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Abstract. The Kähler quotient of a complex reductive Lie group relative to the conjugation

action carries a complex algebraic stratified Kähler structure which reflects the geometry of the

group. For the group SL(n, C), we interpret the resulting singular Poisson-Kähler geometry of

the quotient in terms of complex discriminant varieties and variants thereof.

1. Adjoint quotients. Let K be a compact Lie group, let KC be its complexification,

and let k be the Lie algebra of K. The polar map from K × k to KC is given by the

assignment to (x, Y ) ∈ K × k of x exp(iY ) ∈ KC, and this map is well known to be a

K-bi-invariant diffeomorphism. We endow the Lie algebra k with an invariant (positive

definite) inner product; by means of this inner product, we identify k with its dual k
∗

and, furthermore, the total space TK of the tangent bundle of K with the total space

T∗K of the cotangent bundle of K. The composite

TK → K × k → KC

of the inverse TK → K × k of left translation with the polar map from K × k to KC is a
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diffeomorphism, and the resulting complex structure on T∗K ∼= TK combines with the

cotangent bundle symplectic structure to a Kähler structure. The action of KC on itself

by conjugation is holomorphic, and the restriction of the action to K is Hamiltonian,

with momentum mapping from KC to k
∗ which, viewed as a map on K × k ∼= T∗K and

with values in k, amounts to the map

µ : K × k → k, µ(x, Y ) = AdxY − Y.

By Proposition 4.2 of [12], the zero momentum reduced space

(T∗K)0 ∼= µ−1(0)
/

K

inherits a stratified Kähler structure which is actually complex algebraic in a sense which

will be explained below. Here the complex algebraic structure is that of the complex

algebraic categorical quotient KC
//

KC relative to conjugation, and this quotient, in

turn, may be described as the ordinary orbit space T C
/

W of the complexification T C of

a maximal torus T of K, relative to the action of the Weyl group W ; in the literature,

such an orbit space is referred to as an adjoint quotient . Certain aspects of the stratified

Kähler structure on such an adjoint quotient have been explored in [16]. The purpose

of the present paper is to complement the results in [16]: For the special case where

K = SU(n) (n ≥ 2) we shall elucidate the complex algebraic stratified Kähler structure

in terms of complex discriminant varieties and variants thereof. We will also interpret the

resulting stratified Kähler geometry on the adjoint quotient for the special case where

K = SU(2) in terms of the reduced phase space of a spherical pendulum constrained to

move with angular momentum zero. In physics, a space of the kind (T∗K)0 is the building

block for certain lattice gauge theories. For intelligibility we will include an exposition of

the notion of stratified Kähler space.

2. Stratified Kähler spaces. To develop Kähler quantization in the presence of sin-

gularities, we introduced certain “Kähler spaces with singularities” [12] which we refer

to as stratified Kähler spaces . In [13] we have shown that ordinary Kähler quantization

can indeed be extended to a quantization scheme over stratified Kähler spaces . A special

case of a stratified Kähler space is a complex analytic stratified Kähler space and, for the

present paper, this notion suffices; we will now describe it.

Let N be a stratified space, the strata being ordinary smooth manifolds. A stratified

symplectic structure on N consists of a family of symplectic structures, one on each

stratum, together with a Poisson algebra (C∞N, { · , · }) of continuous functions on N ,

and these are required to satisfy the following compatibility requirements:

(1) For each stratum, the restriction map from C∞N to the algebra of continuous func-

tions on that stratum goes into the algebra of ordinary smooth functions on the stratum.

(2) For each stratum, the restriction map from C∞N to the algebra of smooth functions

on that stratum is a morphism of Poisson algebras, where the stratum is endowed with

its ordinary smooth symplectic Poisson structure.

A stratified symplectic space is defined to be a stratified space together with a stratified

symplectic structure. Given a stratified symplectic space (N, C∞N, { · , · }), the functions

in the structure algebra C∞N are not necessarily ordinary smooth functions. A stratified
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symplectic structure on a space is much more than just a space stratified into symplectic

manifolds: The globally defined Poisson algebra encapsulates the mutual positions of

the symplectic structures on the strata; in other words, it encodes the behaviour of the

symplectic structures across the strata.

Recall that a complex analytic space (in the sense of Grauert) is a topological space X,

together with a sheaf of rings OX , having the following property: The space X can be

covered by open sets Y , each of which embeds into the open polydisc

U = {z = (z1, . . . , zn); |z| < 1}
in some Cn (the dimension n may vary as U varies) as the zero set of a finite system of

holomorphic functions f1, . . . , fq defined on U , such that the restriction OY of the sheaf

OX to Y is isomorphic as a sheaf to the quotient sheaf OU

/

(f1, . . . , fq); here OU is the

sheaf of germs of holomorphic functions on U . The sheaf OX is then referred to as the

sheaf of holomorphic functions on X. See [4] for a development of the general theory of

complex analytic spaces.

Definition 2.1. A complex analytic stratified Kähler structure on the stratified space N

consists of

(i) a stratified symplectic structure (C∞N, { · , · }) having the given stratification of N

as its underlying stratification, together with

(ii) a complex analytic structure on N which is compatible with the stratified symplectic

structure.

Here, the complex analytic structure on N being compatible with the stratified sym-

plectic structure means that the following requirements are met:

(iii) Each stratum is a complex analytic subspace, and the complex analytic structure,

restricted to the stratum, turns that stratum into an ordinary complex manifold; in par-

ticular, the stratification of N is a refinement of the complex analytic stratification.

(iv) For each point q of N and each holomorphic function f defined on an open neigh-

borhood U of q, there is an open neighborhood V of q with V ⊂ U such that, on V , f is

the restriction of a function in C∞(N, C) = C∞(N) ⊗ C.

(v) On each stratum, the symplectic structure combines with the complex analytic struc-

ture to a Kähler structure.

A stratified space N , together with a complex analytic stratified Kähler structure,

will be said to be a complex analytic stratified Kähler space.

A simple example of a complex analytic stratified Kähler space arises as follows: In

R3 with coordinates x, y, r, consider the semicone N given by the equation x2 + y2 = r2

and the inequality r ≥ 0. We refer to this semicone as the exotic plane with a single

vertex. Consider the algebra C∞N of continuous functions on N which are restrictions

of ordinary smooth functions on the ambient copy of R3. Thus the functions in C∞N

arise from ordinary smooth functions in the variables x, y, r. The Poisson bracket { · , · }
on C∞(R3) defined by

{x, y} = 2r, {x, r} = 2y, {y, r} = −2x

descends to a Poisson bracket on C∞N , which we denote by { · , · } as well. Furthermore,
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endow N with the complex structure having z = x+ iy as holomorphic coordinate. Then

the Poisson and complex analytic structures combine to a complex analytic stratified

Kähler structure. Here the radius function r is not an ordinary smooth function of the

variables x and y. Thus the stratified symplectic structure cannot be given in terms of

ordinary smooth functions of the variables x and y. The Poisson bracket is defined at

the vertex as well, away from the vertex the Poisson structure is an ordinary smooth

symplectic Poisson structure, and the complex structure does not “see” the vertex. Thus

the vertex is a singular point for the Poisson structure whereas it is not a singular point for

the complex analytic structure. This semicone N is the classical reduced phase space of a

single particle moving in ordinary affine space of dimension ≥ 2 with angular momentum

zero [12], [17].

This example generalizes to an entire class of examples: The closure of a holomorphic

nilpotent orbit (in a hermitian Lie algebra) inherits a complex analytic stratified Kähler

structure [12]. Projectivization of the closure of a holomorphic nilpotent orbit yields what

we refer to as an exotic projective variety . In physics, spaces of this kind arise as reduced

classical phase spaces for systems of harmonic oscillators with zero angular momentum

and constant energy. More details may be found in [12]–[14], [17].

Another class of examples arises from moduli spaces of semistable holomorphic vector

bundles or, more generally, from moduli spaces of semistable principal bundles on a

non-singular complex projective curve. See [9]–[12] and the literature there.

Any ordinary Kähler manifold is plainly a complex analytic stratified Kähler space.

More generally, Kähler reduction, applied to an ordinary Kähler manifold, yields a com-

plex analytic stratified Kähler structure on the reduced space. See [12] for details. Thus

examples of stratified Kähler spaces abound. In the rest of the paper we will explore

a particular class of examples which are actually algebraic in a sense which we now

explain:

Definition 2.2. Given a stratified space N , a complex algebraic stratified Kähler struc-

ture on N consists of

(i) a real semialgebraic structure on N such that each stratum inherits the structure of

a real algebraic manifold;

(ii) a real algebraic Poisson structure { · , · } on (the real structure sheaf of) N , together

with a real algebraic symplectic structure on each stratum, such that the restriction map

from (the sheaf of germs of real algebraic functions on) N to (the sheaf of germs of real

algebraic functions on) each stratum is a Poisson map;

(iii) a complex algebraic structure on N which is compatible with the other structure.

Given an affine real semialgebraic space N , we write its real coordinate ring as R[N ].

Likewise we write the complex coordinate ring of an affine complex algebraic variety

N as C[N ]. In this paper, all real semialgebraic structures and all complex algebraic

structures will be affine, and we shall not mention sheaves any more.

At the risk of making a mountain out of a molehill we note that, in the definition,

when the real structure and the complex structure on N are both affine (beware: this

does not mean that C[N ] is the complexification of R[N ]), the complex algebraic struc-
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ture on N being compatible with the other structure amounts to the following require-

ments:

(iv) Each stratum of N is a complex algebraic subspace of N , and the complex alge-

braic structure, restricted to the stratum, turns that stratum into an ordinary complex

algebraic manifold; in particular, the stratification of N is a refinement of the complex

algebraic stratification.

(v) For each point q of N and each complex algebraic function f defined on an open

neighborhood U of q, there is an open neighborhood V of q with V ⊂ U such that, on

V , f is the restriction of a function in R[N ]C = R[N ] ⊗ C.

(vi) On each stratum, the symplectic structure combines with the complex algebraic

structure to a Kähler structure.

A complex algebraic stratified Kähler space is, then, a stratified space N together with

a complex algebraic stratified Kähler structure; the Poisson algebra will then be referred

to as an algebraic stratified symplectic Poisson algebra (on N).

3. Complex algebraic stratified Kähler structures on adjoint quotients. Return

to the situation at the beginning of the paper. We begin by explaining the Kähler structure

on T∗K. Endow K with the bi-invariant Riemannian metric induced by the invariant

inner product on the Lie algebra k. Using this metric, we identify k with its dual k
∗

and the total space of the tangent bundle TK with the total space of the cotangent

bundle T∗K. Thus the composite

T∗K → K × k → KC

of the inverse of left trivialization with the polar decomposition map, which assigns

x · exp(iY ) ∈ KC to (x, Y ) ∈ K × k, identifies T∗K with KC in a (K × K)-equivariant

fashion. Then the induced complex structure on T∗K combines with the symplectic

structure to a (positive) Kähler structure. Indeed, the real analytic function

κ : KC → R, κ(x · exp(iY )) = |Y |2, (x, Y ) ∈ K × k,

on KC which is twice the kinetic energy associated with the Riemannian metric, is a

(globally defined) Kähler potential ; in other words, the function κ is strictly plurisubhar-

monic and (the negative of the imaginary part of) its Levi form yields (what corresponds

to) the cotangent bundle symplectic structure, that is, the cotangent bundle symplectic

structure on T∗K is given by

i∂∂κ = −dϑ

where ϑ is the tautological 1-form on T∗K. An explicit calculation which establishes this

fact may be found in [6] (but presumably it is a folk-lore observation). We note that,

given Y0 ∈ k, the assignment to (x, Y ) ∈ K × k of |Y − Y0|2 yields a Kähler potential as

well which, in turn, determines the same Kähler structure as κ. There is now a literature

on related questions [5], [20], [27].

By Proposition 4.2 in [12], the zero momentum reduced space (T∗K)0 inherits a com-

plex analytic stratified Kähler structure which is actually a complex algebraic stratified

Kähler structure. It is straightforward to describe this structure directly, and we will
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now do so: The underlying complex algebraic structure is that of the categorical quotient

KC
//

KC in the category of complex algebraic varieties, cf. e. g. [25] (§3) for details on the

construction of a categorical quotient. Suffice it to mention at this stage that KC
//

KC

is the complex affine algebraic variety whose coordinate ring is the algebra C[KC]K
C

of

KC-invariants (relative to the conjugation action) of the complex affine coordinate ring

C[KC] of KC, where KC is viewed as a (non-singular) complex affine variety. In view of

results of Luna [22], [23], the quotient in the category of algebraic varieties is the cate-

gorical quotient in the category of analytic varieties as well; for these matters see also

[25] (Theorem 3.6).

Under the present circumstances, the categorical quotient KC
//

KC has a very simple

description: Choose a maximal torus T in K and let W be the corresponding Weyl group;

then T C is a maximal torus in KC, and the (algebraic) adjoint quotient χ : KC → T C
/

W ,

cf. [18] (3.4) and [26] (3.2) for this terminology, realizes the categorical quotient. By an

abuse of language, we will also refer to the target T C
/

W of χ as adjoint quotient or as the

adjoint quotient of KC. In concrete terms, the map χ admits the following description:

The closure of the conjugacy class of x ∈ KC contains a unique semisimple (equivalently:

closed) conjugacy class Cx (say), and semisimple conjugacy classes are parametrized by

T C
/

W ; the image of x ∈ KC under χ is simply the parameter value in T C
/

W of the

semisimple conjugacy class Cx. Since W is a finite group, as a complex algebraic space,

the quotient T C
/

W is simply the space of W -orbits in T C.

The choice of maximal torus T in K also provides a direct description of the algebraic

stratified symplectic Poisson algebra on the symplectic quotient (T∗K)0 = µ−1(0)
/

K.

Indeed, via the identification (1.1) for K = T , the real space which underlies the (com-

plex algebraic) orbit space T C
/

W for the action of the Weyl group W on T C amounts

simply to the orbit space T∗T
/

W , relative to the induced action of the Weyl group W on

T∗T , and the orbit space T∗T
/

W inherits a stratified symplectic structure in an obvious

fashion: Strata are the W -orbits, the closures of the strata are affine varieties, in the real

category as well as in the complex category, indeed, these closures inherit complex alge-

braic stratified Kähler structures, and the requisite algebraic stratified symplectic Poisson

algebra (R[T∗T
/

W ], { · , · }) is simply the algebra R[T∗T ]W of W -invariant functions in

R[T∗T ], endowed with the Poisson bracket { · , · } coming from the ordinary (algebraic)

symplectic Poisson bracket on T∗T . The choice of invariant inner product on k determines

an injection T∗T → T∗K which induces a homeomorphism from T∗T
/

W onto (T∗K)0
compatible with all the structure.

4. The space of normalized degree n polynomials. In the next section we will

work out defining equations for the closures of the strata, viewed as complex algebraic

varieties, of the adjoint quotient of SL(n, C). To this end, we need some preparations.

The space An
coef of normalized degree n polynomials

(4.1) P (z) = zn + a1z
n−1 + · · · + an−1z + an

with complex coefficients aj (1 ≤ j ≤ n) is an n-dimensional complex affine space in an

obvious way; it may be viewed as the n’th symmetric power Sn[C] of a copy C of the

complex numbers. The space An
coef is stratified according to the multiplicities of the roots
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of the polynomials where strata correspond to partitions of n. We define a partition of n

of length r to be an r-tuple

(4.2) ν = (n1, n2, . . . , nr)

of positive natural numbers nj (1 ≤ j ≤ r) such that
∑

nj = n, normalized so that

n1 ≥ n2 ≥ . . . ≥ nr.

Given the partition ν of n of length r, of the kind (4.2), as a complex manifold, the

stratum corresponding to the partition ν is the complex r-dimensional manifold Do
ν of

polynomials

P (z) =

r
∏

j=1

(z − uj)
nj

with all the roots uj being pairwise distinct. In particular, the top stratum of the space

An
coef

∼= Sn[C] is the space of all polynomials having only single roots and, given a length

r partition ν of n of the kind (4.2), as a complex manifold, Do
ν comes down to the top

stratum of Sr[C], that is, to the space of normalized degree r polynomials having only

single roots. For each partition ν of n of the kind (4.2), let Dν be the closure of Do
ν in

An
coef ; this closure is an affine variety. In particular, at the bottom, we have D(n) = Do

(n).

Given the partition ν = (n1, n2, . . . , nr) of n, consider the partition of n which arises from

ν by the operation of picking a pair (nj , nk), taking the sum of nj and nk, and reordering

the terms (if need be); iterating this operation we obtain a partial ordering among the

partitions of n, which we write as ν′ � ν, where ν′ arises from ν by a finite sequence of

operations of the kind just described, the empty sequence being admitted, so that ν � ν.

When ν′ � ν and ν′ 6= ν, we write ν′ ≺ ν. The stratum Do
ν′ lies in the closure Dν of Do

ν

if and only if ν′ ≺ ν; thus, for any partition ν of n,

Dν =
⋃

ν′�ν

Do
ν′ .

It is manifest that An
coef is the disjoint union of the Do

ν ’s as ν ranges over partitions of n,

and this decomposition is a stratification.

The stratification of An
coef can be understood in terms of discriminant varieties. We

will now explain this briefly; cf. [19] and the literature there for more details.

Let Σ1 be the non-singular hypersurface in the (n + 1)-dimensional complex affine

space C × An
coef with coordinates (z, a1, . . . , an−1, an) given by the equation

(4.3) zn + a1z
n−1 + · · · + an−1z + an = 0.

Then an is a polynomial function of the other coordinates z, a1, . . . , an−1 whence the

hypersurface Σ1 admits the parametrization

(4.4) h : Cn → C × An
coef , (z, a1, . . . , an−1) 7→ (z, a1, . . . , an−1, an),

and this parametrization is non-singular (smooth).

Given the normalized complex polynomial P (z) of the kind (4.1), for 1 ≤ k < n,

consider the successive derivatives

P (k)(z) = k!zn−k + (k − 1)!a1z
n−k−1 + · · · + an−k;
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accordingly, let Σk+1 ⊆ Σ1 be the affine complex variety given by the equations

(4.5) P (z) = 0, P ′(z) = 0, . . . , P (k)(z) = 0;

the variety Σk+1 is actually non-singular. Let

p : C × An
coef → An

coef

be the projection to the second factor and, for 1 ≤ k ≤ n, let Dk = p(Σk) ⊆ An
coef ,

so that, in particular, D1 = An
coef ; we refer to Dk as the k’th discriminant variety. We

shall see shortly that each Dk is indeed a complex algebraic variety. For 1 ≤ k ≤ n − 1,

the restriction of the projection p to Σk \ Σk+1 is (n − k + 1) to 1, the restriction of

the projection p from Σk to Dk branches over Dk+1 ⊆ Dk, and the restriction of the

projection p to Σn is injective and identifies Σn with Dn. For 1 ≤ k ≤ n, Dk is the space

of polynomials having at least one root with multiplicity at least equal to k. In particular,

Dn is a smooth curve, parametrized by

w 7→
(

−nw,

(

n

2

)

w2,−
(

n

3

)

w3, . . . , (−1)nwn

)

, w ∈ C.

By construction, the Dk’s form an ascending sequence

Dn ⊆ Dn−1 ⊆ . . . ⊆ D1 = An
coef .

Equations for the Dk’s can be obtained by the following classical procedure: Given

the polynomial

(4.6) P (z) = a0z
n + a1z

n−1 + · · · + an−1z + an, aj ∈ C (1 ≤ j ≤ n),

with roots z1, . . . , zn, the discriminant

Dn(P ) = Dn(a0, a1, . . . , an)

of this polynomial is defined to be the expression

(4.7) Dn(a0, a1, . . . , an) = a2n−2
0

∏

j<k

(zj − zk)2,

written as a polynomial in the coefficients a0, a1, . . . , an.

To reproduce an expression for the discriminant Dn(a0, a1, . . . , an) of a polynomial of

the kind (4.6), recall from e. g. [28] that, given two polynomials

f(x) = a0x
n + a1x

n−1 + . . . + an,(4.8)

h(x) = b0x
m + b1x

m−1 + . . . + bm,(4.9)

the resultant R(f, h) of f and h, sometimes referred to as the Sylvester resultant , may

be computed as the ((m + n) × (m + n))-determinant
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(4.10) R(f, h) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 a2 · · · an 0 0 · · · 0 0

0 a0 a1 · · · an−1 an 0 · · · 0 0

· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
0 0 0 0 a0 a1 a2 · · · an−1 an

b0 b1 b2 · · · · bm 0 0 · · · 0

0 b0 b1 · · · · bm−1 bm 0 · · · 0

· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
0 0 0 0 b0 b1 b2 · · · bm−1 bm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

This determinant has m rows of the kind

[0, . . . , 0, a0, a1, a2, . . . , an, 0, . . . , 0]

and n rows of the kind

[0, . . . , 0, b0, b1, b2, . . . , bm, 0, . . . , 0]

We quote the following classical facts [28].

Proposition 4.1. When a0 6= 0 6= b0, the polynomials f and h have a common linear

factor if and only if R(f, h) = 0.

Proposition 4.2. The discriminant Dn(a0, . . . , an) of the polynomial

f(x) = a0x
n + a1x

n−1 + . . . + an

satisfies the identity

(4.11) a0D = ±R(f, f ′).

Now, by construction, for 1 ≤ k < n, the discriminant variety Dk+1 ⊆ D1 is given by

the equations

(4.12)

Dn(1, a1, . . . , an) = 0,

Dn−1(n, (n − 1)a1, . . . , an−1) = 0,

. . .

Dn−(k−1)

(

n!

(n − k)!
,
(n − 1)!

(n − k)!
a1, . . . , an−(k−1)

)

= 0;

the dimension of Dk+1 equals n − k.

For illustration, we give explicit expressions for the discriminants for 2 ≤ n ≤ 4:

When n = 2, the discriminant D2(a0, a1, a2) of a0x
2 + a1x + a2 comes down to the

familiar expression

(4.13) D2(a0, a1, a2) = a2
1 − 4a0a2;

and when n = 3, the discriminant D3(a0, a1, a2, a3) of the cubic polynomial

a0x
3 + a1x

2 + a2x + a3
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reads

(4.14) D3(a0, a1, a2, a3) = a2
1a

2
2 − 4a0a

3
2 − 4a3

1a3 − 27a2
0a

2
3 + 18a0a1a2a3.

Likewise, the discriminant D4 = D4(a0, a1, a2, a3, a4) of the quartic polynomial

a0x
4 + a1x

3 + a2x
2 + a3x + a4

has the form

D4 = (a2
1a

2
2a

2
3 − 4a3

1a
3
3 − 4a0a

3
2a

2
3 + 18a0a1a2a

3
3 − 27a2

0a
4
3 + 256a3

0a
3
4)

+ (−4a2
1a

3
2 + 18a3

1a2a3 + 16a0a
4
2 − 80a0a1a

2
2a3 − 6a0a

2
1a

2
3 + 144a2

0a2a
2
3)a4

+ (−27a4
1 + 144a0a

2
1a2 − 128a2

0a
2
2 − 192a2

0a1a3)a
2
4.

For 1 ≤ k ≤ n, when ν is the partition (k, 1, . . . , 1) of n of length k− r + 1, Dν equals

Dk; moreover, the closure Dk of Do
ν then contains the Do

ν ’s for ν = (n1, n2, . . . , ns} with

n1 ≥ k. Given Dν with ν = {k, n2, . . . , nr}, defining equations for Dν may be obtained

by adding suitable equations to those defining Dk.

In low dimensions, these considerations yield the following picture:

n = 2: In this case, the variety A2
coef = D1 is a 2-dimensional complex affine space, which

decomposes into two strata according to the two partitions (1, 1) and (2) of the natural

number n = 2. In the coordinates (a1, a2) on A2
coef , the variety D2 is the non-singular

curve of degree 2 given by the equation

(4.15) D2(1, a1, a2) = a2
1 − 4a2 = 0.

n = 3: Now the variety A3
coef = D1 is a 3-dimensional complex affine space, which

decomposes into three strata according to the three partitions (1, 1, 1), (2, 1), (3) of n = 3.

Furthermore, in the coordinates (a1, a2, a3) on A3
coef , the surface D2 = D(2,1) in A3

coef is

given by the equation

(4.16) D3(1, a1, a2, a3) = 0,

and this surface decomposes as

D2 = Do
(2,1) ∪ D3.

Moreover, in the chosen coordinates, D3 is the curve in A3
coef given by the equations

(4.16) and

(4.17) D2(3, 2a1, a2) = 0,

and this curve is non-singular. The surface D2 = D(2,1) in A3
coef is singular along the

curve D3. Indeed, a calculation shows that the three partial derivatives of the defining

equation (4.16) of D2 vanish identically along D3. A closer look reveals that D2 has a

“fold” along D3 but is topologically flat in A3
coef ; cf. Corollary 5.1 of [19] for details.

n = 4: In this case, by construction, A4
coef = D1 is a 4-dimensional complex affine space;

this space decomposes into five strata according to the five partitions (1, 1, 1, 1), (2, 1, 1),

(2, 2), (3, 1), (4) of n = 4. Furthermore, in the coordinates (a1, a2, a3, a4) on A4
coef , the

hypersurface D2 = D(2,1,1) in D1 is given by the equation

(4.18) D4(1, a1, a2, a3, a4) = 0,
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and this hypersurface decomposes as

D(2,1,1) = Do
(2,1,1) ∪ Do

(2,2) ∪ Do
(3,1) ∪ D4.

Likewise, in the chosen coordinates, the surface D3 = D(3,1) in A4
coef is given by the

equations (4.18) and

(4.19) D3(4, 3a1, 2a2, a3) = 0,

and this surface decomposes as

D(3,1) = Do
(3,1) ∪ D4.

Moreover, D4 is a non-singular curve of degree 4 in A4
coef which, in the above coordinates,

is given by the equations (4.18), (4.19), and

(4.20) D2(12, 6a1, 2a2) = 0.

The hypersurface D2 = D(2,1,1) in A4
coef is the space of normalized complex degree 4

polynomials with at least one multiple root, and the singular locus of this hypersurface

D(2,1,1) is the union

D3 ∪ D(2,2) = Do
(3,1) ∪ Do

(2,2) ∪ D(4).

The surface D3 = D(3,1) in A4
coef is the space of normalized complex degree 4 polynomials

with a root of multiplicity at least 3, and the singular locus of this surface D3 is the curve

D4. See Example 6.1 in [19] for details. The surface

D(2,2) = Do
(2,2) ∪ D(4)

in A4
coef is the space of normalized complex degree 4 polynomials having two roots with

multiplicity 2 or a single root with multiplicity 4; this surface is not a discriminant variety

of the kind Dk. Inspection of the coefficients a1, a2, a3, a4 of the polynomial

P (z) = (z − z1)
2(z − z2)

2 = z4 + a1z
3 + a2z

2 + a3z + a4

shows that, in the coordinates (a1, a2, a3, a4), the variety D(2,2) in A4
coef is given by the

two equations

(a2
1 − 4a2)a1 + 4a3 = 0,(4.21)

(a2
1 − 4a2)

2 − 16a4 = 0.(4.22)

Thus a3 and a4 are polynomial functions of a1 and a2 whence the obvious parametrization

(a1, a2) 7→ (a1, a2, a3, a4)

identifies D(2,2) with a copy of 2-dimensional complex affine space A2. Inspection of the

coefficients a1 and a2 of the polynomial

(4.23) P (z) = (z − z0)
4 = z4 + a1z

3 + a2z
2 + a3z + a4

shows that, in terms of the coordinates a1 and a2, the variety D4 ⊆ D(2,2) is the curve

given by the equation

(4.24) 3a2
1 − 8a2 = 0.

We intend to work out elsewhere how equations for varieties of the kind Dν which are

not ordinary discriminant varieties (i.e. not of the kind Dk) may be derived.
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5. The adjoint quotient of SL(n, C). Let n ≥ 2. In this section we will explore the

stratification of the adjoint quotient of SL(n, C). For convience, we will consider first

the group GL(n, C). A maximal complex torus in GL(n, C) is given by the complex di-

agonal matrices in GL(n, C). Thus, as a complex Lie group, this torus is isomorphic to

the product (C∗)n of n copies of the multiplicative group C∗ of non-zero complex num-

bers. Introduce standard coordinates z1, . . . , zn on Cn. Then the fundamental characters

σ1, . . . , σn of GL(n, C), restricted to the maximal torus, come down to the elementary

symmetric functions in the variables z1, . . . , zn, and the assignment to z = (z1, . . . , zn) of

(a1, . . . , an) = (−σ1(z), σ2(z), . . . , (−1)nσn(z)) ∈ Cn

yields a holomorphic map

(5.1) (−σ1, σ2 . . . , (−1)nσn) : (C∗)n → Cn

which induces a complex algebraic isomorphism from the adjoint quotient (C∗)n
/

Sn of

GL(n, C) onto the subspace of the space An
coef of complex normalized degree n polynomials

which consists of normalized polynomials having non-zero constant coefficient.

Let K = SU(n), so that KC = SL(n, C). A maximal complex torus T C in SL(n, C)

is given by the complex diagonal matrices in SL(n, C), that is, by the complex diagonal

(n × n)-matrices having determinant 1. Realize the torus T C as the subspace of the

maximal torus of GL(n, C) in the standard fashion, that is, as the subspace of (C∗)n

which consists of all (z1, . . . , zn) in (C∗)n such that z1 . . . zn = 1. The holomorphic map

(5.1) restricts to the holomorphic map

(5.2) (−σ1, . . . , (−1)n−1σn−1) : T C ∼= (C∗)n−1 → Cn−1.

This map induces a complex algebraic isomorphism from the adjoint quotient T C
/

Sn

of SL(n, C) onto the subspace A
n,1
coef of the space An

coef of complex normalized degree n

polynomials which consists of polynomials having constant coefficient equal to 1. The

space A
n,1
coef is a complex affine space of dimension n − 1 whence the same is true of the

adjoint quotient of SL(n, C). The discussion in the previous section applies to the adjoint

quotient of SL(n, C) in the following fashion:

For 1 ≤ k ≤ n, let DSU(n)
k = Dk ∩ A

n,1
coef so that, in particular, DSU(n)

1 is the entire

space A
n,1
coef

∼= SL(n, C)
//

SL(n, C). Likewise, for each partition ν of n, let

DSU(n)
ν = Dν ∩ A

n,1
coef and D(o,SU(n))

ν = Do
ν ∩ A

n,1
coef .

Then A
n,1
coef

∼= SL(n, C)
//

SL(n, C) is the disjoint union of the D(o,SU(n))
ν ’s as ν ranges

over partitions of n, and this decomposition is a stratification. In low dimensions, we are

thus led to the following picture:

n = 2: In this case, the adjoint quotient A
2,1
coef = DSU(2)

1 is a copy of the complex line,

which decomposes into two strata according to the two partitions (1, 1) and (2) of the

natural number n = 2. In the coordinate a1 on A
2,1
coef , the stratum DSU(2)

2 consists of the

two points ±2; these are solutions of the equation

(5.3) D2(1, a1, 1) = a2
1 − 4 = 0.

n = 3: Now the adjoint quotient A
3,1
coef = DSU(3)

1 is a 2-dimensional complex affine space,

which decomposes into three strata according to the three partitions (1, 1, 1), (2, 1), (3)



POISSON–KÄHLER GEOMETRY OF ADJOINT QUOTIENTS 337

of n = 3. Furthermore, in the coordinates (a1, a2) on A
3,1
coef , the variety DSU(3)

2 = DSU(3)
(2,1)

in A
3,1
coef is the curve given by the equation

(5.4) D3(1, a1, a2, 1) = 0,

that is, in view of (4.14), by the equation

(5.5) a2
1a

2
2 − 4a3

2 − 4a3
1 − 27 + 18a1a2 = 0,

and this curve decomposes as

DSU(3)
(2,1) = D(SU(3),o)

(2,1) ∪ DSU(3)
3 .

Moreover, in the chosen coordinates, the lowest stratum DSU(3)
3 consists of the three

points in A3
coef which solve the equations (5.4) and

(5.6) D2(3, 2a1, 1) = 0.

At each of these three points, the curve DSU(3)
2 in A3

coef has a cusp, as a direct examination

shows. This fact is also a consequence of the observation spelled out in the previous section

that the surface D2 in A3
coef has a “fold” along D3. Topologically, the curve DSU(3)

2 in A3
coef

is flat, i.e. the embedding of DSU(3)
2 into A3

coef is locally homeomorphic to the standard

embedding of R2 into R6.

n = 4: In this case, the adjoint quotient A
4,1
coef = DSU(4)

1 is a 3-dimensional complex

affine space, which decomposes into five strata according to the five partitions (1, 1, 1, 1),

(2, 1, 1), (2, 2), (3, 1), (4) of n = 4. Furthermore, in the coordinates (a1, a2, a3) on A
4,1
coef ,

the surface DSU(4)
2 = DSU(4)

(2,1,1) in A
4,1
coef is given by the equation

(5.7) D4(1, a1, a2, a3, 1) = 0,

and this surface decomposes as

DSU(4)
(2,1,1) = D(SU(4),o)

(2,1,1) ∪ D(SU(4),o)
(2,2) ∪ D(SU(4),o)

(3,1) ∪ DSU(4)
4 .

Likewise, in the chosen coordinates, the curve DSU(4)
3 = DSU(4)

(3,1) in A
4,1
coef is given by the

equations (5.7) and

(5.8) D3(4, 3a1, 2a2, a3) = 0,

and this curve decomposes as

DSU(4)
(3,1) = D(SU(4),o)

(3,1) ∪ DSU(4)
4 .

Moreover, the lowest stratum DSU(4)
4 consists of the four points in A

4,1
coef which, in the

coordinates (a1, a2, a3), solve the equations (5.7), (5.8), and

(5.9) D2(12, 6a1, 2a2) = 0.

The singular locus of the surface DSU(4)
2 = DSU(4)

(2,1,1) in A
4,1
coef is the union

DSU(4)
3 ∪ DSU(4)

(2,2) = D(SU(4),o)
(3,1) ∪ D(SU(4),o)

(2,2) ∪ DSU(4)
4 .

The singular locus of the curve DSU(4)
3 in A

4,1
coef consists of the four points in DSU4

4 . This

is a consequence of the corresponding observation describing the singular locus of the
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surface D3 in A4
coef , spelled out in the previous section. The curve

DSU(4)
(2,2) = D(SU(4),o)

(2,2) ∪ DSU(4)
4

in A
4,1
coef is given by the two equations

(a2
1 − 4a2)a1 + 4a3 = 0,(5.10)

(a2
1 − 4a2)

2 − 16 = 0.(5.11)

Consequently the embedding

(a1, a2) 7→ (a1, a2,
1

4
(4a2 − a2

1)a1)

of 2-dimensional complex affine space A2 into A
4,1
coef identifies the non-singular curve in A2

given by the equation (5.11) with the curve DSU(4)
(2,2) in A

4,1
coef which is therefore neccessarily

non-singular. The observation related with the polynomial (4.23) in the previous section

shows that, in terms of the coordinates a1 and a2, the bottom stratum DSU(4)
4 , viewed as

a subset of DSU(4)
(2,2) , consists of the four points in DSU(4)

(2,2) solving the equation (4.24), that

is, the four points given by (a1, a2) = (±2
√

2,±3).

The position of the real orbit space SU(n)
/

SU(n) relative to conjugation, realized

within the adjoint quotient T C
/

Sn, is worth remarking. Thus, consider the real affine

space Rn−1, embedded into Cn−1 as the real affine space of real points of the adjoint

quotient Cn−1 ∼= T C
/

Sn in the obvious fashion. The space

(5.12) Hn = DSU(n)
2 ∩ Rn−1

of real points of the complex variety DSU(n)
2 is a real compact hypersurface in Rn−1, and

the orbit space SU(n)
/

SU(n), realized within the adjoint quotient T C
/

Sn
∼= Cn−1 of

SL(n, C), amounts to the compact region Rn in Rn−1 ⊆ Cn−1 bounded by this hyper-

surface. The exponential mapping from the Lie algebra t of T to T , restricted to a Weyl

alcove, induces a homeomorphism from this alcove onto Rn.

6. The stratified Kähler structure on the adjoint quotient of SL(n, C). Let

K be a general compact Lie group, let T be a maximal torus in K, let KC be the

complexification of K and T C that of T , and let N be the adjoint quotient of KC, that

is, N equals the space T C
/

W of W -orbits relative to the action of the Weyl group W

of K on T C. The algebraic stratified symplectic Poisson algebra on the real coordinate

ring R[T C] of the complex torus T C is obtained in the following fashion: The torus T C

amounts to a product of finitely many copies of the complex 1-dimensional torus C∗. In

terms of the standard coordinate z = x + iy on C∗, identified with the multiplicative

group of non-zero complex numbers, the corresponding real Poisson structure is given by

{x, y} = x2 + y2, and the resulting symplectic structure and the complex structure on

C∗ combine to an algebraic Kähler structure which, in turn, is just the structure arising

from the standard embedding of C∗ into SU(2)C = SL(2, C) as a maximal complex torus,

where SL(2, C) is endowed with the Kähler structure reproduced in Section 3 above. The

symplectic Poisson algebra on the complex torus T C in the general group KC is now

simply the product structure whence the induced symplectic structure on T C is plainly
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real algebraic. The algebraic stratified symplectic Poisson algebra on the real coordinate

ring R[T C
/

W ] ∼= R[T C]W of the adjoint quotient is simply obtained by taking invariants.

This Poisson algebra is somewhat more easily described in terms of the complexification

R[T C
/

W ]C of the real coordinate ring of T C
/

W—this complexification is not the complex

coordinate ring of T C
/

W , though. An explicit description of the induced Poisson structure

on the complexification of the real coordinate ring of T C
/

W has been worked out in [16].

For K = SU(n), the Weyl group W is the symmetric group Sn on n letters, and the

quoted description of the ring R[T C
/

W ]C, together with the Poisson structure, takes the

following form: As before, consider SU(n) as a subgroup of U(n) as usual and, accordingly,

identify T C with the subgroup of (C∗)n (taken as a maximal torus of U(n)C = GL(n, C))

given by z1 · . . . · zn = 1 where z1, . . . , zn are the obvious coordinates on (C∗)n. For r ≥ 0

and s ≥ 0 such that 1 ≤ r + s ≤ n, let

(6.1) σ(r,s)(z1, . . . , zn, z1, . . . , zn)

be the Sn-orbit sum of the monomial z1 · . . . · zrzr+1 · . . . · zr+s; the function σ(r,s) is man-

ifestly Sn-invariant, and we refer to a function of this kind as an elementary bisymmetric

function. In a degree m, 1 ≤ m ≤ n, the construction yields the m + 1 bisymmetric

functions σ(m,0), σ(m−1,1), . . . , σ(0,m) whence in degrees at most equal to n it yields

altogether n(n+3)
2 elementary bisymmetric functions. According to a classical result, the

ring Q[z1, . . . , zn, z1, . . . , zn]Sn of bisymmetric functions (over the rationals) is generated

by the elementary bisymmetric functions. This implies that, as a ring, R[T C
/

Sn]C is

generated by the n(n+3)
2 − 2 elementary bisymmetric functions σ(r,s) for 0 ≤ r ≤ n and

0 ≤ s ≤ n such that 1 ≤ r + s ≤ n and (r, s) 6= (n, 0) and (r, s) 6= (0, n), subject to a

certain system of n(n−1)
2 relations. See [16] for details. For intelligibility we note that the

conditions (r, s) 6= (n, 0) and (r, s) 6= (0, n) mean that, in accordance with the discussion

in Section 5 above, in the ring R[T C
/

Sn]C, σ(n,0) = 1 and σ(0,n) = 1.

The stratified symplectic Poisson structure is more easily described in terms of another

system of multiplicative generators for the complexification of the real coordinate ring of

the adjoint quotient; this system is equivalent to the above one and is obtained in the

following fashion: For r ≥ 0 and s ≥ 0 such that 1 ≤ r + s, let

(6.2) τ(r,s)(z1, . . . , zn, z1, . . . , zn) =

n
∑

j=1

zr
j zs

j ;

such a function τ(r,s) is manifestly Sn-invariant, and we refer to a function of this kind

as a bisymmetric power sum function. As a ring, R[T C
/

Sn]C is generated by the n(n+3)
2

bisymmetric power sum functions τ(r,s) for r ≥ 0 and s ≥ 0 such that 1 ≤ r + s ≤ n as

well, subject to n(n−1)
2 +2 relations; see [16] for details. Suffice it to mention at this stage

that rewriting the relation σ(n,0) = 1 in terms of the power sums τ(j,0) of the variables z1,

. . . , zn and the relation σ(0,n) = 1 in terms of the power sums τ(0,j) of the variables z1,

. . . , zn where 1 ≤ j ≤ n, we can express the generator τ(n,0) as a polynomial in the τ(j,0)’s

with 1 ≤ j < n and, likewise, we can express the generator τ(0,n) as a polynomial in the

τ(0,j)’s with 1 ≤ j < n. This procedure reduces the above system to one with n(n+3)
2 − 2

generators, subject to n(n−1)
2 relations.
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By a result in [16], the Poisson brackets among the multiplicative generators

(6.3) τ(j,k), 0 ≤ j ≤ n, 0 ≤ k ≤ n, 1 ≤ j + k ≤ n,

are given by formulas of the kind

(6.4)
i

2
{τ(j1,k1), τ(j2,k2)} = (j1k2 − j2k1)τ(j1+j2,k1+k2) + (. . .)

where (. . .) refers to appropriate correction terms (coming from a suitable Dirac bracket

defined in terms of the obvious embedding of T into the maximal torus of U(n)). When

j1 + j2 + k1 + k2 > n, the right-hand side of (6.4) is here to be rewritten as a polynomial

in terms of the multiplicative generators (6.3). Thus we see that, as a stratified Kähler

space, the adjoint quotient of SL(n, C) is considerably more complicated than just as a

complex algebraic variety; indeed, as a complex algebraic variety, this quotient is just a

copy of (n − 1)-dimensional affine complex space.

We will now spell out explicitly the stratified Kähler structure for n = 2 and n = 3.

Consider first the case where n = 2, so that K = SU(2) and KC = SL(2, C). The

standard maximal torus T ∼= S1 of SU(2) consists of the diagonal matrices diag(ζ, ζ−1)

where |ζ| = 1, and the standard maximal torus T C ∼= C∗ of SL(2, C) consists of the

diagonal matrices diag(ζ, ζ−1) where ζ 6= 0. In view of the discussion in Section 5, complex

algebraically, the categorical quotient KC
//

KC amounts to the space T C
/

S2
∼= C of orbits

relative to the action of the Weyl group S2 on C∗ ∼= T C, and this orbit space is realized

as the target of the holomorphic map

(6.5) χ : C∗ → C, χ(z) = z + z−1.

Thus Z = z + z−1 may be taken as a holomorphic coordinate on the adjoint quotient of

SL(2, C).

In view of the above remarks, the complexification R[T C
/

S2]C of the real coordinate

ring R[T C
/

S2] of the adjoint quotient T C
/

S2 under discussion is generated by the three

elementary bisymmetric functions

σ1 = σ(1,0) = z + z−1, σ1 = σ(0,1) = z + z−1, σ = σ(1,1) =
z

z
+

z

z
,

subject to the single defining relation

(σ2
1 − 4)(σ2

1 − 4) = (σ1σ1 − 2σ)2.

See [16] for details. Hence the real coordinate ring R[T C
/

S2] of the adjoint quotient

T C
/

S2 under discussion is generated by the three functions

X = x +
x

r2
, Y = y − y

r2
, τ =

2 − σ

4
=

y2

r2
,

where z = x + iy, Z = X + iY , and x2 + y2 = r2, subject to the relation

(6.6) Y 2 = (X2 + Y 2 + 4(τ − 1))τ.

The obvious inequality τ ≥ 0 brings the semialgebraic nature of the adjoint quotient

to the fore. More details concerning the semialgebraic structure may be found in [16].

Moreover, the Poisson bracket { · , · } on R[T C
/

S2] is given by

{X, Y } = X2 + Y 2 + 4(2τ − 1), {X, τ} = 2(1 − τ )Y, {Y, τ} = 2τX.
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The resulting complex algebraic stratified Kähler structure is singular at the two points

−2 and 2. These are solutions of the discriminant equation (5.3), and the Poisson structure

vanishes at these points; furthermore, at these two points, the function τ is not an

ordinary smooth function of the variables X and Y . Indeed, solving (6.6) for τ , we obtain

τ =
1

2

√

Y 2 +
(X2 + Y 2 − 4)2

16
− X2 + Y 2 − 4

8
,

whence, at (X, Y ) = (±2, 0), τ is not smooth as a function of the variables X and Y .

Away from these two points, the Poisson structure is symplectic. We refer to the adjoint

quotient under discussion as the exotic plane with two vertices .

This exotic plane with two vertices admits the following function theoretic interpre-

tation: The composite

χ ◦ exp: t
C ∼= C → C ∼= T C

/

S2

equals the holomorphic function 2cosh. Consequently, under the composite

S1 × R → C∗ → C

of the polar map with χ, the family of circles S1
t = {(η, t); η ∈ S1} (t ∈ R) in S1 × R

(each circle of the family being parallel to the zero section) goes to the family of curves

η 7→ etη + e−tη−1, η ∈ S1,

which are ellipses for t 6= 0; and the family of lines Lη = {(η, t); t ∈ R} (η ∈ S1) in the

tangent directions goes to the family of curves

t 7→ etη + e−tη−1, t ∈ R,

which are hyperbolas for η 6= ±1. The image of the circle S1
0 is a double line segment

between −2 and 2, the image of the line L1 is a double ray, emanating from 2 into the

positive real direction, and the image of the line L−1 is a double ray, emanating from −2

into the negative real direction. The two families are orthogonal and have the two singular

points −2 and 2 as focal points. This is of course well known and entirely classical. In

the cotangent bundle picture, the double line segment between −2 and 2 is the adjoint

quotient of the base K = SU(2), indeed this line segment is exactly the fundamental

alcove of SU(2), the family of hyperbolas which meet this line segment between −2 and 2

constitutes a cotangent bundle on this orbit space with the two singular points removed,

and the plane, i.e. adjoint quotient of KC, with the two rays emanating from −2 and 2

removed, is the total space of this cotangent bundle; furthermore, the cotangent bundle

symplectic structure is precisely that which corresponds to the reduced Poisson structure.

However the cotangent bundle structure does not extend to the entire adjoint quotient of

T∗K ∼= KC. In particular, this interpretation visualizes the familiar fact that, unless there

is a single stratum, the strata arising from cotangent bundle reduction are not cotangent

bundles on strata of the orbit space of the base space.

Consider now the case where K = SU(3), with maximal torus T diffeomorphic to the

product S1 × S1 of two copies of the circle group. Complex algebraically, the map (5.2)

for n = 3 comes down to the map

(6.7) (−σ1, σ2) : T C → C2,
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and this map induces a complex algebraic isomorphism from the adjoint quotient T C
/

S3

of SL(3, C) onto a copy C2 of 2-dimensional complex affine space; as in Section 5 above,

we will take a1 = −σ1 and a2 = σ2 as complex coordinates on the adjoint quotient. The

complement of the top stratum D(o,SU(3))
3 is now the complex affine curve DSU(3)

2 = DSU(3)
(2,1)

in A
3,1
coef given by the equation (5.4). This curve is plainly parametrized by the restriction

(6.8) C∗ → C × C, z 7→ (2z + z−2, z2 + 2z−1)

of (6.7) to the diagonal, and this holomorphic curve parametrizes the closure DSU(3)
2 of

the stratum D(o,SU(3))
2 . This curve has the three (complex) singularities (3, 3), 3(η, η2),

3(η2, η), where η3 = 1, η 6= 1. These points are the images of the (conjugacy classes) of

the three central elements under (6.7); as complex curve singularities, these singularities

are cuspidal. These three points constitute the stratum DSU(3)
3 .

The real hypersurface written above, for general n, as Hn, cf. (5.12), now comes

down to the curve H2 in R2; here R2 is embedded into C2 as the real affine space of

real points of C2 in the obvious fashion. Since, for a complex number z with |z| = 1,

2z + z−2 = z2 + 2z−1, the restriction of (6.8) to the real torus T ⊆ T C yields the

parametrized real curve

(6.9) S1 → R2, eiα 7→ (u(α), v(α)) ∈ R2,

where u(α) + iv(α) = 2eiα + e−2iα, and this parametrizes precisely the curve H2. This

curve is a hypocycloid , as noted in [2] (Section 5), and the real orbit space SU(3)
/

SU(3)

relative to conjugation, realized within the adjoint quotient T C
/

S3
∼= DSU(3)

1 of SL(3, C),

amounts to the compact region in R2 enclosed by this hypocycloid.

As a complex algebraic stratified Kähler space, the adjoint quotient looks considerably

more complicated. Indeed, cf. [16], the complexification R[T C
/

S3]C of the real coordinate

ring R[T C
/

S3] ∼= R[T C]S3 of the adjoint quotient T C
/

S3, viewed as a real semialgebraic

space, is generated by the seven functions σ1 = σ(1,0), σ1 = σ(0,1), σ2 = σ(2,0), σ2 = σ(0,2),

σ = σ(1,1), ρ = σ(2,1), ρ = σ(1,2), subject to the following three relations:

(σ2
1 − 4σ2)(σ

2
1 − 4σ2) = (σ1σ1 − 2σ)2 + 2ρσ1 + 2ρσ1,

D3(1,−σ1, σ2,−1)σ2 = (9 + σ3
2 − 4σ1σ2)σ

2
1 + (4σ2

1 − 3σ2 − σ1σ
2
2)σ1σ

+ (6σ1 − σ2
2)σ1ρ + (σ2

2 − 3σ1)σ
2

+ (9 − σ1σ2)σρ + (σ2
1 − 3σ2)ρ

2,

D3(1,−σ1, σ2,−1) = σ3
1 − σ2σ

2
1σ + (σ2

2 − 2σ1)σ
2
1ρ + σ1σ1σ

2

− ((σ2
1 − 2σ2)σ1 − σ3

1 + 3σ1σ2 − 3)σ1σρ

− σ3 + (σ2
1 − 2σ2)σ1ρ

2 + σ2σ
2ρ − σ1σρ2 + ρ3.

We note that an explicit expression for D3(1,−σ1, σ2,−1) is given by (4.14). The formula

(6.4) yields the stratified symplectic Poisson structure on the complexification of the real

coordinate ring of T C
/

S3 in terms of the nine generators

τ(1,0), τ(2,0), τ(3,0), τ(0,1), τ(0,2), τ(0,3), τ(1,1), τ(1,2), τ(2,1).

This Poisson structure has rank 4 on the top stratum D(o,SU(3))
1 , rank 2 on the stratum

D(o,SU(3))
2 , and rank zero at the three points of the stratum DSU(3)

1 , that is, at the three
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cusps of the complex affine curve DSU(3)
2 = DSU(3)

(2,1) in A
3,1
coef given by the equation (5.4).

The requisite inequalities which encapsulate the semialgebraic structure may be found

in [16].

For n ≥ 4, the map (5.2) identifies the adjoint quotient DSU(n)
1 of SL(n, C) with

complex affine (n − 1)-space Cn−1, and the resulting stratified Kähler structure on the

adjoint quotient can be described in a way similar to that for the low dimensional cases

where n = 2 and n = 3; the details get more and more involved, though. A function

theoretic interpretation extending the interpretation spelled out above for the case where

n = 2 is available as well. Indeed, let n ≥ 2, let T ∼= (S1)(n−1) be the standard maximal

torus in SU(n), let T C ∼= (C∗)n−1 be its complexification, and consider the composite

(6.10) T × t ∼= T × Rn−1 → T C → Cn−1

of the polar map with χ. Now the images in the top stratum of the adjoint quotient

DSU(n)
1

∼= Cn−1 of the leaves of the horizontal foliation of the total space T ×Rn−1 ∼= TT

of the tangent bundle of T are smooth submanifolds and generalize the family of ellipses

for the case where n = 2 and, likewise, the images in the top stratum of the adjoint

quotient Cn−1 of the leaves of the vertical foliation of the total space T × Rn−1 ∼= TT of

the tangent bundle of T are smooth manifolds and generalize the family of hyperbolas for

the case where n = 2; however, images of such leaves which meet a lower stratum involve

singularities, and the geometry of the situation can be described in terms of complex

focal points, complex focal lines, etc.: The focal points are the n points of the bottom

stratum DSU(n)
n , a focal curve is given by the next stratum DSU(n)

n−1 , etc. The composite of

(6.10) with the obvious map from Cn−1 to T ×Rn−1 generalizes the holomorphic hyper-

bolic cosine function for the case where n = 2, and the function theoretic interpretation

extending the interpretation for the case where n = 2 is thus immediate.

The above observations involving the singular cotangent bundle projection map for

the special case where n = 2 extend as follows: The induced projection from the adjoint

quotient DSU(n)
1

∼= Cn−1 to the real orbit space SU(n)
/

SU(n) relative to conjugation

is a singular cotangent bundle projection map in an obvious manner. Indeed, the map

(5.2) induces a map from the real torus T to the real affine space Rn−1 of real points

of the complex adjoint quotient Cn−1; just as for the cases where n = 2 or n = 3, the

restriction of this map to the subspace T1 of the real torus T having non-trivial stabilizer,

i.e. points that are non-regular as points of K = SU(n), has as its image a real closed

hypersurface in Rn−1, and the real orbit space SU(n)
/

SU(n) relative to conjugation is

realized in Rn−1 as the semialgebraic space enclosed by this hypersurface. The resulting

semialgebraic space is manifestly homeomorphic to an (n − 1)-simplex or, equivalently,

to the standard (n − 1)-alcove for SU(n).

Finally we note that this kind of interpretation is available for the closure DSU(n)
ν of

each stratum of the adjoint quotient, each such space being a complex algebraic strat-

ified Kähler space; moreover, for ν′ � ν, the injection map from DSU(n)
ν′ into DSU(n)

ν is

compatible with all the structure. For example, when n = 3, DSU(3)
2 is the complex affine

curve in the adjoint quotient DSU(3)
1

∼= C2 parametrized by (6.8). This parametrization

plainly factors through C∗
/

S2 and hence induces an embedding
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DSU(2)
1 → DSU(3)

1

of the adjoint quotient DSU(2)
1 of SL(2, C) into the adjoint quotient DSU(3)

1 of SL(3, C)

which identifies DSU(2)
1 with DSU(3)

2 as complex algebraic stratified Kähler spaces. Hence

the embedding is one of complex algebraic stratified Kähler spaces, that is, it is compatible

with all the structure. In particular, the “focal” geometries correspond.

7. Relationship with the spherical pendulum. In this section we will identify the

adjoint quotient of SL(2, C) with the reduced phase space of a spherical pendulum con-

strained to move with angular momentum zero about the third axis, so that it amounts

to a planar pendulum.

The unreduced phase space of the spherical pendulum is the total space T∗S2 of

the cotangent bundle of the ordinary 2-sphere S2 in 3-space R3 centered at the origin.

By means of the standard inner product, we identify the tangent bundle of R3 with its

cotangent bundle; accordingly, we identify T∗S2 with the total space TS2 of the tangent

bundle of S2, and we realize the space TS2 within R3×R3 ∼= TR3 in the standard fashion.

The map

(7.1) C∗ → R3 × R3, eteiϕ 7→ (0, sin ϕ, cosϕ, 0,−t cosϕ, t sin ϕ),

plainly goes into the subspace TS2 of R3×R3 and induces a homeomorphism from the S2-

orbit space C∗
/

S2 onto the angular momentum zero reduced phase space V0 = µ−1(0)
/

S1

of the spherical pendulum. Here the non-trivial element of the cyclic group S2 with two

elements acts on C∗ by inversion, and

µ : TS2 → Lie(S1)∗ ∼= R

refers to the momentum mapping for the S1-action on TS2 given by rotation about the

third axis; actually this is just ordinary angular momentum given by

µ(q1, q2, q3, p1, p2, p3) = q1p2 − q2p1

where (q1, q2, q3, p1, p2, p3) are the obvious coordinates on R3 ×R3. Under the identifica-

tion of C∗ with the complexification T C of the maximal torus T of SU(2), the quotient

C∗
/

S2 gets identified with the adjoint quotient T C
/

S2 of SL(2, C) whence the map (7.1)

induces a homeomorphism from the adjoint quotient T C
/

S2 of SL(2, C) onto the reduced

phase space V0 for the spherical pendulum. Moreover, a little thought reveals that the

map

Θ: C∗ → R3, Θ(eteiϕ) = (cosϕ, t sinϕ, t2)

into R3 induces a homeomorphism from C∗
/

S2 onto the real semialgebraic subspace M0

of R3 which, in terms of the coordinates (u, v, w), is given by

w(1 − u2) − v2 = 0, |u| ≤ 1, w − v2 ≥ 0.

The space M0 has received considerable attention in the literature: This space is the

“canoe”, cf. [1], [3] (pp. 148 ff.) and [21], the two singular points being absolute equilibria

for the spherical pendulum. Thus the map Θ identifies the adjoint quotient T C
/

S2 of

SL(2, C) and hence the reduced phase space V0 for the spherical pendulum with the

“canoe” M0.
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We have already seen that the holomorphic map χ from C∗ to C given by χ(z) =

z + z−1 induces a complex algebraic isomorphism from the adjoint quotient T C
/

S2 onto

a copy of the complex line C. It is instructive to realize χ on the homeomorphic image V0

or, equivalently, on the “canoe” M0. We can do even better: Let α be the real analytic

function of the real variable t given by the power series α(t) =
∑∞

j=0
tj

(2j)! and, likewise,

let β be the real analytic function of the real variable t given by the power series β(t) =
∑∞

j=0
tj

(2j+1)! . We note that, by construction,

α(t2) = cosh(t), tβ(t2) = sinh(t).

Introduce the real analytic function

Φ: R3 → C, Φ(u, v, w) = uα(w) + ivβ(w), (u, v, w) ∈ R3.

Since the composite map Φ ◦ Θ ◦ exp from C to C coincides with 2cosh, the composite

Φ◦Θ coincides with χ. In particular, the homeomorphism from the “canoe” M0 onto the

complex line given by the restriction of Φ flattens out the “canoe”. It is interesting to

note that this flattening out is accomplished in the category of real semianalytic spaces,

not in that of real semialgebraic spaces, even though the “canoe” and the complex line

are real semialgebraic spaces; presumably the two cannot be identified in the category of

real semialgebraic spaces.

Since the composite Φ ◦Θ ◦ exp equals twice the holomorphic hyperbolic cosine func-

tion, the present discussion provides a geometric interpretation of the adjoint quotient of

SU(2)C ∼= SL(2, C) similar to the function theoretic one given earlier, but in terms of the

“canoe”. In particular, the two focal points in the earlier interpretation now correspond

to the two singular points of the “canoe” which, in turn, correspond to the absolute

equilibria of the spherical pendulum.

While the spherical pendulum has been extensively studied, the present complex an-

alytic interpretation seems to be new.
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