ21 ∼ idM2 bounded and u.p. and Φ21Φ12 = id outside K̃1 ⊂M1, Φ12Φ21 = id

outside K̃2 ⊂M2 and fi : Mi → Bπ are bounded and u.p. classifying maps, a ∈ H∗(Bπ).

This relative version has the advantage that we require no conditions for (Mn, g) and

NC splits to NC for the generalized Lipschitz components.

Third version of NC. Consider (Mn, g) open, oriented with (B0), rinj > 0, embeddings

N4k →֒Mn×Rj with trivial normal bundle and bounded second fundamental form such

that PD[N ] = f∗a, a ∈ Hn−4k,1(Bπ), f : Mn → Bπ bounded and uniformly proper

classifying map and such that σL2
(N4k) is defined (i.e. ∼ H2k,2(N) <∞).

Then the number σa(M) := σL2
(N4k) is invariant under

bounded and uniformly proper homotopy invariants.
(NC03)

How to attack these conjectures will be the content of a forthcoming investigation.
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[21] A. Polombo, Nombres caractéristiques d’une variété Riemannienne de dimension 4 ,

J. Diff. Geom. 13 (1978), 145–162.

[22] S. Rosenberg, Gauß–Bonnet theorems for noncompact surfaces, Proc. AMS 86 (1982),

184–185.

[23] S. Rosenberg, On the Gauß–Bonnet theorem for complete manifolds, Trans. AMS 287

(1985), 745–753.

[24] L. Vanhecke, Geometry in Normal and Tubular Neighborhoods, Dep. Math., Kath. Univ.

Leuven.


