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Abstract. We introduce diffeological real or complex vector spaces. We define the fine diffeology
on any vector space. We equip the vector space H of square summable sequences with the fine
diffeology. We show that the unit sphere 8 of H, equipped with the subset diffeology, is an em-
bedded diffeological submanifold modeled on H. We show that the projective space P, equipped
with the quotient diffeology of 8 by S!, is also a diffeological manifold modeled on 3. We define
the Fubini-Study symplectic form on P. We compute the momentum map of the unitary group
U(H) on the sphere 8§ and on P. And we show that this momentum map identifies the projective
space P with a diffeological coadjoint orbit of the group U(J), where U(H) is equipped with
the functional diffeology. We discuss some other properties of the symplectic structure of P. In
particular, we show that the image of P under the momentum map of the maximal torus T(3)
of U(H) is a convex subset of the space of moments of T(J{), infinitely generated.

INTRODUCTION

Diffeology is a theory that enlarges the scope of differential geometry. It was introduced
by J.-M. Souriau [Sou81], and in a slightly different way by K.-T. Chen [Che77] few years
before. Diffeology has been successfully tested on « singular » objects like irrational tori
[DI85] [Igl85, Igl86] [IL.90] or more recently on orbifolds [IKZ05]. This paper shows, in the
case of the infinite Hopf fibration, how it can be used in a particular infinite dimensional
context. Writing down this example I want to show how everything follows simply from
a minimal set of conventions: the unique choice of a diffeology on the standard Hilbert
space. No extra structure is needed, and the diffeological framework just works. What
needs to be emphasized, in contrast with topological methods, is the very simple formal
and coherent use of differential calculus offered by the general diffeological framework. For
example, diffeological notions of forms, exterior derivative etc. lead, among other things,
to an elegant definition of the momentum map. This seems advantageous to me in this
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fuzzy world of infinite dimensional spaces, where it is not always clear how differentiability
coexists with topology.

Much of the diffeological material presented here is well known by specialists, but
some parts are new, required by the subject. In particular, the introduction of diffeological
vector spaces, their fine diffeology, and the definition of diffeological manifolds.

The set-theoretic construction of the infinite Hopf fibration is well known, but let us
recall it. We consider the Hilbert space H of square summable complex sequences with
the standard hermitian product. The quotient of H — {0} by the multiplicative action of
C — {0} is the projective space P of complex lines of H. This space is equivalent to the
quotient of the unit sphere § C H by the subgroup S! € C — {0} of complex numbers of
modulus 1. The projection § — P is the infinite Hopf fibration. As a topological space,
the sphere § is contractible [Kak43], from which it follows that § is the S! topological
classifying total space E(S') and P its base B(S').

Now, we consider this construction from the diffeological point of view. After a review
of the main diffeological definitions and constructions, we introduce the notion of diffeo-
logical vector spaces and some related constructions. The Hilbert space H is then equipped
with the standard hermitian product and with the fine diffeology of vector space. The
unit sphere § of H inherits the subset diffeology, and the projective space P is equipped
with the quotient diffeology of § by S!. We shall see that:

a) The sphere 8, as well as the projective space P, are diffeological manifolds, both
modeled on K.

b) The sphere § is contractible as a diffeological space.

c¢) The projection § — P is a diffeological bundle, locally trivial. And, the (diffeologi-
cal) homotopy groups of P are mo(P) = Z, 7 (P) =0 if k # 2.

Then we define a certain differential 1-form on 8§ — an S'-connection form — called Liou-
ville’s form, whose curvature generalizes to P the so-called Fubini-Study symplectic form.

On the other hand, the group U(K) of unitary transformations of H acts naturally on
8 and P, preserving both the connection form and its curvature. We give a characterization
of the functional diffeology of the group U(XH), for H equipped with the fine diffeology.

Further, we define the space G* of moments of a diffeological group G as the set of
all left-invariant 1-forms of G. And, because we don’t need more generality here, we give
the expression of the momentum map, relative to a closed 2-form, in the very particular
case where this form is exact and has an invariant primitive. The general definition of the
momentum map, for the diffeological context, is given and studied in [PIZ05] (see also
[Igl95]). This diffeological momentum map extends Souriau’s original definition [Sou70]
given in the context of ordinary differential geometry. Then, we apply these constructions
to our case, and we see that the characteristic curves of the momentum map p of U(H)
on 8 are the fibers of the projection § — P. Hence, the momentum map pu factorizes
through P in the momentum map m of U(H) on P, more precisely:

d) The momentum map m of U(H) on P is injective and identifies the projective space
P with a coadjoint orbit of U(H), where U(H) is equipped with the functional
diffeology associated to the fine diffeology of J.
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Finally, we introduce the mazimal torus T(H) of the group U(H) and, after restriction
of the previous construction to T(H), we show that:

e) The image of the momentum map of T(H) is an infinitely generated convex domain
of the vector space 7* of moments of T (H).

Note that the topological properties of infinite dimensional topological manifolds have
been studied more generally than the particular case of the infinite sphere, see for example
[Kui65] [Pal65, Pal66]. It would be interesting to have a diffeological parallel for these
cases too. It would also be very interesting to classify the coadjoint orbits of U(H) in this
diffeological framework. We shall certainly get all the flag spaces of finite rank, which are
direct extensions of the rank one flag case studied here. But it is unclear if they exhaust
the whole set of coadjoint orbits.

Thanks. I am pleased to thank, warmly, Frangois Ziegler for all his comments and
suggestions which helped me to improve this text. It is a pleasure also to thank the
organizers of the conference of Bedlewo, Jan Kubarski, Robert Wolak and Jean Pradines
who invited me to take part in it. I would not forget to thank also the Hebrew University
of Jerusalem for its great hospitality and its warm atmosphere.

REVIEW ON DIFFEOLOGY

This chapter is a review of the main diffeological constructions used in this article. No
proofs are given. The reader can find them in a web document maintained at [PIZ05] or
in [Igl85].

1. Definitions

1.1. Domains and parametrizations. An n-numerical domain is any open subset of the
vector space R™, n > 0. A numerical domain is any domain for any n € N.

A parametrization of a set X is any map P : U — X such that U is a numerical
domain. If U is an n-numerical domain we say that P is an n-parametrization.

The set of all the parametrizations of X defined on U is denoted by Param (U, X).
The set of all n-parametrizations of X is denoted by Param,, (X).

The set of all parametrizations of X is denoted by Param(X).

If P is an n-parametrization, we say that the dimension of P is n, we denote it by:

= Lo

For all P € Param(X), dim(P)=n < P € Param,(X).

Let X be a set, and = be any point of X. A superset of x is any part V of X containing
x. If X is a topological space, an open superset of x is just a superset of & which is open
for the given topology.

1.2. Diffeology and diffeological spaces. A diffeology of a set X is a subset D of parame-
trizations of X, whose elements are called plots, such that the following axioms hold:
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D1. Covering. Any constant parametrization is a plot: for any point x of X and for
any integer n, the constant map x : R” — X, defined by «(r) = x for all r in R",
is a plot.

D2. Locality. For any parametrization P : U — X, if P is locally a plot at each point
of U then P is a plot. This means that, if for every r in U there exists a superset V
of r such that the restriction P [ V is a plot, then P is a plot.

D3. Smooth compatibility. The composition of a plot with any smooth parametrization
of its source is a plot: let P : U — X be a plot and let F belong to €*>°(V,U), where
V is any numerical domain, then P o F is a plot.

A set equipped with a diffeology is called a diffeological space.

The first axiom implies that each point of X is covered by a plot. The second axiom
clearly means that to be a plot is a local condition. And, the third axiom ensures some
coherence of the use of the word differentiable in this context. The set of all plots of
the diffeology D defined on a numerical domain U will be denoted D (U, X). Formally,
a diffeological space is a pair (X,D) where X is an arbitrary set and D a diffeology of
X. But most of the time the diffeological space will be denoted by the single letter X
denoting its underlying space, the diffeology is understood.

Let us note however that the distinction between diffeology as a structure and diffe-
ological space as a set together with a diffeology is psychological: the diffeology contains
the underlying set as the set of O-plots. As well, a topology contains the underlying space
as the union of all open sets.

1.3. Standard diffeology of domains. The set of all smooth parametrizations of a nu-
merical domain U C R" is clearly a diffeology. We shall call it the standard diffeology
of U.

2. Differentiable maps. Diffeological spaces are the objects of a category whose mor-
phisms are differentiable maps, and isomorphisms are the diffeomorphisms.

2.1. Differentiable maps and diffeomorphisms. Let X and Y be two diffeological spaces
and F : X — Y be a map. The map F is said to be differentiable if for each plot P of
X, FoP is a plot of Y. The set of differentiable maps from X to Y is denoted € (X,Y).
A bijective map F : X — Y is said to be a diffeomorphism if both F and F~! are
differentiable. The set of all diffeomorphisms of X is a group denoted Diff (X).

2.2. The Diffeology category. The composition of differentiable maps is differentiable.
Diffeological spaces, together with differentiable maps, define a category, denoted {Diffeo-
logy}. The isomorphisms of the category are diffeomorphisms.

2.3. Plots are smooth. The set of differentiable maps from a numerical domain U into
a diffeological space X is exactly the set of plots of X defined on U. This is a direct
consequence of axiom D3. Hence, C* (U, X) = D(U, X) and we may equally use these two
notations. This justifies, a posteriori, the use of the symbol €* to denote the differentiable
maps between diffeological spaces. And for this reason we may equally use the word
smooth or the word differentiable.
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2.4. Comparing diffeologies. A large number of constructions in diffeology use the fol-
lowing relation on diffeologies: a diffeology D on a set X is said to be finer than another
D', if

DcCD.
The relation C is a partial order on the diffeologies of any given set X. We say indifferently
that D is finer than D’ or D’ coarser than D. Note that coarser means more plots and
finer means fewer plots.

2.5. Discrete and coarse diffeologies. Any set X carries a finest diffeology, finer than any
other diffeology, called the discrete diffeology. The plots of the discrete diffeology are the
locally constant parametrizations.

Any set X carries a coarsest diffeology, containing any other diffeology, it is called the
coarse diffeology. The plots of the coarse diffeology are all parametrizations of X, that is
the whole set Param(X).

In these two cases, the three axioms of diffeology, covering, locality and smooth com-
patibility, are obviously satisfied. Any diffeology is somewhere between the discrete and
the coarse diffeologies.

2.6. Intersecting diffeologies. As an illustration of the partial order on diffeologies, let
us cite the following proposition. Let X be a set and D be any family of diffeologies of

N D
DeD
is a diffeology. It is the coarsest diffeology contained in every element of D, the finest being

X. The intersection

the discrete diffeology. This proposition is used to prove that every family of diffeologies
has a supremum and an infimum. In other words, diffeologies form a lattice.

3. Generating families and dimension. Generating families are a convenient and
useful tool in order to define a diffeology. They are defined by the following proposition.

3.1. Generating families. Let X be a set, let F be some subset of parametrizations of X.
There exists a finest diffeology containing F. This diffeology will be called the diffeology
generated by F and denoted (F). This diffeology is the infimum (art. 2.6) of all diffeologies
containing F. Given a diffeological space X, a family J generating the diffeology of X is
called a generating family of X. The plots of the diffeology generated by F are given by:

GF A parametrization P : U — X is a plot of the diffeology generated by JF if and only
if for every point r of U there exists a superset V C U of r such that either P [ V
is a constant parametrization, or there exists an element Q : W — X of F and a
smooth parametrization F : V. — W such that P [ V=QoF.

In the second case, we say that the plot P lifts locally along F, or that Q is a local lifting
of P along F (see fig. 1). Note that generating diffeologies is a projector, that is for any
diffeology D we have (D) = D.

3.2. Generated by the empty set. Note that, for any set X, the empty family F = &
generates the discrete diffeology.
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Fig. 1. Local lifting of P along F

3.3. Dimension. Let X be a diffeological space and let D be its diffeology. Let us call
dimension of a generating family F of D the supremum of the dimensions of the plots of
the family:

dim(F) = sup{dim(P) | P € F},

where dim(P) is defined in (art. 1.1). We define the dimension of the space X as the
infimum of the dimensions of the generating families of the space:

dim(X) = inf{dim(¥) | (F) = D}.

Note that dim(F) as well as dim(X) can be either finite or infinite. For more details about
dimension in diffeology see [PIZ06].

3.4. Dimensions of numerical domains. As we should expect, the dimension of a numer-
ical domain U C R"”, equipped with the standard diffeology, is just n.

3.5. Differentiable maps via generating families. Let X be a diffeological space generated
by a family F and X’ a diffeological space generated by a family F’. Let f : X — X’ be
a map. The map f is differentiable if and only if for each element P : U — X of &, for
each point 7 of U there exists a superset V of r, an element P’ : U — X’ of ¥ and a
smooth parametrization F : V — U’ such that f o P | V = P’ o F. This is illustrated by
the following diagram:

Uov—E
Pl lp/
X X/
f

4. Pullbacks of diffeologies and inductions. The category {Diffeology} is stable
under the subset operation. This stability is expressed by the following construction.

4.1. Pull-backs of diffeologies. Let X be a set, and Y be a diffeological space. Let f : X —
Y be a map. There exists a coarsest diffeology on X such that the map f is differentiable.
This diffeology is called the pull-back diffeology. A parametrization P of X is a plot of
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the pull-back diffeology if and only if f o P is a plot of Y. Let D be the diffeology on Y,
f*(D) will denote the pull-back diffeology of D by f.

(D) ={P € Param(X) | foP € D}.

4.2. Compositions of pull-backs. Let X, Y be two sets and Z be a diffeological space. Let
f:X—=Yand g:Y — Z be two maps. Let D be a diffeology on Z, then f*(¢*(D)) =
(g0 f)"(D).

4.3. Inductions. Let X and Y be two diffeological spaces. A map f : X — Y is called
an induction if f is injective and if the pull-back diffeology of Y by f coincides with the

diffeology of X. That is, the plots of X are the parametrizations P of X such that foP
are plots of Y.

4.4. Surjective inductions. Let f : X — Y be an injection, where X and Y are dif-
feological spaces. The map f is an induction if and only if for any plot P of Y, with
values in f(X), the map f~! o P is a plot of X. In particular, surjective inductions are
diffeomorphisms.

4.5. Compositions of inductions. The composition of two inductions is again an induc-
tion. Inductions make up a subcategory of the category {Diffeology}.

4.6. Subset diffeology and diffeological subspaces. Let X be a diffeological space. Any
subset A C X carries a natural diffeology induced by the inclusion. Namely the pull-back
diffeology by the inclusion ja : A — X (art. 4.3). Equipped with this induced diffeology
the subset A is called a subspace of X. This diffeology is also called the subset diffeology.
The plots of the subset diffeology of A are the plots of X taking their values in A.

4.7. Sums of diffeological spaces. Let X be a family of diffeological spaces, there exists
on the disjoint union [JX of the elements of X:
[Tx=IIx
XeX

a finest diffeology such that each injection jx : X < [[ X is differentiable. This diffeology
is called the sum diffeology of the family X. The plots of the sum diffeology are the
parametrizations P of X which are locally plots of elements of the family X. In other
words, a parametrization P : U — [ X is a plot of the sum diffeology if and only if there
exists an open covering {U;};eg of U and for each ¢ € J an element X; of the family X,
such that P [ U; is a plot of X;. For this diffeology, the injections jx are inductions.

5. Push-forwards of diffeologies and subductions. The category {Diffeology} is
stable by quotient, this stability is a consequence of the following construction.

5.1. Push-forward of diffeologies. Let X be a diffeological space. Let Y be a set and
f : X — Y be a map. There exists a finest diffeology on Y such that f is differentiable.
This diffeology is called the push-forward (or image) of the diffeology of X. Let D be the
diffeology of X, the image of D by f is denoted f.(D). A parametrization P : U — X is
an element of f,(D) if and only if for any r € U there exists a superset V of r such that
either P | V is a constant parametrization or there exists a plot Q : V — X such that
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P |V = foQ. In other words, the diffeology f.(D) is generated (art. 3.1) by the plots of
the form f o Q where Q is a plot of X.

5.2. Subductions. Let X and Y be two diffeological spaces. A map f : X — Y is called a
subduction if it is a surjection and if the image of the diffeology of X (art. 5.1) coincides
with the diffeology of Y. In this case, a parametrization P : U — Y is a plot if and
only if for any r € U there exists a superset V of r and a plot Q : V — X such that

P[V=7foQ.

5.3. Quotients of diffeological spaces. Let X be a diffeological space and let ~ be any
equivalence relation on X. The quotient space Q = X/~ carries a quotient diffeology,
image of the diffeology of X by the projection 7 : X — Q. A parametrization P : U — Q
is a plot of the quotient diffeology if and only if for any r of U there exists a superset V
of 7 and a plot P/ : V — X such that P | V=moP’,

5.4. Injective subductions. Injective subductions are diffeomorphisms.

5.5. Compositions of subductions. The composition of two subductions is again a sub-
duction. Subductions make up a subcategory of the category {Diffeology}.

5.6. Subquotients. Let X be a diffeological space, and let ~ be an equivalence relation
defined on X. Let A C X and let ~4 be the restriction of ~ to A. Let J be the induction
from A into X, and let j be the quotient map, defined from A/~a to X/~. Let w4 : A
— A/~ and 7 : X — X/~ be the projections onto the quotients.

A 4 X

WAJ lw

A/~ — X/~
[~a ; /

The subset A is equipped with the subset diffeology (art. 4.6), and the spaces A/~ and
X/~ are equipped with the quotient diffeology (art. 5.3). The map j is a differentiable
injection. It is an induction if and only if for any plot P : U — X, for any r € U, there
exists a superset V of r and a plot Q : V — A such that 7roP | V = 7m0 Q. This happens,
in particular, if there exists a differentiable map p : X — A such that mop = 7. Moreover,
in this case, if 7 | A is surjective then j is a diffeomorphism.

This proposition will be used later to identify the infinite projective space, with the
quotient of the infinite sphere by the action of S! (art. 18.1).

5.7. Products of diffeological spaces. Let X be a family of diffeological spaces, there exists

on the product
[[x=]]x
XeX

a coarsest diffeology such that, for each X belonging to X the projection 7x : [[X — X is
differentiable. This diffeology is called the product diffeology. The plots of this diffeology
are the parametrizations P : U — [[ X such that for each X € X, mx o P is a plot of X.
For this diffeology the projections 7mx are subductions.
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6. D-topology, locality, embeddings... Diffeologies are defined on arbitrary sets
and are not subordinate to any extra structure. In particular they do not assume the
existence of any underlying topology. But a set, when it is equipped with a diffeology,
carries a natural topology, defined by compatibility with the diffeology. This topology
is used to introduce locality into the diffeological framework. And it is through this
construction that differential geometry of manifolds takes its place in the diffeology theory.

6.1. D-Topology. Let X be a diffeological space. There exists on X a finest topology such
that the plots are continuous. This topology is called D-topology [Don84]. The open sets
of the D-topology are the subsets A C X such that for each plot P of X, the pull-back
P~1(A) is open. The open sets for the D-topology are called D-open.

6.2. Differentiable maps and continuity. Let X and Y be two diffeological spaces. Any
differentiable map f : X — Y is continuous for the D-topology, one says that f is
D-continuous. In other words, considering the D-topology, C>(X,Y) C €°(X,Y).

6.3. D-topology on numerical domains. The D-topology of numerical domains, equipped
with the standard diffeology (art. 1.3), coincides with the standard topology.

6.4. D-topology of discrete space. The D-topology of the discrete diffeology is the discrete
topology. The D-topology of the coarse diffeology is the coarse topology. But, a non coarse
diffeological space can inherit the coarse D-topology.

6.5. Quotients and D-topology. Let X be a diffeological space and ~ be an equivalence
relation defined on X. The D-topology of the quotient X/~ is the quotient topology of
the D-topology of X.

6.6. Embeddings. Let A be a subset of a diffeological space X. The set A carries two
natural topologies: its D-topology given by the subset diffeology, and the subset topology
induced by the D-topology of the ambient space X. If these two topologies coincide we
shall say that A is embedded in X.

Note that, to be embedded depends only on the diffeology of the ambient space X,
and not on any extra-structure, nor other diffeology. A subset of a diffeological space is
embedded or not. For example, the set of rational numbers Q C R is discrete (that is its
subset diffeology is discrete), but not embedded in R.

6.7. Local differentiability and differentiability. Let X and Y be two diffeological spaces.
A map f: A — Y defined on a part A C X is said to be locally differentiable if, for each
plot P of X, foP is a plot of Y. Note that foP is defined on P~!(A) which is necessarily
open if foP is a plot. So, if f : A — X is locally differentiable, A is necessarily D-open,
since for each plot P of X, P71(A) is a domain.

Let f: X — Y be a map between diffeological spaces. We shall say that f is locally
differentiable at the point x € X if there exists a superset V of x such that f | V is locally
differentiable (which implies that V is D-open). The map f is differentiable if and only
if it is locally differentiable at each point z of X.

6.8. Local diffeomorphisms. Let X and Y be two diffeological spaces. Let f: A — Y be
a map defined on a part A C X. The map f is said to be a local diffeomorphism if
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1. f is injective,
2. f is locally differentiable as well as f~!, defined on f(A).

In this case, A and f(A) are both D-open and f : A — f(A) is a diffeomorphism where
A and f(A) are equipped with their subset diffeology. This is a necessary and sufficient
condition for being a local diffeomorphism.

6.9. Diffeology is a local structure. There is another way to express the locality of diffe-
ologies contained in the axiom of locality (art. 1.2). Let us consider a same set X equipped
with two diffeologies D and D’. If there exists a D-open covering U of X such that the re-
stricted diffeologies of D and D’ coincide on each element U of U, then the two diffeologies
D and D’ coincide.

7. Functional diffeology. In the category {Diffeology} the spaces of differentiable
maps between diffeological spaces are naturally diffeological spaces. This property is
very convenient for many diffeological constructions, in particular — but not only —
for homotopy.

7.1. Functional diffeology. Let X and Y be two diffeological spaces. A functional diffe-
ology on C>*°(X,Y) is a diffeology such that the map

ev:CO(X)Y)x X =Y with ev(f,z)= f(z)

is differentiable. For example, the discrete diffeology is a functional diffeology. However,
there exists on C*°(X,Y) a coarsest functional diffeology, called the standard functional
diffeology, or simply the functional diffeology. A plot of the standard functional diffeology
is any parametrization P : U — €°°(X,Y) such that for any plot Q : V. — X the
parametrization P - Q : (r,s) — P(r)(Q(s)) is a plot of Y. In particular, there exists a
natural diffeomorphism between C*° (X, C*°(Y,Z)) and € (X x Y, Z), where X, Y, Z are
any diffeological spaces.

7.2. Functional diffeology of groups of diffeomorphisms. Let X be a diffeological space
and Diff (X) its group of diffeomorphisms. The standard functional diffeology has a spe-
cialization in the case of Diff (X) C €>*°(X,X). A group diffeology (art. 11.1) is a diffeol-
ogy such that the multiplication and the inversion are differentiable. Now, there exists
a coarsest group diffeology on Diff(X) such that the function ev (art. 7.1) is differen-
tiable, it is called the standard functional diffeology of Diff (X). A parametrization P : U
— Diff(X) is a plot of this diffeology if and only if for any plot Q : V — X the two maps
(r,8) — P(r)(Q(s)) and (r,s) — P(r)"1(Q(s)) are plots of X.

8. Homotopy. The traditional theory of homotopy extends naturally to diffeological
spaces. This paragraph presents just the constructions of the homotopy groups of diffeo-
logical spaces. For more details on homotopy in diffeology see [Igl85].

8.1. Connected components of diffeological spaces. Let X be a diffeological space, we
denote by Paths(X) the set of global 1-plots of X

Paths(X) = (R, X),
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equipped with the functional diffeology. The relation of homotopy or connectedness is
defined on X by:

/

x~z' &  there exists v € Paths(X) such that v(0) = z and (1) = 2'.

If z ~ 2’ we say that x is homotopic to x’ or connected to x’. To be homotopic is an
equivalence relation. A class of this relation is called a connected component of X. The
class, or the connected component, of x € X is denoted [z]. The space of connected
components of X, denoted 7 (X), is the quotient of X by the relation of homotopy:

7T0(X) = X/N .

Equipped with the quotient diffeology, the space mo(X) is discrete. More precisely, the
partition into connected components is the finest partition of X such that X is the sum
(art. 4.7) of its parts. The pointed space 7 (X, ), where 2 € X, is defined as

mo(X, o) = (m0(X), [%o])-
If mo(X) = {[zo]} for some zy € X, the space X is said to be connected.

8.2. Iterated loop spaces and higher homotopy. Let X be any diffeological space and
o € X. The space of loops based at x( is defined as:

Loops(X, zg) = {v € Paths(X) | v(0) = (1) = zo}.

The space Loops(X, zg) is equipped with the functional diffeology. The higher homotopy
spaces are defined by recursion:

(X, 20) = mp—1(Loops(X, z0), Zo), o € X, o = [t — zo].
In particular, the space
m1(X, 2¢) = mo(Loops(X, o), Zo)

is called the fundamental group of X, based at zy. Juxtaposition of loops, described below
(art. 8.3), gives m (X, zg) a structure of group. If X is connected and 71 (X, z¢) = {[Z0]}
the space X is said to be 1-connected, or connected and simply connected.

8.3. Homotopy group multiplication. Let X be a diffeological space and let =g € X. Let
~ and ' be two loops, based at xg. The juxtaposition of v with 4 is defined traditionally
by:
Y /{7(215) if t<1/2,
TET T\ et —1) if 1/2 <t
Then, the group operation on the homotopy groups is defined on the class of loops by:
B -BT=hvAl
But vV~ is, not necessarily a path, that is, not necessarily differentiable. So, we « smash »
~ and 7/ at their ends, composing them with a « smashing function » e, described by
figure 2.
The smashing function ¢ is a smooth real function, homotopic to the identity of R,
sending an open superset of | — 00, 0] to 0 and an open superset of [1, co[ to 1. Hence, the
juxtaposition of the paths ¥ = yoe and 4’ = 4/ o ¢ is now a (differentiable) path with
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Fig. 2. The smashing function &

the same ends as vV 7'. Now, since for any path v or +/, the smashed path is homotopic
to the path itself, the operation defined on the classes of loops [7] and [¢/] by

M-BT=6HVvy]
is well defined. As usual, we can check that this composition is a group operation: its
identity is the class of the constant path & : t — ¢, and the inverse of the class [v] is
the class [y]~! = [t — (1 — t)]. The space 7 (X, z0) is always considered equipped with
this group structure.
Now let us introduce the following iterated spaces: For all k£ > 1,

Loops® (X, xo) = Loops* ™ (Loops(X, o), #5 1) and &% : ¢ — &k~1

initialized by:
Loops' (X, ) = Loops(X,zo) and 2§ :t+ do.
So, the recursion defined in (art. 8.2), gives in particular for k& > 1:
(X, o) = mo(Loops® (X, x0), #5) and 7 (X,z0) = Wl(Loopskfl(X,xo),:%g*l).

Now, any higher homotopy space 7 (X, x), k > 1, is a group since it is the fundamental
group of some intermediate loop space. Moreover, as in the usual theory of homotopy, for
k > 2 we check that 7 (X, zg) is abelian [Igl85].

8.4. Contractibility. A diffeological space is said to be contractible if the identity map
1x = [z — 2] is homotopic (art. 8.1) to some constant map xy = [x — x|, with
zo € X, and € (X, X) equipped with the standard functional diffeology. Note that if X
is contractible any homotopy group is trivial: m(X) = {x}.

9. Diffeological fibrations. Fiber bundles in the category {Diffeology} and their prop-
erties are detailed in [Igl85]. Diffeological fibrations are defined below, they are projections
satisfying a property of local triviality along plots. Note that this definition, even if it co-
incides with the standard definition for finite dimensional manifolds, is more flexible than
its topological analogue which requires local triviality. For example, any quotient G/H of
a diffeological group G (art. 11.1) by a subgroup H is a diffeological fibration with fiber
H. But these fibrations G — G/H are not always locally trivial, for the D-topology, as
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many examples show. The following is a limited and pedestrian reminder of the main
constructions.

9.1. Diffeological fiber bundles. Let m : T — B be a map between diffeological spaces.
We shall say that « is a diffeological fibration if there exists a diffeological space F such
that for any plot P : U — B the pull-back P*(T) defined by
PY(T)={(r,t) eUxT|P(r)=n(t)}

is locally trivial over U, with fiber F. More precisely, for any r € U there exists an
open superset V. C U of r, a diffetomorphism ® : V x F — (P | V)*(T) such that
pry(®(r, f)) = r, where pr; is the first projection from (P [ V)*(T) onto V. The space F
is called the fiber. We say that m is locally trivial along the plots.

Note that this definition involves, indirectly, the functional diffeology of the group of
diffeomorphisms (art. 7.2) of F, but we shall not develop this aspect here, for a compre-

hensive report see [Igl85]. Note also that a diffeological fibration is a fortiori a subduction
(art. 5.2).

9.2. Bundles and homotopy. Fiber bundles are not necessarily locally trivial for the
D-topology, for example this fails for irrational fibrations of tori [Igl85]. However, it
can happen that diffeological fiber bundles are also locally trivial. This is the case for the
infinite Hopf fibration (art. 18.1). But, despite this lack of local triviality, any diffeological
fiber bundle satisfies the homotopy exact sequence [Igl85] :

- — me41(B, bo) — mi(Foto) — mi (T, to) — me(B,bo) — -+ — {0}
where m: T — B is a diffeological fibration, by € B, m(to) = by and F = 7~ 1(by).

10. Differential calculus in diffeology. As a final structure, diffeologies support a well
defined, and easy to use, notion of differential forms. They are defined by functoriality
with differential forms of numerical domains.

10.1. Differential forms. Let X be a diffeological space, a k-form on X is any map «
which associates to any plot P : U — X a k-form defined on U, denoted by «(P), such
that for any numerical domain V and any smooth parametrization F : V — U,

a(P o F) = F*(a(P)).

The k-form «(P) and the pull-back F*(«(P)) are understood as usual. We denote by
O%(X) the vector space of k-forms on X. In the same spirit as for differentiable maps,
there exists on any space QF(X) a functional diffeology [P1Z05] such that addition and
multiplication by a scalar are differentiable.

10.2. Exterior differential of a form. Many usual constructions on differential forms have
a natural generalization to diffeological spaces. The exterior differential is an example
among many. Let a be a k-form on X. The exterior differential do is defined by:

(da)(P) = d(a(P)),
for any plot P of X. This definition gives rise to the de Rham cohomology, defined as
usual by

Hir (X) = Zgr(X)/Bar(X),
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where Z, (X) and B} (X) denote respectively the subspace of closed and ezact differential
forms of X.

For example [DI85] the de Rham cohomology of the irrational torus T, = R/(Z+aZ)
is

Hiz(T,) = {0} ifk#1 and Hig(T.) =R.
10.3. Pullbacks of differential forms. Let X and Y be two diffeological spaces. Let f : X
— Y be a differentiable map, let a be a k-form on Y, then the pull-back of a by f is
defined by:
[fH(@)](P) = a(f o P),

for all plots P of X. We check easily that f*(«) is a well defined k-form on X. This last
definition justifies the following notation, or interpretation:

P*(a) = a(P).

And the form a(P) € QF(U), where P : U — X is a plot, can be interpreted as the
« coordinates » of the form « in the plot P.

10.4. Locality of forms. Let X be a diffeological space. Let (X;);c9 be a D-open cover of
X, that is an open cover for the D-topology (art. 6.1). Let (a;);ecg be a family of k-forms
such that:

1. For every index i, ; is a k-form on X;, equipped with the subset diffeology (art. 4.6).
2. For every pair ¢ and j of indices, oy; [ X; NX; = o5 [ X; N X

Then, there exists a unique k-form « on X such that o; = a | X;.

10.5. Equality of forms. Let o and 3 be two p-forms defined on a diffeological space X,
a = fif and only if, for every p-plot P of X: a(P) = (P). In particular, a p-form vanishes
identically if and only if it vanishes on every p-plot. Although, if p-forms are characterized
by their values on p-plots, their differentiability is ensured by the differentiability of their
values on every plot and not only on the p-plots.

10.6. Invariant forms and automorphisms of a form. Let X be a diffeological space and
a a k-form on X, let f be a diffeomorphism of X; we say that « is invariant by f if
f*(a) = . In other words, the form « is invariant by f if and only if, for any plot P of
X, a(P) = a(f o P). The set of all automorphisms of a form c«, denoted by

Aut(a) = {f € Diff(X) | f*(a) = a},

is a group. This group is also called the group of symmetries of the form «. Equipped
with the functional diffeology, Aut(«) is a diffeological group in the natural sense given
below (art. 11.1).

11. Diffeological groups and moments. Diffeological groups were first introduced as
« groupes différentiels » in the early ’80s [Sou81, Sou84]. They are to diffeological spaces
what Lie groups are to manifolds. We recall here their definition. Then, we propose
[PIZ05] as an equivalent to the “dual of the Lie algebra”, the space of invariant 1-forms of
the group. We don’t consider any duality with a putative diffeological Lie algebra. This
is the correct way to talk about coadjoint action or coadjoint orbits in diffeology.
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11.1. Diffeological groups. Let G be a group equipped with a diffeology. We say that G
is a diffeological group if multiplication as well as inversion are differentiable:

[(9.9') — 99"l € €®(G x G,G) and [g+ g '] € C®(G).

Note that if G is a finite dimensional manifold this definition is nothing but the definition
of Lie groups. We denote by L(g) and R(g) the left and right actions of G on itself.

L(g) : ¢' — g9’
For all g € G, {
g R(g): 9 '+ d'g

Note that the « right action » is in fact an anti-action. The adjoint action of G onto itself

is denoted Ad and defined by:
Forallg€ G, Ad(g):kw gkg™' =L(g) oR(g)(k).

11.2. Moments of a diffeological group. We call moment (or momentum) of a diffeological
group G any l-form on G, invariant by the left action. We denote by G* the space of
moments of G. The space of moments of a diffeological group is naturally a vector space.

G* = {a € QY(G) | For all g € G, L(g)*(a) = a}.
There exists a natural isomorphism between the space of left-invariant 1-forms and right-
invariant 1-forms [PIZ05].
Note that in spite of what the notation G* suggests, the space of moments of a diffeo-

logical group is not defined by some duality. This notation is chosen here just to remind
us the connection with the dual of the Lie algebra in the case of Lie groups.

11.3. Coadjoint action of G on §* and coadjoint orbits. The pull-back of a moment
a € §* by the adjoint action of G is still a moment of G, that is still a left-invariant
1-form. This defines a linear action of G on G* called the linear coadjoint action. We shall
denote:

For all g € G, for all « € §*, Ad*(g)(a) = Ad(g~")*(a).
And one checks that it is indeed an action of G:
For all g,¢' € G, Ad"(gg’) = Ad*(g) o Ad"(¢').
Note that, since « is left-invariant, Ad*(g)(a) = R(g)*(a). Let @ be a moment of G, the
orbit of a by G is, by definition, a linear coadjoint orbit of G. And it will be denoted:
Oa or Ad™(G)(a) = {Ad"(g)(a) | g € G}.

The orbit O, can be viewed also as the quotient of the group G by the stabilizer of the
moment «,

O =~ G/Sta(a), with Stg(a) ={g € G |R(g9)* () = a}.

The orbit O, will be equipped in the following with this quotient diffeology.

Note that the vector space §* carries a functional diffeology [PIZ05] which induces on
O, a subset functional diffeology. There is no reason a priori that these two diffeologies
coincide. But it could be interesting however to understand in which conditions they do.
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DIFFEOLOGICAL VECTOR SPACES AND MANIFOLDS

We consider the fields of real numbers R and complex numbers C, equipped with their
standard diffeologies. The field C is diffeologically equivalent to R2. The natural map
(r,y) — 2 = o + iy, from R? to C, is a diffeomorphism of diffeological space. In other
words, a plot of C is just a parametrization r — P(r) 4+ iQ(r) where P and Q are smooth
real parametrizations. In the following, the letter K denotes R or C.

12. Basic constructions and definitions

12.1. Diffeological vector spaces. Let E be a vector space over K, we call vector space
diffeology on E, any diffeology of E such that addition (u,v) — u + v, and multiplication
by a scalar (A, u) — Au, are differentiable, where the spaces E x E and K x E are
equipped with the product diffeology (art. 5.7). The space E, equipped with a vector
space diffeology, is called a diffeological vector space.

12.2. Finite dimensional vector spaces. Finite dimensional vector spaces, over R or C,
equipped with their standard diffeology are diffeological vector spaces. But, note that any
vector space equipped with the coarse diffeology is also a diffeological vector space.

12.3. Ezample: scalar differentiable maps. Let X be a diffeological space, and E =
C>(X,K"), the space of differentiable maps from X to K"™. The space E is naturally
a K-vector space for pointwise addition and multiplication by a scalar. Equipped with
the functional diffeology, E is a diffeological K-vector space.

12.4. Products and quotients of diffeological vector spaces. The product of any family
of diffeological vector spaces is a diffeological vector space for the product diffeology. As
well, the quotient of any diffeological vector space by any subspace is a diffeological vector
space for the quotient diffeology.

Proof. Let us consider the product E = [[gce E of a family € of diffeological vector
spaces. The elements of E are the families @ = (zg)gee, where the zg are elements of E.
The sum and the product are defined by: & + &’ = (zg)gece + (¥%)rece = (TE + T)Bee,
and MA@ = A\(zg)gece = (Arg)gece. A parametrization P : U — E is a plot if, for every E
in &€, the parametrization P o 7g is a plot of E, where 7g is the projection from E onto
its factor (art. 5.7). Since addition and multiplication are differentiable on every factor
of E, it is clear that they are differentiable on E. m

12.5. Differentiable linear maps and category. Let E and F be two diffeological vector
spaces over K. Addition of linear maps from E to F, as well as multiplication by a
scalar are differentiable. As an immediate consequence, the space LC(E, F) of K-linear
differentiable maps from E to F is a K-vector subspace of L(E, F).

Diffeological vector spaces, together with differentiable linear maps, form a category,
the diffeological linear category. Isomorphisms of this category are bi-differentiable linear
isomorphisms.
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13. Fine diffeology of vector spaces. Any K-vector space equipped with the coarse
diffeology is obviously a diffeological vector space, which is not really interesting. But
also, any vector space has a finest vector space diffeology. In this section we analyze some
aspects of this fine diffeology.

13.1. Fine diffeology. There exists, on any vector space E over the field K a finest
diffeology of vector space. We shall call it the fine diffeology. This diffeology is generated
by the family of parametrizations defined by:

P:r— Z Aa(r)v®, (©)

where A is a finite set of indices, A, are smooth K-functions defined on the domain of P
and v® are vectors of E.

More precisely, the plots of the fine diffeology are the parametrizations P : U — E such
that for any ry € U there exists a superset V of 1y, a family of smooth parametrizations
Ao ¢V — K and a family of vectors v € E, both indexed by the same finite set of
indices A, such that:

(PTV) i Y Aalrp®. ()

The family (Ay,v*)aeca such that A\, € C*(V,K) and v* € E will be called in the
following a local family of the plot P, or simply a local family.

Proof. Let us prove that the parametrizations described by < make up a diffeology of
vector space.

1) Diffeology. Constant parametrizations satisfy the condition above. The locality is
satisfied by definition. Now, let F : U’ — U be a smooth parametrization, we have just to
change A\, to Ay o F, with the same v®, and P o F satisfies the condition of the definition
above. So, the set of parametrizations defined above is a diffeology.

2) Diffeology of vector space. Let r — (P(r),Q(r)) be a plot of the product E x E. Let
(A, u)aea and (pp,v”%)gep be two local families such that locally:

P(r) =toc Y Aa(r)u® and  Q(r) =iee D pa(r)o”.

a€A BEB
So, the addition P 4+ Q writes locally:

P+ Qlioc : 7 — Z Ao (r)u® + Z p(r)v? = Z Vo (r)w?
acA BEB ceC

where C is just the sum of the two sets of indices A and B, and the family (v,,w?),cc
the sum of the local families (Ao, u%)aea and (ug,v”)sep. Hence, the addition is dif-
ferentiable. On the other hand, the multiplication by a scalar being differentiable in K,
the multiplication by a scalar in E is also differentiable. Therefore, this diffeology is a
diffeology of vector space.

It is clear, by the very definition of generating families (art. 3.1), that the parametriza-
tions <) are generated by the family . Now, let us prove that this fine diffeology is finest
than any diffeology of vector space defined on E.
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3) Fineness. Let us consider E, provided with any other diffeology D of vector space.
For any smooth parametrization A of K and any vector v € E, the parametrization
r — A(r)u is differentiable, by differentiability of the multiplication by a scalar. Now, by
differentiability of the addition, for any finite local family (A\y, u®)qca, the parametriza-
tion 7 +— > A Aa(r)u® is differentiable, that is a plot of the diffeology D. Then, the
diffeology D if coarser than the fine diffeology defined above. Hence, the fine diffeology
is the finest diffeology of vector space on E. m

13.2. Generating the fine diffeology. Let E be a vector space on K and L(K", E) be the
set of all linear maps from K™ into E. Let L*(K™, E) be the set of all injective maps
from K™ into E,
L* (K™, E) = {j € LK™, E) | ker(j) = {0}}.
The two families
F=|J L(K™E) and = | ] L*(K™E),
meN meN

generate both the fine diffeology of E.

Note that a parametrization P : U — E is a plot for the diffeology generated by JF if
and only if, for any rg in U, there exists a superset V of 7y in U, an integer m, a smooth
parametrization ¢ : V — K", a linear map j : K™ — E, such that P [ V= jo¢. In
other words, locally, P takes its values in a constant finite dimensional subspace F C E
such that the the coordinates of P for some basis of F' are smooth. For the plots generated
by F*, j is injective.

Proof. Let us prove that F, as well as F*, generate the fine diffeology.

Let us P : U — E be a plot of the diffeology generated by F or by F*. Pick a
point 79 in U. By definition there exists a superset V of 7y, an integer m, a smooth
parametrization ¢ : V — K" a linear map j : K" — E, such that P [ V = j o ¢. So,
for any r in V, ¢(r) = >_7" | ¢r(r)ei, where (eq,...,e,,) is the canonical basis of K™,
and ¢, € €°(V,K). Now, P(r) = j(3_4L, on(r)en) = Do, dr(r)i(er) = 2opey dr(r)fe
where f, = j(ey). Therefore, P is a plot of the fine diffeology of E, and (¢, fy)j, is a
local family of the plot P. Note that j can be chosen injective.

Conversely, let P : U — E be a plot of the fine diffeology. Let rg be a point of U.
There exists an open superset V of rg in U, an integer N, a local family (\,,v*)Y_;, with
Aa € C°(V,K), v® € E, and such that P [ V = 25:1 Aa(r)v®. Let F be the vector
space generated by the v*, and let f = (f},...,f,,) be a basis of F. Let us decompose
the vectors v® on the basis f, v* = >}, vif;. Now, P | V = Egzl S Aa(r)vfy, =
Yoy Gr(r)fi, where ¢ (r) = Zgzl Aa(r)vg. The ¢y, are smooth maps defined on V with
values in K. Now, let j : K™ — E be the linear map defined by j(ex) = f and ¢ : V
— K™ defined by ¢ = (é1,...,¢m). So, P | V = j o ¢, where j is an injective linear
map from K™ to E and ¢ belongs to €>°(V, K™). Therefore, P is a plot of the diffeology
generated by F*, a fortiori by F. Hence, the fine diffeology of E is generated by the set of
linear maps, or injective linear maps, from K™ into E, when m runs over the integers. m

13.3. Linear maps and fine diffeology. Let E and F be two diffeological vector spaces
over K. Let E be equipped with the fine diffeology. Any linear map from E to F is
differentiable. In other words, if E is fine, LC*(E, F) = L(E, F).
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Proof. Let (P [ V)(r) = 25:1 Aa(r)vq be a local expression of some plot P of E. Let
A € L(E,F), then we have (Ao P | V)(r) = Zgzl Aa(r)A(vy). Since A(v,) € F for each
a, P is a plot of the fine diffeology of F, therefore a plot of any vector space diffeology.

Thus, A is differentiable, and L(E,F) C LC*(E, F). The converse inclusion is clear. m

13.4. The fine linear category. Thanks to (art. 13.3) the fine diffeological spaces define
a subcategory of the linear diffeological category (art. 12.5), we shall call it the fine
linear category. Objects of this category are all vector spaces. And, according to the
above proposition, morphisms of this category are just linear maps. Hence, the fine linear
category coincides with the usual linear category over the chosen field. In other words,
the functor from the linear category to the fine linear category, which associates to each
vector space the same space equipped with the fine diffeology, is a full faithful functor
[McL71].

13.5. Subspaces of fine diffeological vector spaces. Let E be a vector space over K,
equipped with its fine diffeology. Let F C E be any vector subspace. The subset dif-
feology of F, inherited from E, is the fine diffeology. In other words, the injection of F
into E where E and F are equipped with their fine diffeology is an induction.

Proof. The injection is linear, so it is differentiable (art. 13.3). Let us check now that
if a plot P : U — E takes its values in F, then it is a plot for the fine diffeology of F.
For all o € U there exists a superset V of rg, an injection j : K™ — E and a smooth
parametrization ¢ : V — K" such that P | V = jo¢. Since P takes its values in F so does
jo¢. Let H=span(val(¢)) be the subspace of K™ generated by val(¢) and j' = j | H.
Thus, we have P [ V = j’ 0 ¢ where j' is a linear injection from H to F. Therefore, P is a
plot of the fine diffeology of F. m

13.6. Products and quotients of fine vector spaces. The product of any finite family of
fine vector spaces is a fine vector space for the product diffeology. As well, the quotient
of a fine vector space by a subspace is a fine vector space for the quotient diffeology.

Proof. Let E and E’ be two fine diffeological vector spaces. Let Q : U — E x E’ be a
plot, that is Q = P x P/ where P : U — E and P’ : U — E’ are two plots (art. 5.7). Now,
let rg € U, there exists two supersets V and V' of rg, two local families defined on V,

(Aa» Xa)aca and (X, X! )arear, such that P [ V:ir— > Ao(r)Xq and P [ V' i1 —

a’

Yoo Aar (1) X Let’s deﬁne V"=V nV, we get:

Q1 V") (ZA MXar > Aa/(r)X;,)

acA a’eA’
(Z Ao Xa,o) (o, 3 e (r)X’a,)
acA a’eA’
=3 Al (Xa: 0) + D Aar(r)(0,X7,)).
a€A a’eA’

This exhibits the disjoint union of the two families (Ay, Xa)aca and (AL, X )areas over

V' as a local family of Q | V”. Therefore Q is a plot of the fine diffeology of E x E’. The
extension to any finite number of factors is immediate. m
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13.7. The functional diffeology of L(E,E’). Let E and E’ be two fine vector spaces over
K. The functional diffeology of the space of linear maps LC>°(E,E’) = L(E,E’) is char-
acterized as follows.

A parametrization P : U — L(E,E’) is a plot of the functional diffeology if for any
ro € U and for any vector subspace F C E of finite dimension, there exists an open
superset V of 79, and a vector subspace of finite dimension F/ C E’ such that:

1. For any r € V, the linear map P(r) | V belongs to L(F,F’).
2. The parametrization r — P(r) | F, restricted to V, is a plot of L(F,F’).

Note that, for the second condition, » — P(r) | F is a parametrization of a space of
finite dimensional linear maps, or matrices. The condition to be a plot is just that each
coefficient of the matrix is a smooth function.

Proof. Let P : U — L(E,E’) be a plot of the functional diffeology. Let us show that
it satisfies the condition of the proposition. Let F C E be any vector subspace of finite
dimension. Let (ug,...,u,) be a basis of F. Let rg € U, by definition of the functional
diffeology, for any k = 1...m, the map r — P(r)(ux) is a plot of E’, so there exists a su-
perset Vy, of ¢, a finite set of indices Ay, a family (Mg o)aca, of smooth parametrizations
of K, a family (wk o)aca, of vectors of E, such that, for any r € Vy:

P(r)(ug) = Y Mea(r)wh,a-
aEAg
For all (ci,...,¢m) € K™, for all r € V=N,V we have:
P(r)(chuk) = chP(r)(uk) = Z Z ClA o (T) W o
k=1 k=1 k=1a€cAy
Let F’ be the subspace of E' spanned by the vectors U7X {wg o }aca,, for any u € F,
P(r)(u) € F’. The first condition above is checked. Now, let (v1,...,v,) be a basis of F/,
such that for any £ = 1...m and any o € Ay, wi o = Z?:1 wiﬂvj. Replacing wy o by
this expression we get:

P(r)(i ckuk> = i Z CkAk,a(T) zn:wz’avj = Zn: (Em: Z ck)\k,a(r)wiya)vj.
k=1 j=1

k=1 a€cAg j=1 k=1a€cAg

Hence, defining
m

6 () =" edealr)wl,,
k=1acAy

we get a family of smooth parametrizations (gi)j)?:l of K such that, for any r € V :

P(r)(w) = 3 6, (),

The expression of P(r) above clearly shows that r — P(r) [ F is a plot of the functional
diffeology of L(F,F’). Indeed, by choosing for u successively each vector of a basis of F,
the last expression shows that the components of P(r) [ F are smooth parametrizations
of K, which is the condition, in finite dimension, to be a plot of the functional diffeology.
Hence, we proved the first part of the proposition above.
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Conversely, let us assume that the parametrization P satisfies the condition of the
proposition, and let us show that P is a plot of the functional diffeology. Let us consider
a plot Q : V — E. By definition, for any sg € V, there exists a superset W of sq, a finite
set of indices A, a family (Ay)aeca of smooth parametrizations of K, a family (v, )aca of
vectors of E such that for any s € V, Q(s) = > ca Aa(8)va. Let F C E be the vector
subspace spanned by the vectors v,. Hence, for any r¢ € U, there exists an open superset
U’ of 7y and a vector subspace F' C E’ such that P(r)(F) C F’ for any r € U’. Thus,
for any (r,5) € U' x W, P(7)(Q(5)) = P(7) (D _neca 2a(8)Va) = D qen Aal(s)P(r)(va) € F'.
And since the parametrization 7 — P(r) | F is a plot of the functional diffeology, the
parametrization P - Q : (r, s) — P(r)(Q(s)) is a smooth parametrization of F/ C E’, thus
P - Q is a smooth parametrization of E’, because any finite subspace is embedded in E'.
Therefore, P is a plot of the functional diffeology of L(E, E’). This completes the proof
of the proposition. m

13.8. The fine topology. The D-topology of a fine diffeological vector space E has a simple
characterization. A part 2 C E is D-open if and only if its intersection with any finite
dimensional vector space F C E is open in F. Indeed, the diffeology of E is generated
by the the linear injections j : K" — E (art. 13.2), where n runs over N, hence ) is
D-open if and only if its inverse image by every one of these injections is open in K".
Or, equivalently, if the intersection of 2 with any vector subspace F, of finite dimension,
is open for the smooth topology of F. We recognize here the so-called finite topology of
functional analysis [Tyc35].

13.9. Standard finite dimensional vector spaces. The standard diffeology on K" is the
fine diffeology. Indeed, any plot P : U — K" decomposes over the standard basis (e;)?_,
that is P : r — Z?:l P;(r)e;, where the P, are smooth parametrizations of the field K.

14. Euclidean and hermitian diffeological vector spaces. The definition of eu-
clidean or hermitian structures on diffeological vector spaces is a natural extension of the
standard definitions. They will be applied in the following in the study of infinite spheres
and infinite projective spaces.

14.1. Euclidean and hermitian diffeological structures. Let E be a real (respectively com-
plex) diffeological vector space, and (X,Y) — X -Y be an euclidean (respectively hermi-
tian) product defined on E. If the euclidean (respectively hermitian) product is differen-
tiable, (E, ) is called a euclidean (respectively hermitian) diffeological vector space.

14.2. Fine euclidean or hermitian spaces. Any real (respectively complex) diffeologi-
cal vector space E, equipped with its fine diffeology and equipped with any euclidean
(respectively hermitian) structure is an euclidean (respectively hermitian) diffeological
vector space.

Proof. This is a consequence of the property of linear maps to be differentiable on fine
diffeological vector spaces (art. 13.3). m

14.3. Uniqueness for finite dimensional euclidean spaces. The diffeology of any finite
dimensional euclidean (or hermitian) diffeological space is the fine diffeology.
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Proof. Let (eq,...,e,) be an orthonormal basis of E. Let P : U — E be a plot of E. For
any r in U, P(r) = Y_7_,(ex - P(r))ey. Each map Py(r) : r — e, - P(r) is differentiable
by hypothesis. Hence, P is a plot of the fine diffeology. =

14.4. D-topology and topology of the norm. The norm topology of a hermitian diffeologi-
cal space E does not necessarily coincide with the D-topology. But, any open ball B(z, p),
centered in x € E, of radius p, is D-open. Indeed, its preimage by any plot P : U — E
is the preimage of | — oo, p?[ by 7 — ||z — P(r)||?, but this map is differentiable hence
D-continuous. Thus, the ball B(z, p) is D-open. We can deduce, using the differentiability
of translation and homotheties, that any open set for the norm topology is D-open. In

other words, the topology of the norm is weaker than the D-topology.

15. Diffeological manifolds. Using diffeological vector spaces, we extend the ordinary
definition of manifolds to manifolds modeled on diffeological vector spaces. Note that to
be a manifold is not an extra structure added to the diffeology, but it is a property of the
diffeology. Once a set is equipped with a diffeology, this space is or is not a manifold, it
depends only on the diffeology. Hence diffeologies are or are not manifold diffeologies.

15.1. Manifolds. Let X be a diffeological space, and let E be a diffeological vector space.
We say that X is a diffeological manifold modeled on E if X is locally diffeomorphic to
E at each point. In other words, if for any * € X there exists a local diffeomorphism

(art. 6.8) F : U — X, called chart, such that U C E and = € F(U).

15.2. Generating manifolds. Let E be some diffeological vector space. A diffeological
space X is a diffeological manifold modeled on E if and only if there exists a family A
of local diffeomorphisms from E to X, called charts, generating the diffeology of X. In
other words, for a diffeological space, to be or not to be a manifold (modeled on some
diffeological vector space) is a property not an extra structure.

Any family of charts generating the diffeology of X is called an atlas of X. Note that
there exists an atlas made up with all the local diffeomorphisms from E to X, this atlas
is called the saturated, or mazrimal, atlas of X.

Proof. Let X be generated by a family A of local diffeomorphisms from E to X. Pick
any point € X, and let P : {0} — X be the constant plot such that P(0) = z. By
hypothesis, there exists a chart F € A and a lifting Q : {0} — E such that P = Fo Q.
Hence, F is a local diffeomorphism from E to X, such that x € val(F). Therefore X is a
diffeological manifold modeled on E. Conversely, let us assume that X is a diffeological
manifold, that is locally diffeomorphic to E at each point. Then, let us choose for each
point z € X, a local diffeomorphism ¢ : U — X such that € ¢(U). Let A be the set
of all these chosen local diffeomorphisms, when = runs over X. Let P : V — X be a plot
and 7 € V, let # = P(r) and ¢ € A such that 2 € ¢(U). Now, let Q = ¢~ 1o P | W,
where W = P~1(4(U)). Since ¢ is a local diffeomorphism ¢(U) is D-open. And since
P is D-continuous, W is open. Hence, Q is a local lifting of P along ¢. Therefore, any
plot of X can be lifted along some element of the family A. And, this is the definition
of a generating family of X. Thus, the diffeology of X is generated by a family of local
diffeomorphisms from E to X. m
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15.3. Standard manifolds. The diffeological manifolds modeled on the numerical space
R, for some integer n, are the standard manifolds of dimension n. Note that the standard
manifolds form a full faithful subcategory [McL71] of the category {Diffeology}.

15.4. Submanifolds. Let X be a diffeological space and M C X. The subset M will
be called a submanifold of X if, equipped with the subset diffeology (art. 4.6), M is a
manifold. Subsets of X are just subspaces or are submanifolds, depending on the induced
diffeology. Note that submanifolds can be embedded or not. For example, an irrational
winding in the 2-torus is just a submanifold, diffeomorphic to R, while a rational winding
is an embedded submanifold, diffeomorphic to S'. Another example, the infinite sphere

§ defined below is an embedded submanifold of the Hilbert space H (art. 17.2) .

THE DIFFEOLOGICAL INFINITE HOPF FIBRATION

In this chapter we introduce the unit sphere 8 of the Hilbert space H of square-summable
sequences. The sphere § is equipped with the subset diffeology of the fine diffeology of .
We call it the infinite sphere. We show that the infinite sphere is a contractible diffeological
manifold modeled on H. We construct then the infinite projective space P, which is also
the quotient of the infinite sphere by the action of $'. This defines the infinite Hopf
fibration. We show, in particular, that P, equipped with the quotient diffeology of 8, is a
diffeological manifold modeled on H.

16. The space of square-summable sequences. Here, we describe the main con-
struction relative to the space of complex square-summable sequences, equipped with the
fine diffeology.

16.1. The fine hermitian space H. Let H be the set of square-sumable complex sequen-
ces, indexed by the nonzero integers.

[e) N
3 = {Z N C | Z= (232, Y L= Jim > 77 < oo},
k=1 k=1

where N* denotes the set of nonzero positive integers and z* denotes the complex con-
jugate of a complex number z. The space of complex numbers C is naturally equipped
with the standard diffeology. And in the following, the space J is equipped with the fine
diffeology (art. 13.1).

Let us recall that a parametrization P : U — J{ is a plot for the fine diffeology if and
only if, for each rg in U there exists an open superset V of ry in U, and a local family
(Mo Za)aen, #A < 00, such that:

(PIV)(r) = Aa(r)Za, with Ay € €¥(V,C) and Z, € H.
acA
Note that the functions A\, are smooth for the real smooth structure of C, we are not
talking about holomorphic functions here.
Now let us recall the usual sesquilinear product defined on H:

For all 2,7/ € X, 7-7' = 7;Z}.
k=1
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The sesquilinear map (Z,Z’) — Z -7’ is a hermitian product. So, the pair (X, ) is a fine
hermitian diffeological vector space over C (art. 14.2). We will denote, as usual, by || - ||
the norm associated to the hermitian product:

ForallZe H, |Z|=VZ-Z

And we introduce also the notation pr,, for the k-th projection from H onto C
Forall Z = (Zy)j2, € K, pr,(2)=7Z,€C, k> 0.

17. The infinite sphere. The unit sphere § of the Hilbert space J is defined as usual

by: .
_ 7 2 _q1
sf{zm{]zz ;\ZM 1}

The sphere 8§ will be called the infinite sphere and will be equipped with the subset
diffeology (art. 4.6) of the fine diffeology of H.

17.1. The plots of the unit sphere. By definition (art. 4.6), a plot P : U — § is a plot of
H taking its values in 8. That is, for any point ry of U there exists an open superset V
of ro and a finite local family Ao, Z )aeA, such that:

for all 7 € V, P(r Z/\ Z, with ZA* "o - Zg = 1,
a€cA a,BEA
for some A, € C*(V,C) and Z, € H. For example, pick two orthonormal vectors Z,
and Z of 3, that is ||Z.|| = ||1Zs|| = 1 and Z, - Zy = 0. The parametrization P : ¢ —
cos(t)Zg, + sin(t)Zy, where t € R, is a plot of §.

17.2. The infinite sphere as a diffeological space. The infinite sphere 8, equipped with
the subset diffeology of the fine diffeology of H, is a manifold modeled on H (art. 15.1).
Moreover, the sphere 8 is embedded in H (art. 6.6) and contractible (art. 8.4).

Proof. The proof will be given in several steps. First of all we shall identify the Hilbert

space of complex summable sequences with the space of real summable sequences. This

will identify, at the same time, the unit spheres of these two spaces. Then, we shall show

that the real infinite sphere is a contractible manifold modeled on the Hilbert space of

real summable sequences, and then that it is embedded, which will prove the proposition.
Let us first introduce the Hilbert space Hg:

I = {X:N" = R [ X = (X072, Y XP = lim ZX2<oo}
k=1

equipped with the fine diffeology. This space can be also considered as the subspace of
H in which all coefficients are real.

STEP 1: The spaces H and Hg are diffeomorphic. Let us introduce the following two
maps, for any X = (X;)52, belonging to Hg, or for any Z = (Z;)?2 , belonging to I :

Fold : X — Z with Zj = Xor_1 +iXgg, forall k >0

Unfold : Z — X with Xgpy1 = R(Zr41) and Xop = $(Zg), for all & >0,
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where ® and & denote the real and imaginary parts. These two maps are bijective and
each other’s inverse: Unfold = Fold™*. Let us now check that they are differentiable. Let
P : U — Hg be a plot. Locally P(r) writes D 5 Aa(7)Xa, where (Aq, Xq)aca is a local

family. Now,
Fold(P( Fold( 3 ) 3" Aa(r)Fold(Xa),
acA acA

since Fold is R-linear and the A, are real valued functions. Writing Z, = Fold(X,),
we have Fold(P(r)) = > ca Aa(r)Za, so Fold o P is a plot of H. Therefore the map
Fold is differentiable. Conversely, let us consider a plot P : U — H. Locally P(r) writes
Y aca A1) Za, where (Ao, Za)aca is a local family. But now the A, are complex valued
functions and the Z,, are complex vectors. Let us decompose A\, = jiq +iV,, where p, and
Vg are real valued functions. Now, P(r) = > ca[ta(r) +iVa(r)|Za = D pca Ha(rT)Za +
Y aca Valr)iZe. But iZ, is still an element of H. Hence, the union of the two local
families (ta,Za)aca and (Va,iZq)aca is still a local family (pg,(s)sen, where the pg
are now real valued functions. Thus, locally P(r) = > 5.5 ps(r)(s- But, the Unfold
mapping is clearly R-linear, thus denoting £z = Unfold((3) we get locally Unfold(P(r)) =
> sen P3(r)€p, where the pg are real smooth functions and the {5 are elements of Hr.
Therefore Unfold o P is a plot of Hr and Unfold is differentiable. In conclusion H and
Hg are diffeomorphic.

STEP 2: The infinite sphere is diffeomorphic to the real infinite sphere. Let us consider
X € Hr, and Z = Fold(X). Now, Zj = Xor_1 + iXa, hence |Z|* = X2, ;| + X2,. And,
therefore [1Z]/2 = Y00, [1Z4? = (X2 + X3) + (X3 + X3) + -+ = 3%, X2 = [XP. In
conclusion, Fold sends the real infinite sphere

SR:{XEJ{R‘X~X:§:X2:1}
k=1

onto 8. Now, since Fold is a diffeomorphism from Hg to H it follows that its restriction to
SR is a diffeomorphism onto 8, where Sg and 8 are equipped with the subset diffeology.

STEP 3: The real infinite sphere as a diffeological manifold. Let us consider the following
stereographic maps:

Fi:Hg — 8gr with F+:§p—>X21(|§|2_1>
€12 +1 26
and
i 1 1—|£|2>
F_: % 8 th F_: X -
R e X= e (ot

where the matrix notation denotes the corresponding sequence in Hg

<z> ~(a,&1,&,...) wherea € R £ =(&1,&9,...) € Hr.

The maps F; and F_ are stereographic maps of Sg, the image of F is Sg — {e1}, and
the image of F_ is Sg — {—e1}, where e; is the vector whose first coordinate is 1 and
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the others are zero. More generally we shall denote by e, the vector defined by:
pri(ex) = 1 and pr;(ey) = 0if j # k.
Let us denote, now, for any X € Hg:
X=(X1,Xy) with Xj3=pr;(X) and X; = (X3,Xs,...) € Hgr.

The inverse maps are given by:

_ . _ X
F+1:8R—{e1}—>}CR with FJrlzX»—>§:17J;(17

and <
F7l:8g —{—e} = Hr with F7':X¢= 1++X1'

Let us show now that the stereographic maps are local diffeomorphisms from Hg to Sg.
We consider only F since the case F_ is completely analogous. We already checked that
F, is injective, and its domain is J{ which is obviously D-open in 3. We shall prove that
8 —{e1}, the image of F, is D-open in 8. Then, we shall prove that F is differentiable
as well as Fjrl, defined on 8 — {e;} equipped with the subset diffeology. And finally,
applying the criterion (art. 6.8), it will follow that F is a local diffeomorphism.

a) The map F is injective. We already exhibited F_T_l.

b) The map F, is differentiable. Let us consider a parametrization P : U — Hg.
For any ry € U there exists an open superset V of rg in U, a finite set of indices A, and
a local family (Aq, X4 )aca such that:

PIV:ir— Z)\Q(T)Xa

a€cA
So,
. e(r)
Fio(P[V):r— (ZQGA Ma(T)Xa>
with
r 2_ r
6(’1”') _ ” ZaeA AO&( )Xoé” 1 and MQ(T) 2>\a( )

1 e Aa(r)Xall? +1 1 pea Aa(n)Xpl? +1
The denominator of € and pu, never vanishes, hence the functions € and pu, belong to
C*(V,R). Now Fy o (P | V) rewrites:

Eeo® 1109 =t () + St (1)

a€cA
This exhibits the map Fy o (P | V) as a finite linear combination of vectors of Hg with
smooth parametrizations of R as coefficients. Therefore, F o P is a plot of Hg. Since
F; oP takes its values in SR, it is a plot of the subset diffeology of Sg C Hr, where Hg
is equipped with the fine diffeology. Hence, F is differentiable.

c) The map F' is differentiable. Let P: U — 8r — {e;} be a plot. For any ry € U
there exists an open superset V of rg in U, a finite set of indices A, a local family
(Aa, Xa)aea such that:

PIV:ir— Z Ao (1) Xaq,
acA
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SO
- Aa(T)
1=3"geaMa(r)Xp

Since the X3 ; form a finite set of constant numbers, the parametrization ZﬁeA Ag(r)Xgp1

FloP[V)ir— Z fro (1) X With e (r)
acA

is smooth, and never equal to 1 since P takes its values in 8g —{e; }. Thus, for each a € A,
ta(r) is a smooth parametrization of R. The parametrization F_T_l o (P [V)isclearly a
finite linear combination of vectors of Hg with coefficients smooth parametrizations of
R. Hence, F__i_1 o (P ] V) is a plot of the fine diffeology of Hgr. Now, F_T_l o P is locally,
at each point of U, a plot of Hg, so it is a plot of Hg. Therefore, F_T_l is a differentiable
map from Sg — {e1} to Hg.

d) The subset Sg — {e1} is open for the D-topology. Let us recall that a set is D-open
if and only if its preimage by any plot is open. Let P : U — 8gr be a plot, for any
ro € U there exists an open superset V of ry in U, a finite set of indices A, a local family
(Ao, Xa)aea such that:

PIV:ir— Z)\OC(T)XQ

a€cA

Hence,

(P V)" (Sr — {e1}) = {r ev ‘ 3 Aa(r)Xas # 1}.
a€A
But the parametrization Py : 7+ Y 1 Ao (7)Xq,1 is smooth, a fortiori continuous. So,
the preimage of R — {1} is open. Thus, P~!(Sg — {e1}) is an union of open sets of U,
and therefore open. Hence, P~1(Sg — {e;}) is open for any plot P, that is Sg — {e;} is
D-open.

In conclusion, the diffeology of the real infinite sphere Sy is generated by F and F_,
therefore Sg is, by definition (art. 15.1), a diffeological manifold, modeled on Hg. Now,
since Hgr and H are diffeomorphic, 8 is a diffeological manifold modeled on H. The first
sentence of the proposition is proved.

STEP 4: The infinite sphere is contractible. Let us prove now that the infinite sphere Sg,
equipped with the subset fine diffeology of Hg, is contractible. That is, there exists a
differentiable path v of €*°(8g) connecting the identity 1s : X — X with the constant
map €é; : X — ey.

The proof of this proposition, uses the following linear map, called the shift operator:
Shift : Hg — Hg, with Shift(X); = 0 and Shift(X); = Xg—1, k& > 1.

In other words Shift(X) = (0,X) = (0, Xy, Xa,...). The shift operator is clearly a linear
operator, hence is differentiable for the fine diffeology. It is injective and preserves the
scalar product. It injects strictly the infinite sphere into an equator.

We prove the contractibility of the infinite sphere in two steps, first we shall show that
the constant map €; is homotopic to the shift operator, and then, that the shift operator
is homotopic to the identity 1g. Then, applying the smashing function (art. 8.3) to the
pair of homotopies we get a path connecting the constant map to the identity.
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a) Homotopy between €; and Shift. Let us consider the following 1-parameter family

of deformations:
it . [t .
forallt € R, for all X € Sg, p:(X) = cos (2) e; +sin (2> Shift(X).
For any t € R, p:(X) € Sr. Since addition and multiplication by a smooth function are
differentiable, the map (¢,X) — p;(X) is differentiable. Thus, the map ¢ — p; is a path
of € (8Rr) connecting €; and Shift, precisely:
po=¢€ and p; = Shift.

b) Homotopy between Shift and 1g. Let us consider the following 1-parameter family

of deformations:
forallt € R, for all X € Hr, o0+(X) =1tX+ (1 — ¢)Shift(X).

Note that ker(o;) = 0, this is clear for ¢ = 0, and for nonzero t it follows inductively
by observing that the condition o4(X) = 0 writes (X1, Xsg,Xs,...) = %(O,Xth7 e
In particular o; is nowhere zero on the sphere, so we can define p; : Sg — Sgr by:

1
pe(X) = - roe(X).
o+ (X) ]
Let us check that (¢,X) — pi(X) is differentiable. First of all, (¢,X) — 04(X) is clearly
differentiable. Since the scalar product is differentiable, it follows that (t,X) — |lo¢(X)||?
is differentiable; and because this map takes its values in ]0, co[, its square root is differ-
entiable. In conclusion, ¢ — p; is a path in C*°(8r), and
po = Shift and p; =1s.

We proved, with a) and b) that Sg is contractible. The whole proposition is thus proved. m

17.3. Vanishing homotopy groups. Note that since Sg is contractible, all its homotopy
groups vanish:
for all k£ € N*, ﬂk(SR) = {0}

This fact is known in the topological framework, we proved that it is also true in diffeology.

18. The infinite projective space. Let us recall some set theoretic constructions,
today classic. Let us introduce:

C*=C—-{0} and H*=H —{0}.
Now, let us consider the group C* acting on H* by multiplication
For all (z,Z) € C* x H*, (z,Z) — z7Z € H*.

The quotient of H* by this action of C* is called the infinite complex projective space, or
simply the infinite projective space, and it is denoted P. The restriction of the action of
St to 8 C H* gives the following set theoretic equivalences

P = H*/C* ~ §/S' ~ Sr/SO(2,R).

Indeed, the sphere 8 intersects every C*-orbit in H*. The trace on 8§ of the action of
C* is the action of S' identified to the set of complex numbers of modulus 1. Hence,
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H*/C* ~ §/S!. The last equivalence is obtained by identifying H to Hgr + iHr or
Hr X Hr, thanks to the unique decomposition Z = X 4 ¢Y, where Z belongs to H and
X and Y belong to Hg. The action of S! ~ SO(2,R) on the pair (X,Y) is given by:

cos(t) —sin(t)\ (X _ [cos(t)X —sin(t)Y
sin(t) cos(t) Y/ \sin(t)X +cos(t)Y )"
Now, let us equip the infinite projective space P with the quotient diffeology of the

subset diffeology of J{* C J{. We shall see that these identifications are also valid from
the diffeological point of view. That is, 3*/C*, §/S! and 8g /SO(2, R) are diffeomorphic.

18.1. The infinite projective space as a diffeological space. The infinite projective space
P is a diffeological manifold modeled on H. The projection 7 : H* — P is a C* principal
diffeological fibration, locally trivial. The projective space P is naturally diffeomorphic
to the quotient §/S!, moreover the restriction 7g of 7 : H* — P to the sphere § is a
principal S! diffeological fibration, locally trivial. The homotopy of P is given by:

m2(P)=7Z and m(P)={0}, if k # 2.
The principal fibrations 7 or mg are not trivial.
Proof. P is a diffeological manifold, modeled on H. Let us denote by [Z] = [Z1,Za,...]

the class in P of an element Z = (Z1,Zs,...) of H. Let us consider the various affine

subspaces Hjy C H defined by:
Hy={Z2€H|Z, =1}, ke N*.

These spaces intersect the orbits of the group C* in one and only one point. The orbits
which do not meet Hj, are those such that Z; = 0. However, the orbit of any point Z € H*
intersects some 3y, in other words Ugen+ C*Hy, = H*, or m(Ugen+Hi) = P. For each
k € N* let us define the injection ji : H — H* by

71(Z2)=(1,Z) and ji(Z)=(Z1,...,2k-1,1,Zg,...), if k> 1.
And let us define also the map
Fk:ﬂ'ojk, Fk:f}f—>ﬂ).

We shall prove now that the Fj, are inductions onto D-open sets of P, and therefore are
local diffeomorphisms (art. 6.8):

a) The map j; is an induction. Let us consider a plot P of H with values in H,
locally:

P(r) = Aa(r)Za and P(r) = > Aa(r)Zak =1, Pr=pr,oP.
a€cA a€cA
Let us define (, by:

Ca = (Za,la RS Zoz,kfla 1; Za,kJrlv B )

For each « in A, (, belongs to H;. Let e, be the sequence with only one nonzero term,
equal to 1, at the place k. From the condition above, we have locally:
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1= Aa(r)la— Y Aalr)er + > Aalr)Zaker

acA acA a€A
= Z Aa(r)Ca + (1 - Z )\a(r)>ek
acA acA

Now, since the vectors (, and ej belong to Hj, the plot j,;l o P writes locally

= D e )+ (1 2 ha)i e

acA a€A

but j(0) = ey implies jk_l(ek) = 0, hence:

=D Aalr)i M (Ca):
acA
This exhibits the parametrization jk_l o P as a plot of H, hence jj is an induction.

b) The map Fy, is clearly differentiable and injective.

¢) Let Q : U — P be a plot with values in Fi(H), and let ¢ € U. By definition of the
quotient diffeology, there exists a superset V of ry and a plot P : V — JH* such that Q |
V = woP. By hypothesis, for each r € V, P(r) # 0, where P, = prj, oP, therefore P’ : V
— H* defined by P’(r) = P(r)/Pk(r) takes its values in Hy,. Since Py, is differentiable, P’
is differentiable and Q | V = woP’. The plot P’ takes its values in Hj, and jj, is an induc-
tion, so the composition j; ' o P’ is a plot of 3. But, by construction, j; ' o P’ = F; ' 0Q,
thus F,;l 0 Q is a plot of H and F;l is differentiable. Therefore, Fj. is an induction.

d) Now let us prove that the image of Fj is D-open. Since the D-topology of the
quotient diffeology is the quotient topology of the D-topology (art. 6.5), it is enough to
prove that the preimage by 7 of the Fj(H) is D-open in H*. We saw that 7= (Fy(H))
is the set of all Z € H such that Z; # 0, i.e. prgl(C*). But pry, is linear, hence smooth,
hence continuous. Since C* is open it follows that m=!(F(H)) is open.

So, we just proved that the Fy, are local diffeomorphisms. Since their images cover P,
the space P is a diffeological manifold modeled on H.

Let us prove now, that 7 is a C* principal fibration. Let us consider the map

Oy : H x C* — H* such that @y (Z, z) = zjr(Z).

The previous part of the proof proved that ®; is a diffeomorphism covering Fy. It com-
mutes with the action of C*. Thus, the projection 7 is a diffeological C* principal bundles,
locally trivial.

The restriction wg : 8§ — P is a diffeological fibration. The restriction to the infinite
sphere has been described above. Just the action of S! remains from the action of C*.
Now, thanks to the projection Z +— Z/||Z||, the natural bijection §/S! — P = H*/C*
is a diffeomorphism (art. 5.6). The projection 7 to 8 is a reduction of the fibration H*
— P to the subgroup S! C C*, therefore it is a fibration |[Igl85].

The homotopy of P. We apply the exact sequence of homotopy for diffeological bundle
(art. 9.2), since the total space § is contractible we get mi(P) = mp_1(S!), which gives
the homotopy groups of P, in particular the only nontrivial one: 73 (P) = m(St) = Z.

The fibration is not trivial. Indeed, otherwise the first homotopy group 1 (8) would
be equal to 7 (P x S') = 71 (P) x 71 (S!) = {0} x Z = Z which is not the case. m
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THE SYMPLECTIC PICTURE

In this chapter we introduce a homogeneous symplectic form 2 on the square HZ =
Hr X Hr, which we call the standard symplectic form. This differential form is invariant
by translation. The form € is the exterior derivative of a 1-form A, called the Liouuville
form, because it is the restriction to J{% of the general Liouville’s form defined on the
1-form bundle of any diffeological space [PIZ05]. The restriction @ of A to the infinite
sphere 8g is a connection 1-form, for the natural action of the group SO(2,R) defining
the Hopf fibration. The curvature of w is a closed 2-form w defined on P ~ 8g/SO(2,R),
which generalizes the standard Fubini-Study form of the finite dimensional construction.

19. The Liouville form on the Hilbert square. The following proposition gives the
definition of the Liouville form on the square f}{%, a natural extension of the Liouville
form of the finite dimensional case R?".

19.1. The Liouville form. Let P : U — Hgr X Hgr be a plot, V C U an open subset
such that there exists a finite local family (A4, (X, Yo )), where the A, are smooth real
functions defined on V, and the (X,,Y,) are vectors of Hr x Hg, such that:

[Vire= Y Xa(r)(Xa, Ya).

acA
Let A(P | V) be the following 1-form, defined on V:
1
AP V) =5 3 (Xa- Y5 = Yo Xg)(hadAs — Agdha).
a,BEA

1. If P’ is any plot of Hr x Hg such that P [ V=P’ [ V, then A(P [ V) = AP’ | V).
2. There exists a 1-form A(P) on U such that for any open subset V.C U, A(P | V) =
AP) V.
3. The map A : P — A(P) is a 1-form of Hg x Hrg.
Proof. Let us prove successively:
1. Let us develop the restriction of P’ to V,
P IVire > A ()X, Y.
a’cA’
Then, P | V=P’ | V implies
Z/\ X, = Z AX!, and Z/\ Y, = Z Y
acA a’'eA’ acA a’e A’
Let us note that:
= (Y naXa) (o ana¥s) = (3o AaYa) - (3 areXs).
acA BEA aEA BEA
Thus, we have:

AP V)= A(P' [ V) = (ZAQXQ)-( 3 dxg,,Yg,/)

a€cA a’’ €A’

- (Z AaYa> : ( 3 dX’,,Xa,,)

a€cA a’’ €A’
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where A” is the following reordering of the two sets of indices A and A’, X/,, X,

and Y/, following this reordering: let A = {1,...,a} and A’ = {1,...,d’} we denote
A" ={1,...,d"} such that a” = a+ o’ and:

" . 1" 1 ! . 12 i
Aor =X if1<a”" <a and A=Ay ifa+1<a" <a+d,

Ygu:Yaiflga”ga and Yg//:fY&/ifaJrlga"SaJra/,
X", =X,if1<a”"<a and X!, =-X ifat+1<a’"<a+d.

With this reordering we get:

Z )\OzYOé = Z >‘/o/ /o/ = Z IO/LH /o/// = 0,

acA a’eA’ al’e A
S AXe= SNXL = 3 ALXL, =0,
a€cA a’eA’! a’’eA”

Let us project this vector on each factor R by the projection pry:

> ONLYL =0 = forallkeN, >  A.Yl,, =0,

a’’ €A =y

> ONLXLi=0 = forallkeN, Y  A.XL =0
al/ EAII all EAII
But X, , and Y[, , are just numbers, > . c v Ao Xow o and Y- e an Aon Yo, are
smooth functions of r € V. Since these functions vanish identically, so do their derivatives,
with respect to . And we get:

forall k€N, > d\i Yl =0 = Y d\L YL, =0,

(03
o'’ €A a’’ €A’

forallk € N, Y d\L XL, =0 = >  d\X,.XL, =0.
aIIEAI/ a//eA//
And finally A(P [ V) = AP’ [ V).
2. Let us consider a covering U; of U such that the plot P, restricted to each U;, is the
sum of a finite linear combination of vectors with smooth parametrizations as coefficients.

Let ¢ and j be two indices of the covering, let us denote P; = P | U;. By the previous
statement we have

A(P;) 1 U;NU; = A(P;) [ Ui N Uy
Because a differential form is local (art. 10.4), there exists a 1-form A(P) = sup,; A(P;),

defined on U such that A(P) [ U; = A(P;)

3. It remains to show that the map A is a 1-form on Hgr x Hg. That is, to check
that for any plot P : U — Hg x Hg, and for any smooth parametrization F : U' — U,
AP oF)=F*(A(P)). Let rj € U and o = F(r(), let

PIVire Y Aa(r)(Xa,Ya)
a€cA
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as usual. Let us define now V' = F~1}(V) and X/, = \, o F, we have

APoF [ V) (0r) = D Xo-Yg N (r)dNp(r')(61")
a,BEA

D7 XaYg Aa(F(r))dAs(F(r')) (D(F,)(57"))
a,BEA

> Xa Y Aa(r)drs(r)(r),

a,BEA

with r = F(r’) and or = D(F),.(dr’), this is the definition of the pull-back. Therefore,
APoF [ V') =F*(A(P | V)). Since this is true locally, and since it’s a local property,
it’s true globally and A(P o F) = F*(A(P)). =

19.2. The complex picture of the Liouville form. Let us consider the identification of H
with Hr x Hr defined by the unique decomposition Z = X+:Y, with (X,Y) € Hr x Hr.
Let P:r ) A Aa(r)Za be a plot of H, where (Ao, Za)aca is a local family. The A,
are complex valued functions and the Z, are vectors of J. Let us define the symbol dZ
by :

dZ(P) : r — Z dMo(r)Zo where P:re— Z Aa(r)Ze.

acA a€A

Here d)\, needs to be understood as
d\, = day + idb,, where A\, = an + ib,.

Then, the Liouville form tw, pulled back on H by the isomorphism ® : Z — (X,Y), writes:
1
o[22~ dz- 7).

1

" (w)
Proof. This identity is obtained just by developing the computation as follows:

(Z-dZ—dZ-Z)(P) = > Ai(Xa —iYa) Y dAg(Xs+iYs)

a€cA BeEA
=) AN (Xa —iYa) Y Aa(Xp +iYp)
a€cA BeEA
= ) AdAs[XaXp+ YoYs+i(XaYs — YoXp)]
a,BEA
— ) ANA[XaXp + Yo Y5 +i(XaYs — YaXp)]
a,BEA
= > (XaXg+ YaYs)(Aadhg — dA;Ag)
a,BEA
+i Y (XaYs = YaXg)(AedAs — dALAg).
a,BEA

But, >, sea(XaXp + YaYp)(AhdAs — dA;Ag) = 0 for symmetry reasons. Hence, devel-
oping, for each index, A\, = a, + ib,, We get:
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(Z-dZ—dZ-Z)(P) =i Y  (Xa¥p—YaXg)(\odAs — dA3Np)

a,BEA

=i Z (XaYs — YoXp)(aadag — agdas + badbs — badby,)
a,BEA

= > (XaYs — YaXp)(tadbs + agdbs — badag — baday).
a,BEA

But, the second term of the right hand side vanishes for symmetry reasons. So, there
remains:

(Z-dZ—dZ-Z)(P) =i ¥ (XaYs — YaXp)(aadag — apdas)
a,BEA

+i Y (XaYs = YaXg)(badbs — badba).
a,BEA

Let us now come back to the map ® : Z — (X,Y), identifying H and Hr x Hgr. The plot
® o P writes necessarily ®oP(r) = 3,4 p;(r)(X;,Y;). Then, by developing 3 s AaZa
we obtain the family (u;, (X;,Y;))jeg as the union of two families:

(:u'jv (Xja Yj))jGS = (aav (Xaa Ya)aGA ) ba, (_Ya; Xa)aEA)'

Applying the form w to ® o P, with this family, we get:

w(®oP) = Z (XaYs — YoXp)(andag — agday)
a,BEA
+ D (—YaXp + XaYp)(badbs — bdba).
a,BEA
Comparing the last two expressions we get w(®oP) = (1/2i)(Z-dZ —dZ-Z)(P). Thanks
to locality (art. 10.4), this equality is still satisfied for any plot of H%. Hence, we can
conclude that:

a€cA

>*(w) = %[Z-dZ—dZZ}.

The proof is complete. =

20. The symplectic form on the Hilbert square. The standard symplectic form of
Hr x Hg is just the exterior derivative of the Liouville form. It generalizes the standard
symplectic form of even dimensional real vector spaces, and its local expression is given
by the following proposition.

20.1. The symplectic form of Hr x Hgr. Let  be the exterior derivative of A,
Q=dA, ie. Q(P)=dAP)]

for any plot P : U — Hg x Hg. Let V C U be a domain such that there exists a local
family (Aa, (Xa, Ya))aca such that:

PIVire Y Aal(r)(Xa, Yao).
a€cA
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Then, a direct computation give the local expresion of the 2-form €2 in the plot P:

QP TV)= > (Xa-Ys— Yo Xg)dAa AdAg.
a,fEA
Moreover the symplectic form 2 is invariant under the translations of Hg x Hgr. We call
Q the standard symplectic form of the square Hr X HRg.

20.2. Why is Q symplectic? The word symplectic in the last proposition (art. 20.1) needs
however to be discussed. I use it because the momentum map of Hr x Hg, acting on
itself by translation and preserving w, satisfies the condition I suggest for w to be called
a symplectic form. Here is an abridged description of the general construction, a full
discussion on symplectic diffeology can be found in [PIZ05].

Let X be a connected diffeological space. Let w be a closed 2-form on X. Its whole sym-
metry group Diff (X, w) consists of all diffetomorphisms of X which preserve w, equipped
with the functional diffeology (art. 7.1). Let G be any group of symmetries, that is any
subgroup of Diff (X,w), and let §* be the space of moments of G (art. 11.2) equipped
with the functional diffeology of space of differentiable forms [PIZ05].

The 2-point momentum map. The 2-point momentum map of G is a differentiable map
1 defined on X x X with values in a quotient §*/T', where I is the holonomy group of the
G-action. The holonomy group I' is a homomorphic image of the first homotopy group
7m1(X), and is G-invariant in G*. It is the obstruction to the G-action being hamiltonian.
The 2-point momentum map satisfies the Chasles cocycle relation

d(x,a) + (2, 2") + (", 2) =0

and is G-equivariant:

U(g(x), 9(2")) = Ad"(g)(¢(x,a")), forall g € G.

The 1-point momentum maps. Since X is connected, there always exists a differentiable
map p from X to §* /T such that

(o, a') = p(a’) - p(a).

We can choose pu(x) = ¢(zg, ) where x is any point of X. I call the maps p, the 1-point
momentum maps. We may also simply call them momentum maps, since they extend the
usual definition of the momentum maps. Since the space X is connected, two momentum
maps differ only by a constant. If 4 can be chosen equivariant the 2-point momentum
map 1) is said to be exact, and p is called a primitive of 1.

The associated cohomology class 0. If the 2-point momentum map 1) is not exact, the
variance of any 1-momentum map u defines a non trivial 1-cocycle 6 by:

n(g(x)) = Ad*(g)(u(x)) + 0(g), where 6 € Z'(G,5*/T).

Two different 1-point momentum maps define two cohomologous cocycles. The cohomol-
ogy class [0] € HY(G, §*/T") extends the so-called Souriau cohomology class. Note that if
the 2-point momentum map v is exact, a primitive u of ¢ (that is a 1-point momentum
map) is still defined modulo a constant. But, this time this constant is invariant under
the coadjoint action of G.
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Homogeneous cases. Whether p is equivariant or not, we can show [PIZ05] that when
G acts transitively on X, p is automatically a fibration onto its image which is always an
affine coadjoint orbit, that is an orbit of the affine coadjoint action:

go : b — Ad"(g)(u) + 6(g), for any g € G and any p € G*/T.

What has been said until now applies the same way to the whole symmetry group
Diff (X, w). In this case the momentum map is the universal momentum map of (X, w),
since any other momentum map, relative to any subgroup G C Diff (X, w) factorizes
through it. Now, it seems to me natural to define symplectic forms as follow:

Symplectic diffeological spaces. Let X be a diffeological space. A closed 2-form w defined
on X is said to be symplectic if X is homogeneous under the symmetry group Diff (X, w)
and if any 1-point momentum map p of Diff(X,w) is a covering onto its image. In this
case, the pair (X,w) is called a symplectic diffeological space.

This definition needs however some comments. First of all, if this property is satisfied
for some group of symmetries G C Diff (X,w), it is a fortiori satisfied for the whole group
of symmetries Diff(X,w). Hence, it is sufficient to find the good symmetry group for
checking that a closed 2-form is symplectic. Secondly, if a 1-point momentum map is a
covering onto its image then all the 1-points momentum maps are coverings, since they
differ just by a constant.

Now, let us come to the very reason of this definition. In the usual case of a fi-
nite dimensional real manifold, the Darboux theorem asserts that a symplectic man-
ifold (X,w) is locally homogeneous under Diff (X,w). Hence, a good generalization of
symplectic manifolds needs to include this property, which excludes the non homoge-
neous situations, altought this condition could weakened by considering the pseudo-
group of local automorphisms, but that is still not done. Then, if X is homogeneous
under Diff(X,w) or one of its subgroups, any 1-point momentum map g is a fibration
onto an affine coadjoint orbit. The space X can be regarded as pre-symplectic. But, the
characteristics of u are exactly the characteristics of w. Hence to be non degenerate is
equivalent for p to have its characteristics discrete, that is to be a covering onto its
image.

I know that many authors consider som kinds of “symplectic structures” on non ho-
mogeneous spaces, as for example on orbifolds where singularities can be exchanged by
diffeomorphisms only with other singularities of same type. Personally, for the reason just
expressed above, I would prefer to talk about “symplectic stratified diffeological spaces”,
althout symplectic stratified diffeological spaces can be more general than orbifolds. But
we still miss a name for the general case of a diffeological space equipped just with a
closed 2-form, which is the basis of all this analysis.

21. The symplectic structure on the infinite projective space. We consider now
the restriction w of the Liouville form A to the sphere 8g, it is obviously invariant by
the action of SO(2,R). In the complex picture, the action of S* ~ SO(2,R) is given by
multiplication. For any point Z € §, the orbit map Z, from S! to 8, is defined by:

7:8' =8 with Z(r)=7Z.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 385

21.1. The Liouwille form w is a connection form. Let w be the restriction of the Liouville
form of ﬂ{% to the infinite sphere Sg. For any Z in 8, the pull-back of the Liouville form
@ by the orbit map Z coincides with the standard length 1-form of the circle S':

. dz

A = —.

(w) =~
In other words, w is an S'-connection form of the Hopf fibration 7 : § — P.
Proof. Tt is enough to test the 1-form Z*(w) on the 1-plots of S! (art. 10.5). And since
the diffeology of S! is generated by the homomorphism F : R — S!, with F(t) = e, it
is enough to test Z*(w) on F. Now,
F*(Z"(w)) = (ZoF)*w = w(Z o F) = w([t — F(t)Z]).

Let us develop F(¢)Z in terms of (X,Y):
X cos(t) — sin(t) cos(t)X — sin(t)Y
(Y)7 ®) (sin(t) cos(t) }’ ®)(2) sin(t)X 4 cos(t)Y
In other words, our plot ¢ +— F(¢)(Z) can be described in terms of (art. 13.1) the local
family (A1, X1, Y1) = (cos, X, Y), (A2, X2, Y2) = (sin, =Y, X).
Now, let us apply the definition,
ot FOZ) = Y XaYs(adhs — Asdha)

a,B€{1,2}
= XlYg()\ld/\g — )\Qd/\l) + X2Y1(>\2d)\1 — >\1d)\2)

= X - X[cos(¢t)d(sin(t)) — sin(t)d(cos(t))]
+(=Y) - Y[sin(¢)d(cos(t)) — cos(t)d(sin(t))]

=X -Xdt+Y-Ydt

=[X-X+Y- Y]dt

=dt

=F*(dz/iz).
The proof is complete. m
21.2. Fubini-Study form on the infinite projective space There exists a unique closed
2-form w defined on P such that

mw=dw, 7:8—P.

It is, by definition, the curvature of @, viewed as a S'-connection form on §. This form
w will be called the infinite Fubini-Study symplectic form.

Proof. In general, when we have a subduction 7 : A — B and a form « on A, for proving
that there exists a form 8 on B such that 7*(3) = «, we have to check that: for any pair
of plots P and P’ of A such that moP = 7o P, a(P) = «(P’) [PIZ05]. But in the case of
principal diffeological fibration this condition splits into two conditions:

a) the form o must be invariant under the structure group, and
b) it must vanish on the “vertical” plots, that is the plots whose images are contained
in the fibers.
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The details of these propositions can be found in [PIZ05]. In our case, the fiber has
dimension 1. So, dw necessarily vanishes on the vertical plots, and we noted already that
@ (therefore dw) is S'-invariant (art. 21.1). Hence, there exists a 2-form w of P, such
that dw = 7*w. =

21.3. The infinite Fubini-Study form is not exact. The Fubini-Study form w on P is the
curvature of the connection w. It is closed but not exact, and its value on any 2-cycle is
a multiple of 27. In other words, its group of periods is

Per(w) — { /J o

Proof. w is not exact. Suppose we had w = de. Then, w — 7*(¢) would be closed: d[w —
7*(€)] = 7*(w — de) = 0. Since 8 is contractible (art. 17.2), it would follow [PIZ05] that
w — 7*(€) is exact, say @ — 7*(e) = df. But then the integral over a fiber S = 7~ 1(p)
would vanish: [jw = [(7*(e) + [gdf = 04 [,qf = 0+ 0, whereas we know that
fsw = 027r dt = 2m.

The periods of w. Let us consider now a 2-simplex o in P, such that do = 0, i.e.

oc Hg(fp, Z)} =2nZ.

its boundary goes on one point p. Let us compute the integral fgw = fa T (dw) =
fﬂ*o dw. Here, w¥0 is a lifting ¢* of o, that is a simplex of § such that 7 o ¢* = ¢. So,
fow = fag* w, but do* is a map sending a « circle » — the boundary of the standard
2-simplex — to the circle 771(p). Since w | 7~1(p) ~ dt, by definition of the degree:
Joor @ = deg(do*) 027r dt € 2rZ. m

22. The canonical line bundle over the infinite projective space. It is difficult
to talk about the Hopf fibration without talking about its C-associated line bundle.

22.1. The Hopf line bundle. Let us consider the diagonal action of C* on the product
H* x C, endowed with the product diffeology. It is easy to check that this action is
differentiable. Now, the quotient space:

L=H" xc C={[2,2] | (Z,2) ~ (7Z,72), 7 € C*}

equipped with its quotient topology, is a diffeological bundle, on P, locally trivial. The
projection is defined by = : [Z, z] — [Z]. Moreover, L is a diffeological manifold modeled
on H.

Proof. Let us consider the following maps ®:
O HxC — L suchthat @y(Z,2) = [Fr(2),z2] € L,
where Fj, are the charts defined in proposition 18.1. The ®;, are diffeomorphisms which

commute with the action of C*, therefore L is locally diffeomorphic to H x C ~ H at
each point. The set of (Pf)ren+ is an equivariant atlas of L. m

22.2. Sections of the line bundle. Note that, by restriction to § C H* and S' C C*, we
get:

L=8xg C={[Z,2]]|(Z, 2)~ (7Z,72),7 € S'}.
Outside the null-section, the line bundle L is diffeomorphic to H*, the point 0 € H is
replaced by P. The space L is the blow-up of H at the point 0.
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Now, let ¢ : 8§ — C be a differentiable function such that ¢(7Z) = 7¢(Z), for all
7€ S! and Z € 8. The map [t/] defined by:

[¢] : P — L such that  [Y]([Z]) = [Z,(Z)]
is a differentiable section of the bundle 7 : L — P.

Proof. The proof is an application of general constructions about associated diffeological
fiber bundles, developed in [Igl85]. m

THE SYMMETRIES OF THE INFINITE HOPF CONSTRUCTION

We used the word symplectic to describe the 2-form w defined on the infinite projective
space P (art. 21.2). But we have to justify this terminology. According to the suggestion
above (art. 20.2) we shall show that the projective space is equivalent to a coadjoint orbit
of the unitary group U(H), that is the subgroup of GL(H) preserving the hermitian
form. First of all we shall show that P is homogeneous under U(J), for the diffeologies
involved. Then, we compute explicitly the momentum map of the action of U(H) on P
and show that it is bijective. This will identify P with the image of the momentum map,
that is with a coadjoint orbit of U(J).

23. The infinite sphere as a homogeneous space. On one hand, the vector space
H is equipped with its fine diffeology, the sphere 8§ C H inherits its diffeology by induc-
tion. On the other hand, the space of linear maps L(J) is equipped with the functional
diffeology, as group of differentiable maps of H, the subgroup U(H) C L(H) inherits,
by induction, this functional diffeology described in (art. 13.7). The group U(H) acts
transitively on the sphere 8§ [Bou72]. We shall show that 8 is a homogeneous space of
U(H). That is, precisely: the diffeology of the sphere § is the quotient of the functional
diffeology of U(H).

23.1. The infinite sphere as homogeneous space. Let 7 : U(H) — 8§ be the map 7(A) =
Ae;. The map 7 is a subduction, where U(H) is equipped with the functional diffeology
and the sphere § with the subset diffeology of the fine diffeology of H. In other words,
the sphere 8 is a diffeological homogeneous space of U ().

8~ U(J’C)/StU(%) (el) and StU(g.() (el) ~ U(f}f)

Proof. The proof will be given in two steps:

1. The map w is surjective. Let Z and Z' be two elements of 8. If Z and Z' are collinear
then there exists 7 € S ~ U(C) such that Z’ = 7Z. But, the map Z + 7Z belongs to
U(H). Now, if Z and Z’ are independent over C, let E be the plane spanned by these
two vectors and let F be its orthogonal for the hermitian product. According to Bourbaki
[Bou72] E and F are supplementary H{ = E @& F. The vectors Z and Z' are vectors of
the unit sphere S> C E ~ C2, now the group U(C?) acts transitively on S3, there exists
A € U(C?) such that Z’ = AZ. This map, extended to 3{ by the identity on F, belongs
to U(H) and maps Z to Z'. Therefore, the action of U(H) is transitive on 8, which is
equivalent to the assertion that 7 is surjective.
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2. The map 7 is a subduction. Let Q : U — § be a plot. We want to lift locally Q
along the projection 7, that is for any rg € U, find a plot P : V — U(H), defined on
some superset V of rg, such that P(r)(e1) = Q(r), for any » € V. So, let 1o € U, let V
be a superset of 7y, let j : C™ — I be an injection, and let ¢ : V. — C™ be a smooth
parametrization such that Q [ V = j o ¢. Let us denote E = j(C™). The plot Q of 8
takes its values in E, and hence in the unit sphere of E: S(E) = E N 8. The diffeology
induced on S(E) is the standard diffeology: S(E) ~ S?™~1, Thus Q | V is an ordinary
differentiable map from V into S(E). But, we know that the projection from U(m) onto
S(C™) is a submersion, a fortiori a subduction. So, for any ro € V there exists a domain
W C V and a smooth lifting ¢ : W — U(m) such that Q(r) = ¢(r)(e}*), for any r € W,
where e is the vector (1,0,...,0) € C™. Let us assume that e; = j(e}"), if it is not
the case we conjugate everything with some well chosen linear map. Now, let F be the
orthogonal of E. The space H is the direct sum of E and F, i.e. H{ = E® F [Bou72|. Any
vector Z € H has a unique decomposition Z = Zg + Zg such that Zg € E and Zg € F.
Let us define the following map:

forallr € W, for all Z € 3 : P(r)(Z) = o(r)(Zg) + Zp.

For any r € W the map P(r) is differentiable because the decomposition Z +— (Zg, Zr) is
linear, differentiable for the fine diffeology. Moreover P(r) clearly preserves the Hermitian
product, and it’s clearly invertible. The map P lifts Q locally:

for all » € W, P(r)(e1) = ¢(r)(e]") + 0 = Q(r).

It remains to check that P is a plot of the functional diffeology of U(H). But this is
quite clear, a finite family of vectors splits into components in E and in F, because the
family is finite one has a finite intersection of open sets which is open and we get the
desired property. The inverse of P(r) does not give any more problem. Thus, the proof is
complete. m

24. The projective space as a coadjoint orbit. In this section we give first a def-
inition of the momentum map of the action of a diffeological group preserving a closed
2-form, in the special case where the form is exact and the group preserves a primitive.
The general definition of the momentum map in diffeology can be found in [PIZ05]. We
apply this definition to the action of U(H) acting on the infinite sphere equipped with
the form dw. Then, we show that the momentum map factorizes through P in a bijection
onto a coadjoint orbit of U(H). Thanks to the equivariance of the momentum map, this
identifies P to a coadjoint orbit.

24.1. The momentum map of the unitary group. Let us consider the action of U(H)
on 8, let us denote Ag : Z — AZ, where (A,Z) € U(H) x S. This action preserves the
Liouville form o, that is for all A € U(XH), A§(w) = w. The momentum map associated
to the action of U(H) on 8, regarding dw is, by definition the map

p:Z—2(w), Z:U(H)—S8, Z(A)=AZ

In fact the momentum map is defined modulo a constant (art. 20.2). We make implicitly
for © and m a choice of constant.
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1. The momentum map f takes its values in the space U* of moments of U(H)
(art. 11.2).
2. The momentum map p is equivariant under the action of U(H):

For all A € U(K), for all Z € H, pu(AZ) = Ad"(A)(u(Z)).
3. The value of the momentum map p, on any 1-plot P of U(H), is given by

unP) = 5 | P T - OO @), (%)
where, locally:
P(t)(Z2) = Z Ao(t)Zs, and dP(t)(Z) = d)‘;t(t) Z...
a€A weA

4. The momentum map g is homogeneous of degree two:
For all Z € U(H), for all z € C, u(2Z) = |2|*u(Z).

5. The momentum map p factorizes through P: there exists m € C> (P, U*) such that
1t = m o m, where 7 is the projection from § onto its quotient P.

6. The map m : P — U* is the momentum map of U(H) acting on 8, relative to the
Fubini-Study form w.

7. The momentum map m : P — U* is injective.

Therefore, the image of P under the momentum map m is a coadjoint orbit of U(H), the
momentum map m identifies, as diffeological spaces, P and this coadjoint orbit.

Proof. Let us prove successively:

1. ;(Z) is a moment of U(JH). The 1-form w, defined on § is invariant by the action
of the unitary group U(H), hence for any A € U(H), L(A)*(u(Z)) = L(A)* 0 Z*(w) =
(ZoL(A))*(w), but ZoL(A) = AsoZ, hence L(A)*(u(Z)) = (ZoL(A))*(w) = Z*(A%(w))
7*(w) = u(Z). Therefore yu(Z) € U* for any Z € 8.

2. The momentum map  is equivariant. Let A € U(H), and Z € H. We have u(AZ) =
AZ @, but AZ = ZoR(A), so u(AZ) = (ZoR(A))*(w) = R(A)*(Z*(=)) = R(A)* (u(Z))
Ad*(A) o u(Z). That is po Ag = Ad"(A) o p.

3. Ezpression of pu. This expression is a direct application of the complex formulation
of the momentum map (art. 19.2).

4. The momentum map 1s quadratic. It’s just an application of the formula &. But
we can get this property directly. Let z € C and Z € H, we have u(zZ) = ;z*(w) =
(22)*(w) = Z*(2*(w)). Now, let us use the complex expression of the Liouville form
(art. 19.2),

w =

%[Z-dZ—dZ-Z].
By definition of the symbol dZ, we get obviously d(zZ) = zdZ. And, thus z*(w) = z*zw =
|22, that is u(2Z) = |z|*u(Z).

5. The momentum map factorizes through P. This is a direct consequence of P ~ §/S!
and part of the proposition 4) with |z| = 1.

6. The map m is the momentum map of U(H) on P. This proposition makes reference
to the general definition of the momentum map for diffeological spaces [PIZ05]. The
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functoriality of the momentum map expresses that: if a group G has an hamiltonian
action on two spaces (X,w) and (X’,w’) such that 7 : X — X’ is a subduction commuting
with the two actions of G, so the respective momentum maps p and p’ can be chosen
such that u' = 7o p.

7. The momentum map m is injective. Let us consider Z and Z' two elements of §
such that p(Z) = p(Z'). If Z and Z' are collinear, then Z’ = 7Z and [Z] = [Z'], where [Z]
is the class of Z in P. Then, let us assume that Z and Z’ are not collinear. Let E be the
complex 2-plane generated by Z and Z’. Let us consider an orthonormal basis of E made
with Z as first vector and v as second, and let Z' = aZ + bv. We have a*a + b*b = 1 and
b # 0. Let us now consider the plot P : R — U(H) defined as follows:

P(t)(Z) = Z, P(t)(v) = e®v and P(t) | E* = 1.

The plot ¢ — P(¢)(Z) decomposes according to the family {(1,Z)}, applying the formula
& we get u(Z)(P) = 0. But, the plot ¢ — P(¢)(Z’') decomposes according to the family
{(a,Z), (bexp(it),v)}, and

aP(1)(Z')

dt

Applying & we get now p(Z')(P) = b*b. But then, u(Z2')(P) = u(Z)(P) = 0 implies b = 0,
which is in contradiction with the hypothesis b # 0. Therefore, u(Z) = pu(
if 2/ = 77, with 7 € S*.

8. The infinite projective space P is equivalent to a coadjoint orbit of U(JH). Since the
projection from U(XK) onto § is a subduction, and P is the quotient of 8, the projection
from U(H) onto P is a subduction (art. 5.5). Now, by definition, the diffeology of the
coadjoint orbit O = m(P) is the quotient diffeology of U(H) by the stabilizer of some
point (art. 11.3). Hence, the momentum map m is differentiable, as well as its inverse,

= ibe’tu.

7') if and only

that is m is a diffeomorphism from P onto O. =

25. The action of the maximal torus. We denote by T(H) the subgroup of U(H)
defined by:

T (215, = (ThZe)3,  with 7 = (1), and 7 € S! for all k.

We call T(H) the standard mazimal torus(') of U(H). As a group, T(H) is isomorphic
to the infinite product of circles H;il S', indexed by the integers, with pointwise multi-
plication. But its diffeology inherits the diffeology described in (art. 13.7). We shall see
now that, here again, diffeology can give a formal status to what is expected about the
momentum map of this group.

25.1. The momentum map of the mazrimal torus. The momentum map of the maximal
torus T'(H) is the restriction to T(H) of the momentum map of the group U(H). More
precisely, let us consider the orbit map of a point Z € § relative to T(H):

Z:T(H)—8, VreT(H) Z(r)=r(Z).

'Here, it is just a name.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 391

The pull-back by Z of the 1-form w, defined on 8, is a T(H) invariant 1-form on T(J),
that is an element of the space of moments T7*. The map

i 8 — T* such that u(Z) = Z*(w),

is the momentum map of T(H) on 8. The factorization of y on P is the momentum map

of T(H) on P for the Fubini-Study form w:
m:P— T m(Z]) = uZ).

The momentum map m is given by the following formula:
m([Z]) = Y |Zl? prii(e),
k=1

where ¢ is the standard length form on S'. More precisely, for any plot P : U — T(%),
U e R™, m(Z) writes:

m([Z])(P) = |Zx[*Pj(e) with P, =pr,oP.
k=1

Note that for any r € U, any vector ér € R™, the sequence N — Z§:1 |Zi|? P;(g)-(07)
converges, which gives a meaning to this formula.

Proof. Let us recall the expression of w given in (art. 19.2),

1
w=5:(2-dZ—dz-7] with dZ(P)(r)= > dra(r)Za.
acA
Hence,
- 1
2w = —[(7Z2-d(7Z) — d(7Z) - 7Z]
1
= (2 (" drZ) 2 (rdr 7))
1
= —\7- * _ W7
2i[ (t*dr — 7d7*)(Z)]
1 o0
= o5 2 |ZP (7 dmy = ).
k=1
But, 7, € S, so Trdry, = —TRdT; . Hence:

1 * * 1 * *
Z[dem — TpdTy] = ETk dr, = 74 (¢)
and therefore

w(2) =2 = |Zl*7i(e).
k=1

To avoid a misinterpretation of the last equality, due to the infinite sum, let us specify its
meaning. Let P : U — T(J) be a plot. Let P(r) = > s Aa(7)Za be a local expression
of P,on V C U. The )\, can be real by a good choice of the Z,. Let Z, = X, + Y3 and
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Z = X +14Y, developing the expression on u(Z), we get:

pZ)P V) =D X2+ YD) Y KanYsr = YarXsr)Aadrs — AgdAa)
k=1 a,BEA
or
,U,(Z)(P [ V) = Z ()\adkﬁ — /\ﬁd)\ Z Pt Yk @ kY[g’k — Ya,kXB,k)a
a,BEA k=1

which is a finite sum of summable series.
Now, let us come back to the expression p(Z) = Y 7o | |Zx|?7; (¢), it is clear that u(Z)
is invariant by the diagonal action of S!. And therefore m([Z]) = u(Z) is well defined. m

25.2. The image under the momentum map of T(H). The image of the infinite projective
space by the momentum map m is the convex hull, in the vector space 7%, of the relative
momenta

my, =pri(e) €T, k=1---

The momentum my is indeed the momentum map of the subgroup S,lc of elements of
T(H) for which only the k-th component is not the identity.

oo o
m(P) = { 3 timy, ‘ forall k € N*: ¢, > 0, and > t; = 1}.
k=1 k=1
For any sequence (f;)72, such that Y ;- | ¢ = 1, and each t; is not negative there exists
some Z € H such that |Zx|?> = tj, we can choose Zjy = /.
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