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Abstra
t.We introdu
e di�eologi
al real or 
omplex ve
tor spa
es. We de�ne the �ne di�eologyon any ve
tor spa
e. We equip the ve
tor spa
e H of square summable sequen
es with the �nedi�eology. We show that the unit sphere S of H, equipped with the subset di�eology, is an em-bedded di�eologi
al submanifold modeled on H. We show that the proje
tive spa
e P, equippedwith the quotient di�eology of S by S1, is also a di�eologi
al manifold modeled on H. We de�nethe Fubini-Study symple
ti
 form on P. We 
ompute the momentum map of the unitary group
U(H) on the sphere S and on P. And we show that this momentum map identi�es the proje
tivespa
e P with a di�eologi
al 
oadjoint orbit of the group U(H), where U(H) is equipped withthe fun
tional di�eology. We dis
uss some other properties of the symple
ti
 stru
ture of P. Inparti
ular, we show that the image of P under the momentum map of the maximal torus T(H)of U(H) is a 
onvex subset of the spa
e of moments of T(H), in�nitely generated.INTRODUCTIONDi�eology is a theory that enlarges the s
ope of di�erential geometry. It was introdu
edby J.-M. Souriau [Sou81℄, and in a slightly di�erent way by K.-T. Chen [Che77℄ few yearsbefore. Di�eology has been su

essfully tested on « singular » obje
ts like irrational tori[DI85℄ [Igl85, Igl86℄ [IL90℄ or more re
ently on orbifolds [IKZ05℄. This paper shows, in the
ase of the in�nite Hopf �bration, how it 
an be used in a parti
ular in�nite dimensional
ontext. Writing down this example I want to show how everything follows simply froma minimal set of 
onventions: the unique 
hoi
e of a di�eology on the standard Hilbertspa
e. No extra stru
ture is needed, and the di�eologi
al framework just works. Whatneeds to be emphasized, in 
ontrast with topologi
al methods, is the very simple formaland 
oherent use of di�erential 
al
ulus o�ered by the general di�eologi
al framework. Forexample, di�eologi
al notions of forms, exterior derivative et
. lead, among other things,to an elegant de�nition of the momentum map. This seems advantageous to me in this2000 Mathemati
s Subje
t Classi�
ation: Primary 58B99.The paper is in �nal form and no version of it will be published elsewhere.[349℄ 
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350 P. IGLESIAS-ZEMMOURfuzzy world of in�nite dimensional spa
es, where it is not always 
lear how di�erentiability
oexists with topology.Mu
h of the di�eologi
al material presented here is well known by spe
ialists, butsome parts are new, required by the subje
t. In parti
ular, the introdu
tion of di�eologi
alve
tor spa
es, their �ne di�eology, and the de�nition of di�eologi
al manifolds.The set-theoreti
 
onstru
tion of the in�nite Hopf �bration is well known, but let usre
all it. We 
onsider the Hilbert spa
e H of square summable 
omplex sequen
es withthe standard hermitian produ
t. The quotient of H− {0} by the multipli
ative a
tion of
C − {0} is the proje
tive spa
e P of 
omplex lines of H. This spa
e is equivalent to thequotient of the unit sphere S ⊂ H by the subgroup S1 ⊂ C− {0} of 
omplex numbers ofmodulus 1. The proje
tion S −→ P is the in�nite Hopf �bration. As a topologi
al spa
e,the sphere S is 
ontra
tible [Kak43℄, from whi
h it follows that S is the S1 topologi
al
lassifying total spa
e E(S1) and P its base B(S1).Now, we 
onsider this 
onstru
tion from the di�eologi
al point of view. After a reviewof the main di�eologi
al de�nitions and 
onstru
tions, we introdu
e the notion of di�eo-logi
al ve
tor spa
es and some related 
onstru
tions. The Hilbert spa
e H is then equippedwith the standard hermitian produ
t and with the �ne di�eology of ve
tor spa
e. Theunit sphere S of H inherits the subset di�eology, and the proje
tive spa
e P is equippedwith the quotient di�eology of S by S1. We shall see that:a) The sphere S, as well as the proje
tive spa
e P, are di�eologi
al manifolds, bothmodeled on H.b) The sphere S is 
ontra
tible as a di�eologi
al spa
e.
) The proje
tion S −→ P is a di�eologi
al bundle, lo
ally trivial. And, the (di�eologi-
al) homotopy groups of P are π2(P) = Z, πk(P) = 0 if k 6= 2.Then we de�ne a 
ertain di�erential 1-form on S � an S1-
onne
tion form � 
alled Liou-ville's form, whose 
urvature generalizes to P the so-
alled Fubini-Study symple
ti
 form.On the other hand, the group U(H) of unitary transformations of H a
ts naturally on
S and P, preserving both the 
onne
tion form and its 
urvature. We give a 
hara
terizationof the fun
tional di�eology of the group U(H), for H equipped with the �ne di�eology.Further, we de�ne the spa
e G∗ of moments of a di�eologi
al group G as the set ofall left-invariant 1-forms of G. And, be
ause we don't need more generality here, we givethe expression of the momentum map, relative to a 
losed 2-form, in the very parti
ular
ase where this form is exa
t and has an invariant primitive. The general de�nition of themomentum map, for the di�eologi
al 
ontext, is given and studied in [PIZ05℄ (see also[Igl95℄). This di�eologi
al momentum map extends Souriau's original de�nition [Sou70℄given in the 
ontext of ordinary di�erential geometry. Then, we apply these 
onstru
tionsto our 
ase, and we see that the 
hara
teristi
 
urves of the momentum map µ of U(H)on S are the �bers of the proje
tion S −→ P. Hen
e, the momentum map µ fa
torizesthrough P in the momentum map m of U(H) on P, more pre
isely:d) The momentum map m of U(H) on P is inje
tive and identi�es the proje
tive spa
e

P with a 
oadjoint orbit of U(H), where U(H) is equipped with the fun
tionaldi�eology asso
iated to the �ne di�eology of H.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 351Finally, we introdu
e themaximal torus T(H) of the groupU(H) and, after restri
tionof the previous 
onstru
tion to T(H), we show that:e) The image of the momentum map of T(H) is an in�nitely generated 
onvex domainof the ve
tor spa
e T∗ of moments of T(H).Note that the topologi
al properties of in�nite dimensional topologi
al manifolds havebeen studied more generally than the parti
ular 
ase of the in�nite sphere, see for example[Kui65℄ [Pal65, Pal66℄. It would be interesting to have a di�eologi
al parallel for these
ases too. It would also be very interesting to 
lassify the 
oadjoint orbits of U(H) in thisdi�eologi
al framework. We shall 
ertainly get all the �ag spa
es of �nite rank, whi
h aredire
t extensions of the rank one �ag 
ase studied here. But it is un
lear if they exhaustthe whole set of 
oadjoint orbits.Thanks. I am pleased to thank, warmly, François Ziegler for all his 
omments andsuggestions whi
h helped me to improve this text. It is a pleasure also to thank theorganizers of the 
onferen
e of B�dlewo, Jan Kubarski, Robert Wolak and Jean Pradineswho invited me to take part in it. I would not forget to thank also the Hebrew Universityof Jerusalem for its great hospitality and its warm atmosphere.REVIEW ON DIFFEOLOGYThis 
hapter is a review of the main di�eologi
al 
onstru
tions used in this arti
le. Noproofs are given. The reader 
an �nd them in a web do
ument maintained at [PIZ05℄ orin [Igl85℄.1. De�nitions1.1. Domains and parametrizations. An n-numeri
al domain is any open subset of theve
tor spa
e Rn, n ≥ 0. A numeri
al domain is any domain for any n ∈ N.A parametrization of a set X is any map P : U −→ X su
h that U is a numeri
aldomain. If U is an n-numeri
al domain we say that P is an n-parametrization.1. The set of all the parametrizations of X de�ned on U is denoted by Param(U,X).2. The set of all n-parametrizations of X is denoted by Paramn(X).3. The set of all parametrizations of X is denoted by Param(X).4. If P is an n-parametrization, we say that the dimension of P is n, we denote it by:For all P ∈ Param(X), dim(P) = n ⇔ P ∈ Paramn(X).Let X be a set, and x be any point of X. A superset of x is any part V of X 
ontaining
x. If X is a topologi
al spa
e, an open superset of x is just a superset of x whi
h is openfor the given topology.1.2. Di�eology and di�eologi
al spa
es. A di�eology of a set X is a subset D of parame-trizations of X, whose elements are 
alled plots, su
h that the following axioms hold:



352 P. IGLESIAS-ZEMMOURD1. Covering. Any 
onstant parametrization is a plot: for any point x of X and forany integer n, the 
onstant map x : Rn −→ X, de�ned by x(r) = x for all r in Rn,is a plot.D2. Lo
ality. For any parametrization P : U −→ X, if P is lo
ally a plot at ea
h pointof U then P is a plot. This means that, if for every r in U there exists a superset Vof r su
h that the restri
tion P ↾ V is a plot, then P is a plot.D3. Smooth 
ompatibility. The 
omposition of a plot with any smooth parametrizationof its sour
e is a plot: let P : U −→ X be a plot and let F belong to C∞(V,U), where
V is any numeri
al domain, then P ◦ F is a plot.A set equipped with a di�eology is 
alled a di�eologi
al spa
e.The �rst axiom implies that ea
h point of X is 
overed by a plot. The se
ond axiom
learly means that to be a plot is a lo
al 
ondition. And, the third axiom ensures some
oheren
e of the use of the word di�erentiable in this 
ontext. The set of all plots ofthe di�eology D de�ned on a numeri
al domain U will be denoted D(U,X). Formally,a di�eologi
al spa
e is a pair (X,D) where X is an arbitrary set and D a di�eology of

X. But most of the time the di�eologi
al spa
e will be denoted by the single letter Xdenoting its underlying spa
e, the di�eology is understood.Let us note however that the distin
tion between di�eology as a stru
ture and di�e-ologi
al spa
e as a set together with a di�eology is psy
hologi
al: the di�eology 
ontainsthe underlying set as the set of 0-plots. As well, a topology 
ontains the underlying spa
eas the union of all open sets.1.3. Standard di�eology of domains. The set of all smooth parametrizations of a nu-meri
al domain U ⊂ Rn is 
learly a di�eology. We shall 
all it the standard di�eologyof U.2. Di�erentiable maps. Di�eologi
al spa
es are the obje
ts of a 
ategory whose mor-phisms are di�erentiable maps, and isomorphisms are the di�eomorphisms.2.1. Di�erentiable maps and di�eomorphisms. Let X and Y be two di�eologi
al spa
esand F : X −→ Y be a map. The map F is said to be di�erentiable if for ea
h plot P of
X, F ◦P is a plot of Y. The set of di�erentiable maps from X to Y is denoted C∞(X,Y).A bije
tive map F : X −→ Y is said to be a di�eomorphism if both F and F−1 aredi�erentiable. The set of all di�eomorphisms of X is a group denoted Diff(X).2.2. The Di�eology 
ategory. The 
omposition of di�erentiable maps is di�erentiable.Di�eologi
al spa
es, together with di�erentiable maps, de�ne a 
ategory, denoted {Di�eo-logy}. The isomorphisms of the 
ategory are di�eomorphisms.2.3. Plots are smooth. The set of di�erentiable maps from a numeri
al domain U intoa di�eologi
al spa
e X is exa
tly the set of plots of X de�ned on U. This is a dire
t
onsequen
e of axiom D3. Hen
e, C∞(U,X) = D(U,X) and we may equally use these twonotations. This justi�es, a posteriori, the use of the symbol C∞ to denote the di�erentiablemaps between di�eologi
al spa
es. And for this reason we may equally use the wordsmooth or the word di�erentiable.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 3532.4. Comparing di�eologies. A large number of 
onstru
tions in di�eology use the fol-lowing relation on di�eologies: a di�eology D on a set X is said to be �ner than another
D′, if

D ⊂ D′.The relation ⊂ is a partial order on the di�eologies of any given set X. We say indi�erentlythat D is �ner than D′ or D′ 
oarser than D. Note that 
oarser means more plots and�ner means fewer plots.2.5. Dis
rete and 
oarse di�eologies. Any set X 
arries a �nest di�eology, �ner than anyother di�eology, 
alled the dis
rete di�eology. The plots of the dis
rete di�eology are thelo
ally 
onstant parametrizations.Any set X 
arries a 
oarsest di�eology, 
ontaining any other di�eology, it is 
alled the
oarse di�eology. The plots of the 
oarse di�eology are all parametrizations of X, that isthe whole set Param(X).In these two 
ases, the three axioms of di�eology, 
overing, lo
ality and smooth 
om-patibility, are obviously satis�ed. Any di�eology is somewhere between the dis
rete andthe 
oarse di�eologies.2.6. Interse
ting di�eologies. As an illustration of the partial order on di�eologies, letus 
ite the following proposition. Let X be a set and D be any family of di�eologies of
X. The interse
tion ⋂

D∈D

Dis a di�eology. It is the 
oarsest di�eology 
ontained in every element of D, the �nest beingthe dis
rete di�eology. This proposition is used to prove that every family of di�eologieshas a supremum and an in�mum. In other words, di�eologies form a latti
e.3. Generating families and dimension. Generating families are a 
onvenient anduseful tool in order to de�ne a di�eology. They are de�ned by the following proposition.3.1. Generating families. Let X be a set, let F be some subset of parametrizations of X.There exists a �nest di�eology 
ontaining F. This di�eology will be 
alled the di�eologygenerated by F and denoted 〈F 〉. This di�eology is the in�mum (art. 2.6) of all di�eologies
ontaining F. Given a di�eologi
al spa
e X, a family F generating the di�eology of X is
alled a generating family of X. The plots of the di�eology generated by F are given by:GF A parametrization P : U −→ X is a plot of the di�eology generated by F if and onlyif for every point r of U there exists a superset V ⊂ U of r su
h that either P ↾ Vis a 
onstant parametrization, or there exists an element Q : W −→ X of F and asmooth parametrization F : V −→ W su
h that P ↾ V = Q ◦ F.In the se
ond 
ase, we say that the plot P lifts lo
ally along F, or that Q is a lo
al liftingof P along F (see �g. 1). Note that generating di�eologies is a proje
tor, that is for anydi�eology D we have 〈D〉 = D.3.2. Generated by the empty set. Note that, for any set X, the empty family F = ∅generates the dis
rete di�eology.
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Fig. 1. Lo
al lifting of P along F

3.3. Dimension. Let X be a di�eologi
al spa
e and let D be its di�eology. Let us 
alldimension of a generating family F of D the supremum of the dimensions of the plots ofthe family:
dim(F) = sup{dim(P) | P ∈ F},where dim(P) is de�ned in (art. 1.1). We de�ne the dimension of the spa
e X as thein�mum of the dimensions of the generating families of the spa
e:

dim(X) = inf{dim(F) | 〈F 〉 = D}.Note that dim(F) as well as dim(X) 
an be either �nite or in�nite. For more details aboutdimension in di�eology see [PIZ06℄.3.4. Dimensions of numeri
al domains. As we should expe
t, the dimension of a numer-i
al domain U ⊂ Rn, equipped with the standard di�eology, is just n.3.5. Di�erentiable maps via generating families. Let X be a di�eologi
al spa
e generatedby a family F and X′ a di�eologi
al spa
e generated by a family F′. Let f : X −→ X′ bea map. The map f is di�erentiable if and only if for ea
h element P : U −→ X of F, forea
h point r of U there exists a superset V of r, an element P′ : U′ −→ X′ of F′ and asmooth parametrization F : V −→ U′ su
h that f ◦ P ↾ V = P′ ◦ F. This is illustrated bythe following diagram:
X X′-

f

U ⊃ V U′-F

?

P
?

P′

4. Pullba
ks of di�eologies and indu
tions. The 
ategory {Di�eology} is stableunder the subset operation. This stability is expressed by the following 
onstru
tion.4.1. Pull-ba
ks of di�eologies. Let X be a set, and Y be a di�eologi
al spa
e. Let f : X −→
Y be a map. There exists a 
oarsest di�eology on X su
h that the map f is di�erentiable.This di�eology is 
alled the pull-ba
k di�eology. A parametrization P of X is a plot of



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 355the pull-ba
k di�eology if and only if f ◦ P is a plot of Y. Let D be the di�eology on Y,
f∗(D) will denote the pull-ba
k di�eology of D by f .

f∗(D) = {P ∈ Param(X) | f ◦ P ∈ D}.4.2. Compositions of pull-ba
ks. Let X, Y be two sets and Z be a di�eologi
al spa
e. Let
f : X −→ Y and g : Y −→ Z be two maps. Let D be a di�eology on Z, then f∗(g∗(D)) =

(g ◦ f)∗(D).4.3. Indu
tions. Let X and Y be two di�eologi
al spa
es. A map f : X −→ Y is 
alledan indu
tion if f is inje
tive and if the pull-ba
k di�eology of Y by f 
oin
ides with thedi�eology of X. That is, the plots of X are the parametrizations P of X su
h that f ◦ Pare plots of Y.4.4. Surje
tive indu
tions. Let f : X −→ Y be an inje
tion, where X and Y are dif-feologi
al spa
es. The map f is an indu
tion if and only if for any plot P of Y, withvalues in f(X), the map f−1 ◦ P is a plot of X. In parti
ular, surje
tive indu
tions aredi�eomorphisms.4.5. Compositions of indu
tions. The 
omposition of two indu
tions is again an indu
-tion. Indu
tions make up a sub
ategory of the 
ategory {Di�eology}.4.6. Subset di�eology and di�eologi
al subspa
es. Let X be a di�eologi
al spa
e. Anysubset A ⊂ X 
arries a natural di�eology indu
ed by the in
lusion. Namely the pull-ba
kdi�eology by the in
lusion jA : A →֒ X (art. 4.3). Equipped with this indu
ed di�eologythe subset A is 
alled a subspa
e of X. This di�eology is also 
alled the subset di�eology.The plots of the subset di�eology of A are the plots of X taking their values in A.4.7. Sums of di�eologi
al spa
es. Let X be a family of di�eologi
al spa
es, there existson the disjoint union ∐
X of the elements of X:

∐
X =

∐

X∈X

Xa �nest di�eology su
h that ea
h inje
tion jX : X →֒
∐

X is di�erentiable. This di�eologyis 
alled the sum di�eology of the family X. The plots of the sum di�eology are theparametrizations P of X whi
h are lo
ally plots of elements of the family X. In otherwords, a parametrization P : U −→ ∐
X is a plot of the sum di�eology if and only if thereexists an open 
overing {Ui}i∈I of U and for ea
h i ∈ I an element Xi of the family X,su
h that P ↾ Ui is a plot of Xi. For this di�eology, the inje
tions jX are indu
tions.5. Push-forwards of di�eologies and subdu
tions. The 
ategory {Di�eology} isstable by quotient, this stability is a 
onsequen
e of the following 
onstru
tion.5.1. Push-forward of di�eologies. Let X be a di�eologi
al spa
e. Let Y be a set and

f : X −→ Y be a map. There exists a �nest di�eology on Y su
h that f is di�erentiable.This di�eology is 
alled the push-forward (or image) of the di�eology of X. Let D be thedi�eology of X, the image of D by f is denoted f∗(D). A parametrization P : U −→ X isan element of f∗(D) if and only if for any r ∈ U there exists a superset V of r su
h thateither P ↾ V is a 
onstant parametrization or there exists a plot Q : V −→ X su
h that
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P ↾ V = f ◦Q. In other words, the di�eology f∗(D) is generated (art. 3.1) by the plots ofthe form f ◦ Q where Q is a plot of X.5.2. Subdu
tions. Let X and Y be two di�eologi
al spa
es. A map f : X −→ Y is 
alled asubdu
tion if it is a surje
tion and if the image of the di�eology of X (art. 5.1) 
oin
ideswith the di�eology of Y. In this 
ase, a parametrization P : U −→ Y is a plot if andonly if for any r ∈ U there exists a superset V of r and a plot Q : V −→ X su
h that
P ↾ V = f ◦ Q.5.3. Quotients of di�eologi
al spa
es. Let X be a di�eologi
al spa
e and let ∼ be anyequivalen
e relation on X. The quotient spa
e Q = X/∼ 
arries a quotient di�eology,image of the di�eology of X by the proje
tion π : X −→ Q. A parametrization P : U −→ Qis a plot of the quotient di�eology if and only if for any r of U there exists a superset Vof r and a plot P′ : V −→ X su
h that P ↾ V = π ◦ P′.5.4. Inje
tive subdu
tions. Inje
tive subdu
tions are di�eomorphisms.5.5. Compositions of subdu
tions. The 
omposition of two subdu
tions is again a sub-du
tion. Subdu
tions make up a sub
ategory of the 
ategory {Di�eology}.5.6. Subquotients. Let X be a di�eologi
al spa
e, and let ∼ be an equivalen
e relationde�ned on X. Let A ⊂ X and let ∼A be the restri
tion of ∼ to A. Let J be the indu
tionfrom A into X, and let j be the quotient map, de�ned from A/∼A to X/∼. Let πA : A

−→ A/∼A and π : X −→ X/∼ be the proje
tions onto the quotients.
A/∼A X/∼-

j

A X-
J

?

πA

?

π

The subset A is equipped with the subset di�eology (art. 4.6), and the spa
es A/∼A and
X/∼ are equipped with the quotient di�eology (art. 5.3). The map j is a di�erentiableinje
tion. It is an indu
tion if and only if for any plot P : U −→ X, for any r ∈ U, thereexists a superset V of r and a plot Q : V −→ A su
h that π ◦P ↾ V = π ◦Q. This happens,in parti
ular, if there exists a di�erentiable map ρ : X −→ A su
h that π◦ρ = π. Moreover,in this 
ase, if π ↾ A is surje
tive then j is a di�eomorphism.This proposition will be used later to identify the in�nite proje
tive spa
e, with thequotient of the in�nite sphere by the a
tion of S1 (art. 18.1).5.7. Produ
ts of di�eologi
al spa
es. Let X be a family of di�eologi
al spa
es, there existson the produ
t ∏

X =
∏

X∈X

Xa 
oarsest di�eology su
h that, for ea
h X belonging to X the proje
tion πX :
∏

X −→ X isdi�erentiable. This di�eology is 
alled the produ
t di�eology. The plots of this di�eologyare the parametrizations P : U −→
∏

X su
h that for ea
h X ∈ X, πX ◦ P is a plot of X.For this di�eology the proje
tions πX are subdu
tions.
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ality, embeddings. . . Di�eologies are de�ned on arbitrary setsand are not subordinate to any extra stru
ture. In parti
ular they do not assume theexisten
e of any underlying topology. But a set, when it is equipped with a di�eology,
arries a natural topology, de�ned by 
ompatibility with the di�eology. This topologyis used to introdu
e lo
ality into the di�eologi
al framework. And it is through this
onstru
tion that di�erential geometry of manifolds takes its pla
e in the di�eology theory.6.1. D-Topology. Let X be a di�eologi
al spa
e. There exists on X a �nest topology su
hthat the plots are 
ontinuous. This topology is 
alled D-topology [Don84℄. The open setsof the D-topology are the subsets A ⊂ X su
h that for ea
h plot P of X, the pull-ba
k
P−1(A) is open. The open sets for the D-topology are 
alled D-open.6.2. Di�erentiable maps and 
ontinuity. Let X and Y be two di�eologi
al spa
es. Anydi�erentiable map f : X −→ Y is 
ontinuous for the D-topology, one says that f isD-
ontinuous. In other words, 
onsidering the D-topology, C∞(X,Y) ⊂ C0(X,Y).6.3. D-topology on numeri
al domains. The D-topology of numeri
al domains, equippedwith the standard di�eology (art. 1.3), 
oin
ides with the standard topology.6.4. D-topology of dis
rete spa
e. The D-topology of the dis
rete di�eology is the dis
retetopology. The D-topology of the 
oarse di�eology is the 
oarse topology. But, a non 
oarsedi�eologi
al spa
e 
an inherit the 
oarse D-topology.6.5. Quotients and D-topology. Let X be a di�eologi
al spa
e and ∼ be an equivalen
erelation de�ned on X. The D-topology of the quotient X/∼ is the quotient topology ofthe D-topology of X.6.6. Embeddings. Let A be a subset of a di�eologi
al spa
e X. The set A 
arries twonatural topologies: its D-topology given by the subset di�eology, and the subset topologyindu
ed by the D-topology of the ambient spa
e X. If these two topologies 
oin
ide weshall say that A is embedded in X.Note that, to be embedded depends only on the di�eology of the ambient spa
e X,and not on any extra-stru
ture, nor other di�eology. A subset of a di�eologi
al spa
e isembedded or not. For example, the set of rational numbers Q ⊂ R is dis
rete (that is itssubset di�eology is dis
rete), but not embedded in R.6.7. Lo
al di�erentiability and di�erentiability. Let X and Y be two di�eologi
al spa
es.A map f : A −→ Y de�ned on a part A ⊂ X is said to be lo
ally di�erentiable if, for ea
hplot P of X, f ◦P is a plot of Y. Note that f ◦P is de�ned on P−1(A) whi
h is ne
essarilyopen if f ◦ P is a plot. So, if f : A −→ X is lo
ally di�erentiable, A is ne
essarily D-open,sin
e for ea
h plot P of X, P−1(A) is a domain.Let f : X −→ Y be a map between di�eologi
al spa
es. We shall say that f is lo
allydi�erentiable at the point x ∈ X if there exists a superset V of x su
h that f ↾ V is lo
allydi�erentiable (whi
h implies that V is D-open). The map f is di�erentiable if and onlyif it is lo
ally di�erentiable at ea
h point x of X.6.8. Lo
al di�eomorphisms. Let X and Y be two di�eologi
al spa
es. Let f : A −→ Y bea map de�ned on a part A ⊂ X. The map f is said to be a lo
al di�eomorphism if
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tive,2. f is lo
ally di�erentiable as well as f−1, de�ned on f(A).In this 
ase, A and f(A) are both D-open and f : A −→ f(A) is a di�eomorphism where
A and f(A) are equipped with their subset di�eology. This is a ne
essary and su�
ient
ondition for being a lo
al di�eomorphism.6.9. Di�eology is a lo
al stru
ture. There is another way to express the lo
ality of di�e-ologies 
ontained in the axiom of lo
ality (art. 1.2). Let us 
onsider a same set X equippedwith two di�eologies D and D′. If there exists a D-open 
overing U of X su
h that the re-stri
ted di�eologies of D and D′ 
oin
ide on ea
h element U of U, then the two di�eologies
D and D′ 
oin
ide.7. Fun
tional di�eology. In the 
ategory {Di�eology} the spa
es of di�erentiablemaps between di�eologi
al spa
es are naturally di�eologi
al spa
es. This property isvery 
onvenient for many di�eologi
al 
onstru
tions, in parti
ular � but not only �for homotopy.7.1. Fun
tional di�eology. Let X and Y be two di�eologi
al spa
es. A fun
tional di�e-ology on C∞(X,Y) is a di�eology su
h that the map

ev : C∞(X,Y) × X −→ Y with ev(f, x) = f(x)is di�erentiable. For example, the dis
rete di�eology is a fun
tional di�eology. However,there exists on C∞(X,Y) a 
oarsest fun
tional di�eology, 
alled the standard fun
tionaldi�eology, or simply the fun
tional di�eology. A plot of the standard fun
tional di�eologyis any parametrization P : U −→ C∞(X,Y) su
h that for any plot Q : V −→ X theparametrization P · Q : (r, s) 7→ P(r)(Q(s)) is a plot of Y. In parti
ular, there exists anatural di�eomorphism between C∞(X,C∞(Y,Z)) and C∞(X×Y,Z), where X, Y, Z areany di�eologi
al spa
es.7.2. Fun
tional di�eology of groups of di�eomorphisms. Let X be a di�eologi
al spa
eand Diff(X) its group of di�eomorphisms. The standard fun
tional di�eology has a spe-
ialization in the 
ase of Diff(X) ⊂ C∞(X,X). A group di�eology (art. 11.1) is a di�eol-ogy su
h that the multipli
ation and the inversion are di�erentiable. Now, there existsa 
oarsest group di�eology on Diff(X) su
h that the fun
tion ev (art. 7.1) is di�eren-tiable, it is 
alled the standard fun
tional di�eology of Diff(X). A parametrization P : U

−→ Diff(X) is a plot of this di�eology if and only if for any plot Q : V −→ X the two maps
(r, s) 7→ P(r)(Q(s)) and (r, s) 7→ P(r)−1(Q(s)) are plots of X.8. Homotopy. The traditional theory of homotopy extends naturally to di�eologi
alspa
es. This paragraph presents just the 
onstru
tions of the homotopy groups of di�eo-logi
al spa
es. For more details on homotopy in di�eology see [Igl85℄.8.1. Conne
ted 
omponents of di�eologi
al spa
es. Let X be a di�eologi
al spa
e, wedenote by Paths(X) the set of global 1-plots of X

Paths(X) = C∞(R,X),
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tional di�eology. The relation of homotopy or 
onne
tedness isde�ned on X by:
x ∼ x′ ⇔ there exists γ ∈ Paths(X) su
h that γ(0) = x and γ(1) = x′.If x ∼ x′ we say that x is homotopi
 to x′ or 
onne
ted to x′. To be homotopi
 is anequivalen
e relation. A 
lass of this relation is 
alled a 
onne
ted 
omponent of X. The
lass, or the 
onne
ted 
omponent, of x ∈ X is denoted [x]. The spa
e of 
onne
ted
omponents of X, denoted π0(X), is the quotient of X by the relation of homotopy:

π0(X) = X/∼ .Equipped with the quotient di�eology, the spa
e π0(X) is dis
rete. More pre
isely, thepartition into 
onne
ted 
omponents is the �nest partition of X su
h that X is the sum(art. 4.7) of its parts. The pointed spa
e π0(X, x0), where x0 ∈ X, is de�ned as
π0(X, x0) = (π0(X), [x0]).If π0(X) = {[x0]} for some x0 ∈ X, the spa
e X is said to be 
onne
ted.8.2. Iterated loop spa
es and higher homotopy. Let X be any di�eologi
al spa
e and

x0 ∈ X. The spa
e of loops based at x0 is de�ned as:
Loops(X, x0) = {γ ∈ Paths(X) | γ(0) = γ(1) = x0}.The spa
e Loops(X, x0) is equipped with the fun
tional di�eology. The higher homotopyspa
es are de�ned by re
ursion:

πk(X, x0) = πk−1(Loops(X, x0), x̂0), x0 ∈ X, x̂0 = [t 7→ x0].In parti
ular, the spa
e
π1(X, x0) = π0(Loops(X, x0), x̂0)is 
alled the fundamental group of X, based at x0. Juxtaposition of loops, des
ribed below(art. 8.3), gives π1(X, x0) a stru
ture of group. If X is 
onne
ted and π1(X, x0) = {[x̂0]}the spa
e X is said to be 1-
onne
ted, or 
onne
ted and simply 
onne
ted.8.3. Homotopy group multipli
ation. Let X be a di�eologi
al spa
e and let x0 ∈ X. Let

γ and γ′ be two loops, based at x0. The juxtaposition of γ with γ′ is de�ned traditionallyby:
γ ∨ γ′ =

{
γ(2t) if t < 1/2,

γ′(2t− 1) if 1/2 < t.Then, the group operation on the homotopy groups is de�ned on the 
lass of loops by:
[γ] · [γ′] = [γ ∨ γ′].But γ∨γ′ is, not ne
essarily a path, that is, not ne
essarily di�erentiable. So, we « smash »

γ and γ′ at their ends, 
omposing them with a « smashing fun
tion » ε, des
ribed by�gure 2.The smashing fun
tion ε is a smooth real fun
tion, homotopi
 to the identity of R,sending an open superset of ]−∞, 0] to 0 and an open superset of [1,∞[ to 1. Hen
e, thejuxtaposition of the paths γ̃ = γ ◦ ε and γ̃′ = γ′ ◦ ε is now a (di�erentiable) path with
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ε
1

0 1Fig. 2. The smashing fun
tion ε

the same ends as γ ∨ γ′. Now, sin
e for any path γ or γ′, the smashed path is homotopi
to the path itself, the operation de�ned on the 
lasses of loops [γ] and [γ′] by
[γ] · [γ′] = [γ̃ ∨ γ̃′]is well de�ned. As usual, we 
an 
he
k that this 
omposition is a group operation: itsidentity is the 
lass of the 
onstant path x̂0 : t 7→ x0, and the inverse of the 
lass [γ] isthe 
lass [γ]−1 = [t 7→ γ(1 − t)]. The spa
e π1(X, x0) is always 
onsidered equipped withthis group stru
ture.Now let us introdu
e the following iterated spa
es: For all k > 1,

Loopsk(X, x0) = Loopsk−1(Loops(X, x0), x̂
k−1
0 ) and x̂k

0 : t 7→ x̂k−1
0 ,initialized by:

Loops1(X, x0) = Loops(X, x0) and x̂1
0 : t 7→ x̂0.So, the re
ursion de�ned in (art. 8.2), gives in parti
ular for k ≥ 1:

πk(X, x0) = π0(Loopsk(X, x0), x̂
k
0) and πk(X, x0) = π1(Loopsk−1(X, x0), x̂

k−1
0 ).Now, any higher homotopy spa
e πk(X, x0), k ≥ 1, is a group sin
e it is the fundamentalgroup of some intermediate loop spa
e. Moreover, as in the usual theory of homotopy, for

k ≥ 2 we 
he
k that πk(X, x0) is abelian [Igl85℄.8.4. Contra
tibility. A di�eologi
al spa
e is said to be 
ontra
tible if the identity map
1X = [x 7→ x] is homotopi
 (art. 8.1) to some 
onstant map x0 = [x 7→ x0], with
x0 ∈ X, and C∞(X,X) equipped with the standard fun
tional di�eology. Note that if Xis 
ontra
tible any homotopy group is trivial: πk(X) = {⋆}.9. Di�eologi
al �brations. Fiber bundles in the 
ategory {Di�eology} and their prop-erties are detailed in [Igl85℄. Di�eologi
al �brations are de�ned below, they are proje
tionssatisfying a property of lo
al triviality along plots. Note that this de�nition, even if it 
o-in
ides with the standard de�nition for �nite dimensional manifolds, is more �exible thanits topologi
al analogue whi
h requires lo
al triviality. For example, any quotient G/H ofa di�eologi
al group G (art. 11.1) by a subgroup H is a di�eologi
al �bration with �ber
H. But these �brations G −→ G/H are not always lo
ally trivial, for the D-topology, as
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onstru
tions.9.1. Di�eologi
al �ber bundles. Let π : T −→ B be a map between di�eologi
al spa
es.We shall say that π is a di�eologi
al �bration if there exists a di�eologi
al spa
e F su
hthat for any plot P : U −→ B the pull-ba
k P∗(T) de�ned by
P∗(T) = {(r, t) ∈ U × T | P(r) = π(t)}is lo
ally trivial over U, with �ber F. More pre
isely, for any r ∈ U there exists anopen superset V ⊂ U of r, a di�eomorphism Φ : V × F −→ (P ↾ V)∗(T) su
h that

pr1(Φ(r, f)) = r, where pr1 is the �rst proje
tion from (P ↾ V)∗(T) onto V. The spa
e Fis 
alled the �ber. We say that π is lo
ally trivial along the plots.Note that this de�nition involves, indire
tly, the fun
tional di�eology of the group ofdi�eomorphisms (art. 7.2) of F, but we shall not develop this aspe
t here, for a 
ompre-hensive report see [Igl85℄. Note also that a di�eologi
al �bration is a fortiori a subdu
tion(art. 5.2).9.2. Bundles and homotopy. Fiber bundles are not ne
essarily lo
ally trivial for theD-topology, for example this fails for irrational �brations of tori [Igl85℄. However, it
an happen that di�eologi
al �ber bundles are also lo
ally trivial. This is the 
ase for thein�nite Hopf �bration (art. 18.1). But, despite this la
k of lo
al triviality, any di�eologi
al�ber bundle satis�es the homotopy exa
t sequen
e [Igl85℄ :
· · · −→ πk+1(B, b0) −→ πk(F, t0) −→ πk(T, t0) −→ πk(B, b0) −→ · · · −→ {0}where π : T −→ B is a di�eologi
al �bration, b0 ∈ B, π(t0) = b0 and F = π−1(b0).10. Di�erential 
al
ulus in di�eology. As a �nal stru
ture, di�eologies support a wellde�ned, and easy to use, notion of di�erential forms. They are de�ned by fun
torialitywith di�erential forms of numeri
al domains.10.1. Di�erential forms. Let X be a di�eologi
al spa
e, a k-form on X is any map αwhi
h asso
iates to any plot P : U −→ X a k-form de�ned on U, denoted by α(P), su
hthat for any numeri
al domain V and any smooth parametrization F : V −→ U,

α(P ◦ F) = F∗(α(P)).The k-form α(P) and the pull-ba
k F∗(α(P)) are understood as usual. We denote by
Ωk(X) the ve
tor spa
e of k-forms on X. In the same spirit as for di�erentiable maps,there exists on any spa
e Ωk(X) a fun
tional di�eology [PIZ05℄ su
h that addition andmultipli
ation by a s
alar are di�erentiable.10.2. Exterior di�erential of a form. Many usual 
onstru
tions on di�erential forms havea natural generalization to di�eologi
al spa
es. The exterior di�erential is an exampleamong many. Let α be a k-form on X. The exterior di�erential dα is de�ned by:

(dα)(P) = d(α(P)),for any plot P of X. This de�nition gives rise to the de Rham 
ohomology, de�ned asusual by
H∗

dR(X) = Z∗
dR(X)/B∗

dR(X),
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dR(X) and B∗

dR(X) denote respe
tively the subspa
e of 
losed and exa
t di�erentialforms of X.For example [DI85℄ the de Rham 
ohomology of the irrational torus Tα = R/(Z+αZ)is
Hk

dR(Tα) = {0} if k 6= 1 and H1
dR(Tα) = R.10.3. Pullba
ks of di�erential forms. Let X and Y be two di�eologi
al spa
es. Let f : X

−→ Y be a di�erentiable map, let α be a k-form on Y, then the pull-ba
k of α by f isde�ned by:
[f∗(α)](P) = α(f ◦ P),for all plots P of X. We 
he
k easily that f∗(α) is a well de�ned k-form on X. This lastde�nition justi�es the following notation, or interpretation:

P∗(α) = α(P).And the form α(P) ∈ Ωk(U), where P : U −→ X is a plot, 
an be interpreted as the
« 
oordinates » of the form α in the plot P.10.4. Lo
ality of forms. Let X be a di�eologi
al spa
e. Let (Xi)i∈I be a D-open 
over of
X, that is an open 
over for the D-topology (art. 6.1). Let (αi)i∈I be a family of k-formssu
h that:1. For every index i, αi is a k-form on Xi, equipped with the subset di�eology (art. 4.6).2. For every pair i and j of indi
es, αi ↾ Xi ∩ Xj = αj ↾ Xi ∩ Xj .Then, there exists a unique k-form α on X su
h that αi = α ↾ Xi.10.5. Equality of forms. Let α and β be two p-forms de�ned on a di�eologi
al spa
e X,
α = β if and only if, for every p-plot P of X: α(P) = β(P). In parti
ular, a p-form vanishesidenti
ally if and only if it vanishes on every p-plot. Although, if p-forms are 
hara
terizedby their values on p-plots, their di�erentiability is ensured by the di�erentiability of theirvalues on every plot and not only on the p-plots.10.6. Invariant forms and automorphisms of a form. Let X be a di�eologi
al spa
e and
α a k-form on X, let f be a di�eomorphism of X; we say that α is invariant by f if
f∗(α) = α. In other words, the form α is invariant by f if and only if, for any plot P of
X, α(P) = α(f ◦ P). The set of all automorphisms of a form α, denoted by

Aut(α) = {f ∈ Diff(X) | f∗(α) = α},is a group. This group is also 
alled the group of symmetries of the form α. Equippedwith the fun
tional di�eology, Aut(α) is a di�eologi
al group in the natural sense givenbelow (art. 11.1).11. Di�eologi
al groups and moments. Di�eologi
al groups were �rst introdu
ed as
« groupes di�érentiels » in the early '80s [Sou81, Sou84℄. They are to di�eologi
al spa
eswhat Lie groups are to manifolds. We re
all here their de�nition. Then, we propose[PIZ05℄ as an equivalent to the �dual of the Lie algebra�, the spa
e of invariant 1-forms ofthe group. We don't 
onsider any duality with a putative di�eologi
al Lie algebra. Thisis the 
orre
t way to talk about 
oadjoint a
tion or 
oadjoint orbits in di�eology.
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al groups. Let G be a group equipped with a di�eology. We say that Gis a di�eologi
al group if multipli
ation as well as inversion are di�erentiable:
[(g, g′) 7→ gg′] ∈ C∞(G × G,G) and [g 7→ g−1] ∈ C∞(G).Note that if G is a �nite dimensional manifold this de�nition is nothing but the de�nitionof Lie groups. We denote by L(g) and R(g) the left and right a
tions of G on itself.For all g ∈ G,

{
L(g) : g′ 7→ gg′

R(g) : g′ 7→ g′gNote that the « right a
tion » is in fa
t an anti-a
tion. The adjoint a
tion of G onto itselfis denoted Ad and de�ned by:For all g ∈ G, Ad(g) : k 7→ gkg−1 = L(g) ◦ R(g−1)(k).11.2. Moments of a di�eologi
al group. We 
allmoment (ormomentum) of a di�eologi
algroup G any 1-form on G, invariant by the left a
tion. We denote by G∗ the spa
e ofmoments of G. The spa
e of moments of a di�eologi
al group is naturally a ve
tor spa
e.
G∗ = {α ∈ Ω1(G) | For all g ∈ G, L(g)∗(α) = α}.There exists a natural isomorphism between the spa
e of left-invariant 1-forms and right-invariant 1-forms [PIZ05℄.Note that in spite of what the notation G∗ suggests, the spa
e of moments of a di�eo-logi
al group is not de�ned by some duality. This notation is 
hosen here just to remindus the 
onne
tion with the dual of the Lie algebra in the 
ase of Lie groups.11.3. Coadjoint a
tion of G on G∗ and 
oadjoint orbits. The pull-ba
k of a moment

α ∈ G∗ by the adjoint a
tion of G is still a moment of G, that is still a left-invariant1-form. This de�nes a linear a
tion of G on G∗ 
alled the linear 
oadjoint a
tion. We shalldenote: For all g ∈ G, for all α ∈ G∗, Ad∗(g)(α) = Ad(g−1)∗(α).And one 
he
ks that it is indeed an a
tion of G:For all g, g′ ∈ G, Ad∗(gg′) = Ad∗(g) ◦ Ad∗(g′).Note that, sin
e α is left-invariant, Ad∗(g)(α) = R(g)∗(α). Let α be a moment of G, theorbit of α by G is, by de�nition, a linear 
oadjoint orbit of G. And it will be denoted:
Oα or Ad∗(G)(α) = {Ad∗(g)(α) | g ∈ G}.The orbit Oα 
an be viewed also as the quotient of the group G by the stabilizer of themoment α,

Oα ≃ G/StG(α), with StG(α) = {g ∈ G | R(g)∗(α) = α}.The orbit Oα will be equipped in the following with this quotient di�eology.Note that the ve
tor spa
e G∗ 
arries a fun
tional di�eology [PIZ05℄ whi
h indu
es on
Oα a subset fun
tional di�eology. There is no reason a priori that these two di�eologies
oin
ide. But it 
ould be interesting however to understand in whi
h 
onditions they do.
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onsider the �elds of real numbers R and 
omplex numbers C, equipped with theirstandard di�eologies. The �eld C is di�eologi
ally equivalent to R2. The natural map
(x, y) 7→ z = x + iy, from R2 to C, is a di�eomorphism of di�eologi
al spa
e. In otherwords, a plot of C is just a parametrization r 7→ P(r)+ iQ(r) where P and Q are smoothreal parametrizations. In the following, the letter K denotes R or C.12. Basi
 
onstru
tions and de�nitions12.1. Di�eologi
al ve
tor spa
es. Let E be a ve
tor spa
e over K, we 
all ve
tor spa
edi�eology on E, any di�eology of E su
h that addition (u, v) 7→ u+ v, and multipli
ationby a s
alar (λ, u) 7→ λu, are di�erentiable, where the spa
es E × E and K × E areequipped with the produ
t di�eology (art. 5.7). The spa
e E, equipped with a ve
torspa
e di�eology, is 
alled a di�eologi
al ve
tor spa
e.12.2. Finite dimensional ve
tor spa
es. Finite dimensional ve
tor spa
es, over R or C,equipped with their standard di�eology are di�eologi
al ve
tor spa
es. But, note that anyve
tor spa
e equipped with the 
oarse di�eology is also a di�eologi
al ve
tor spa
e.12.3. Example: s
alar di�erentiable maps. Let X be a di�eologi
al spa
e, and E =

C∞(X,Kn), the spa
e of di�erentiable maps from X to Kn. The spa
e E is naturallya K-ve
tor spa
e for pointwise addition and multipli
ation by a s
alar. Equipped withthe fun
tional di�eology, E is a di�eologi
al K-ve
tor spa
e.12.4. Produ
ts and quotients of di�eologi
al ve
tor spa
es. The produ
t of any familyof di�eologi
al ve
tor spa
es is a di�eologi
al ve
tor spa
e for the produ
t di�eology. Aswell, the quotient of any di�eologi
al ve
tor spa
e by any subspa
e is a di�eologi
al ve
torspa
e for the quotient di�eology.Proof. Let us 
onsider the produ
t E =
∏

E∈E
E of a family E of di�eologi
al ve
torspa
es. The elements of E are the families x = (xE)E∈E, where the xE are elements of E.The sum and the produ
t are de�ned by: x + x

′ = (xE)E∈E + (x′E)E∈E = (xE + x′E)E∈E,and λx = λ(xE)E∈E = (λxE)E∈E. A parametrization P : U −→ E is a plot if, for every Ein E, the parametrization P ◦ πE is a plot of E, where πE is the proje
tion from E ontoits fa
tor (art. 5.7). Sin
e addition and multipli
ation are di�erentiable on every fa
torof E, it is 
lear that they are di�erentiable on E.12.5. Di�erentiable linear maps and 
ategory. Let E and F be two di�eologi
al ve
torspa
es over K. Addition of linear maps from E to F, as well as multipli
ation by as
alar are di�erentiable. As an immediate 
onsequen
e, the spa
e LC∞(E,F) of K-lineardi�erentiable maps from E to F is a K-ve
tor subspa
e of L(E,F).Di�eologi
al ve
tor spa
es, together with di�erentiable linear maps, form a 
ategory,the di�eologi
al linear 
ategory. Isomorphisms of this 
ategory are bi-di�erentiable linearisomorphisms.
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tor spa
es. Any K-ve
tor spa
e equipped with the 
oarsedi�eology is obviously a di�eologi
al ve
tor spa
e, whi
h is not really interesting. Butalso, any ve
tor spa
e has a �nest ve
tor spa
e di�eology. In this se
tion we analyze someaspe
ts of this �ne di�eology.13.1. Fine di�eology. There exists, on any ve
tor spa
e E over the �eld K a �nestdi�eology of ve
tor spa
e. We shall 
all it the �ne di�eology. This di�eology is generatedby the family of parametrizations de�ned by:
P : r 7→

∑

α∈A

λα(r)vα, (♥)where A is a �nite set of indi
es, λα are smooth K-fun
tions de�ned on the domain of Pand vα are ve
tors of E.More pre
isely, the plots of the �ne di�eology are the parametrizations P : U −→ E su
hthat for any r0 ∈ U there exists a superset V of r0, a family of smooth parametrizations
λα : V −→ K and a family of ve
tors vα ∈ E, both indexed by the same �nite set ofindi
es A, su
h that:

(P ↾ V) : r 7→
∑

α∈A

λα(r)vα. (♦)The family (λα, v
α)α∈A su
h that λα ∈ C∞(V,K) and vα ∈ E will be 
alled in thefollowing a lo
al family of the plot P, or simply a lo
al family.Proof. Let us prove that the parametrizations des
ribed by ♦ make up a di�eology ofve
tor spa
e.1) Di�eology. Constant parametrizations satisfy the 
ondition above. The lo
ality issatis�ed by de�nition. Now, let F : U′ −→ U be a smooth parametrization, we have just to
hange λα to λα ◦F, with the same vα, and P ◦F satis�es the 
ondition of the de�nitionabove. So, the set of parametrizations de�ned above is a di�eology.2) Di�eology of ve
tor spa
e. Let r 7→ (P(r),Q(r)) be a plot of the produ
t E×E. Let

(λα, u
α)α∈A and (µβ, v

β)β∈B be two lo
al families su
h that lo
ally:
P(r) =loc

∑

α∈A

λα(r)uα and Q(r) =loc

∑

β∈B

µβ(r)vβ.So, the addition P + Q writes lo
ally:
P + Q|loc : r 7→

∑

α∈A

λα(r)uα +
∑

β∈B

µβ(r)vβ =
∑

σ∈C

νσ(r)wσ

where C is just the sum of the two sets of indi
es A and B, and the family (νσ, w
σ)σ∈Cthe sum of the lo
al families (λα, u

α)α∈A and (µβ, v
β)β∈B. Hen
e, the addition is dif-ferentiable. On the other hand, the multipli
ation by a s
alar being di�erentiable in K,the multipli
ation by a s
alar in E is also di�erentiable. Therefore, this di�eology is adi�eology of ve
tor spa
e.It is 
lear, by the very de�nition of generating families (art. 3.1), that the parametriza-tions ♦ are generated by the family ♥. Now, let us prove that this �ne di�eology is �nestthan any di�eology of ve
tor spa
e de�ned on E.



366 P. IGLESIAS-ZEMMOUR3) Fineness. Let us 
onsider E, provided with any other di�eology D of ve
tor spa
e.For any smooth parametrization λ of K and any ve
tor u ∈ E, the parametrization
r 7→ λ(r)u is di�erentiable, by di�erentiability of the multipli
ation by a s
alar. Now, bydi�erentiability of the addition, for any �nite lo
al family (λα, u

α)α∈A, the parametriza-tion r 7→ ∑
α∈A λα(r)uα is di�erentiable, that is a plot of the di�eology D. Then, thedi�eology D if 
oarser than the �ne di�eology de�ned above. Hen
e, the �ne di�eologyis the �nest di�eology of ve
tor spa
e on E.13.2. Generating the �ne di�eology. Let E be a ve
tor spa
e on K and L(Kn,E) be theset of all linear maps from Km into E. Let L⋆(Kn,E) be the set of all inje
tive mapsfrom Km into E,

L⋆(Km,E) = {j ∈ L(Km,E) | ker(j) = {0}}.The two families
F =

⋃

m∈N

L(Km,E) and F⋆ =
⋃

m∈N

L⋆(Km,E),generate both the �ne di�eology of E.Note that a parametrization P : U −→ E is a plot for the di�eology generated by F ifand only if, for any r0 in U, there exists a superset V of r0 in U, an integer m, a smoothparametrization φ : V −→ Km, a linear map j : Km −→ E, su
h that P ↾ V = j ◦ φ. Inother words, lo
ally, P takes its values in a 
onstant �nite dimensional subspa
e F ⊂ Esu
h that the the 
oordinates of P for some basis of F are smooth. For the plots generatedby F⋆, j is inje
tive.Proof. Let us prove that F, as well as F⋆, generate the �ne di�eology.Let us P : U −→ E be a plot of the di�eology generated by F or by F⋆. Pi
k apoint r0 in U. By de�nition there exists a superset V of r0, an integer m, a smoothparametrization φ : V −→ Km, a linear map j : Km −→ E, su
h that P ↾ V = j ◦ φ. So,for any r in V, φ(r) =
∑m

k=1 φk(r)ek, where (e1, . . . , em) is the 
anoni
al basis of Km,and φk ∈ C∞(V,K). Now, P(r) = j(
∑m

k=1 φk(r)ek) =
∑m

k=1 φk(r)j(ek) =
∑m

k=1 φk(r)fkwhere fk = j(ek). Therefore, P is a plot of the �ne di�eology of E, and (φk, fk)m
k=1 is alo
al family of the plot P. Note that j 
an be 
hosen inje
tive.Conversely, let P : U −→ E be a plot of the �ne di�eology. Let r0 be a point of U.There exists an open superset V of r0 in U, an integer N, a lo
al family (λα, v

α)Nα=1, with
λα ∈ C∞(V,K), vα ∈ E, and su
h that P ↾ V =

∑N
α=1 λα(r)vα. Let F be the ve
torspa
e generated by the vα, and let f = (f1, . . . , fm) be a basis of F. Let us de
omposethe ve
tors vα on the basis f , vα =

∑m
k=1 v

α
k fk. Now, P ↾ V =

∑N
α=1

∑m
k=1 λα(r)vα

k fk =∑m
k=1 φk(r)fk, where φk(r) =

∑N
α=1 λα(r)vα

k . The φk are smooth maps de�ned on V withvalues in K. Now, let j : Km −→ E be the linear map de�ned by j(ek) = fk and φ : V

−→ Km de�ned by φ = (φ1, . . . , φm). So, P ↾ V = j ◦ φ, where j is an inje
tive linearmap from Km to E and φ belongs to C∞(V,Km). Therefore, P is a plot of the di�eologygenerated by F⋆, a fortiori by F. Hen
e, the �ne di�eology of E is generated by the set oflinear maps, or inje
tive linear maps, from Km into E, when m runs over the integers.13.3. Linear maps and �ne di�eology. Let E and F be two di�eologi
al ve
tor spa
esover K. Let E be equipped with the �ne di�eology. Any linear map from E to F isdi�erentiable. In other words, if E is �ne, LC∞(E,F) = L(E,F).
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∑N

α=1 λα(r)vα be a lo
al expression of some plot P of E. Let
A ∈ L(E,F), then we have (A ◦ P ↾ V)(r) =

∑N
α=1 λα(r)A(vα). Sin
e A(vα) ∈ F for ea
h

α, P is a plot of the �ne di�eology of F, therefore a plot of any ve
tor spa
e di�eology.Thus, A is di�erentiable, and L(E,F) ⊂ LC∞(E,F). The 
onverse in
lusion is 
lear.13.4. The �ne linear 
ategory. Thanks to (art. 13.3) the �ne di�eologi
al spa
es de�nea sub
ategory of the linear di�eologi
al 
ategory (art. 12.5), we shall 
all it the �nelinear 
ategory. Obje
ts of this 
ategory are all ve
tor spa
es. And, a

ording to theabove proposition, morphisms of this 
ategory are just linear maps. Hen
e, the �ne linear
ategory 
oin
ides with the usual linear 
ategory over the 
hosen �eld. In other words,the fun
tor from the linear 
ategory to the �ne linear 
ategory, whi
h asso
iates to ea
hve
tor spa
e the same spa
e equipped with the �ne di�eology, is a full faithful fun
tor[M
L71℄.13.5. Subspa
es of �ne di�eologi
al ve
tor spa
es. Let E be a ve
tor spa
e over K,equipped with its �ne di�eology. Let F ⊂ E be any ve
tor subspa
e. The subset dif-feology of F, inherited from E, is the �ne di�eology. In other words, the inje
tion of Finto E where E and F are equipped with their �ne di�eology is an indu
tion.Proof. The inje
tion is linear, so it is di�erentiable (art. 13.3). Let us 
he
k now thatif a plot P : U −→ E takes its values in F, then it is a plot for the �ne di�eology of F.For all r0 ∈ U there exists a superset V of r0, an inje
tion j : Km −→ E and a smoothparametrization φ : V −→ Km su
h that P ↾ V = j◦φ. Sin
e P takes its values in F so does
j ◦ φ. Let H = span(val(φ)) be the subspa
e of Km generated by val(φ) and j′ = j ↾ H.Thus, we have P ↾ V = j′ ◦ φ where j′ is a linear inje
tion from H to F. Therefore, P is aplot of the �ne di�eology of F.13.6. Produ
ts and quotients of �ne ve
tor spa
es. The produ
t of any �nite family of�ne ve
tor spa
es is a �ne ve
tor spa
e for the produ
t di�eology. As well, the quotientof a �ne ve
tor spa
e by a subspa
e is a �ne ve
tor spa
e for the quotient di�eology.Proof. Let E and E′ be two �ne di�eologi
al ve
tor spa
es. Let Q : U −→ E × E′ be aplot, that is Q = P×P′ where P : U −→ E and P′ : U −→ E′ are two plots (art. 5.7). Now,let r0 ∈ U, there exists two supersets V and V′ of r0, two lo
al families de�ned on V,
(λα,Xα)α∈A and (λ′α′ ,X′

α′)α′∈A′ , su
h that P ↾ V : r 7→
∑

α λα(r)Xα and P′ ↾ V′ : r 7→∑
α′ λα′(r)Xα′ . Let's de�ne V′′ = V ∩ V′, we get:

(Q ↾ V′′)(r) =
( ∑

α∈A

λα(r)Xα,
∑

α′∈A′

λα′(r)X′
α′

)

=
( ∑

α∈A

λα(r)Xα, 0
)

+
(
0,

∑

α′∈A′

λα′(r)X′
α′

)

=
∑

α∈A

λα(r)(Xα, 0) +
∑

α′∈A′

λα′(r)(0,X′
α′).This exhibits the disjoint union of the two families (λα,Xα)α∈A and (λ′α′ ,X′

α′)α′∈A′ over
V′′ as a lo
al family of Q ↾ V′′. Therefore Q is a plot of the �ne di�eology of E×E′. Theextension to any �nite number of fa
tors is immediate.
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tional di�eology of L(E,E′). Let E and E′ be two �ne ve
tor spa
es over
K. The fun
tional di�eology of the spa
e of linear maps LC∞(E,E′) = L(E,E′) is 
har-a
terized as follows.A parametrization P : U −→ L(E,E′) is a plot of the fun
tional di�eology if for any
r0 ∈ U and for any ve
tor subspa
e F ⊂ E of �nite dimension, there exists an opensuperset V of r0, and a ve
tor subspa
e of �nite dimension F′ ⊂ E′ su
h that:1. For any r ∈ V, the linear map P(r) ↾ V belongs to L(F,F′).2. The parametrization r 7→ P(r) ↾ F, restri
ted to V, is a plot of L(F,F′).Note that, for the se
ond 
ondition, r 7→ P(r) ↾ F is a parametrization of a spa
e of�nite dimensional linear maps, or matri
es. The 
ondition to be a plot is just that ea
h
oe�
ient of the matrix is a smooth fun
tion.Proof. Let P : U −→ L(E,E′) be a plot of the fun
tional di�eology. Let us show thatit satis�es the 
ondition of the proposition. Let F ⊂ E be any ve
tor subspa
e of �nitedimension. Let (u1, . . . , um) be a basis of F. Let r0 ∈ U, by de�nition of the fun
tionaldi�eology, for any k = 1 . . .m, the map r 7→ P(r)(uk) is a plot of E′, so there exists a su-perset Vk of r0, a �nite set of indi
es Ak, a family (λk,α)α∈Ak

of smooth parametrizationsof K, a family (wk,α)α∈Ak
of ve
tors of E, su
h that, for any r ∈ Vk:

P(r)(uk) =
∑

α∈Ak

λk,α(r)wk,α.For all (c1, . . . , cm) ∈ Km, for all r ∈ V = ∩m
k=1Vk we have:

P(r)
( m∑

k=1

ckuk

)
=

m∑

k=1

ckP(r)(uk) =
m∑

k=1

∑

α∈Ak

ckλk,α(r)wk,α.Let F′ be the subspa
e of E′ spanned by the ve
tors ∪m
k=1{wk,α}α∈Ak

, for any u ∈ F,
P(r)(u) ∈ F′. The �rst 
ondition above is 
he
ked. Now, let (v1, . . . , vn) be a basis of F′,su
h that for any k = 1 . . .m and any α ∈ Ak, wk,α =

∑n
j=1 w

j
k,αvj . Repla
ing wk,α bythis expression we get:

P(r)
( m∑

k=1

ckuk

)
=

m∑

k=1

∑

α∈Ak

ckλk,α(r)
n∑

j=1

wj
k,αvj =

n∑

j=1

( m∑

k=1

∑

α∈Ak

ckλk,α(r)wj
k,α

)
vj .Hen
e, de�ning

φj(r) =
m∑

k=1

∑

α∈Ak

ckλk,α(r)wj
k,α,we get a family of smooth parametrizations (φj)

n
j=1 of K su
h that, for any r ∈ V :

P(r)(u) =

n∑

j=1

φj(r)vj .The expression of P(r) above 
learly shows that r 7→ P(r) ↾ F is a plot of the fun
tionaldi�eology of L(F,F′). Indeed, by 
hoosing for u su

essively ea
h ve
tor of a basis of F,the last expression shows that the 
omponents of P(r) ↾ F are smooth parametrizationsof K, whi
h is the 
ondition, in �nite dimension, to be a plot of the fun
tional di�eology.Hen
e, we proved the �rst part of the proposition above.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 369Conversely, let us assume that the parametrization P satis�es the 
ondition of theproposition, and let us show that P is a plot of the fun
tional di�eology. Let us 
onsidera plot Q : V −→ E. By de�nition, for any s0 ∈ V, there exists a superset W of s0, a �niteset of indi
es A, a family (λα)α∈A of smooth parametrizations of K, a family (vα)α∈A ofve
tors of E su
h that for any s ∈ V, Q(s) =
∑

α∈A λα(s)vα. Let F ⊂ E be the ve
torsubspa
e spanned by the ve
tors vα. Hen
e, for any r0 ∈ U, there exists an open superset
U′ of r0 and a ve
tor subspa
e F′ ⊂ E′ su
h that P(r)(F) ⊂ F′ for any r ∈ U′. Thus,for any (r, s) ∈ U′ ×W, P(r)(Q(s)) = P(r)(

∑
α∈A λα(s)vα) =

∑
α∈A λα(s)P(r)(vα) ∈ F′.And sin
e the parametrization r 7→ P(r) ↾ F is a plot of the fun
tional di�eology, theparametrization P · Q : (r, s) 7→ P(r)(Q(s)) is a smooth parametrization of F′ ⊂ E′, thus

P · Q is a smooth parametrization of E′, be
ause any �nite subspa
e is embedded in E′.Therefore, P is a plot of the fun
tional di�eology of L(E,E′). This 
ompletes the proofof the proposition.13.8. The �ne topology. The D-topology of a �ne di�eologi
al ve
tor spa
e E has a simple
hara
terization. A part Ω ⊂ E is D-open if and only if its interse
tion with any �nitedimensional ve
tor spa
e F ⊂ E is open in F. Indeed, the di�eology of E is generatedby the the linear inje
tions j : Kn −→ E (art. 13.2), where n runs over N, hen
e Ω isD-open if and only if its inverse image by every one of these inje
tions is open in Kn.Or, equivalently, if the interse
tion of Ω with any ve
tor subspa
e F, of �nite dimension,is open for the smooth topology of F. We re
ognize here the so-
alled �nite topology offun
tional analysis [Ty
35℄.13.9. Standard �nite dimensional ve
tor spa
es. The standard di�eology on Kn is the�ne di�eology. Indeed, any plot P : U −→ Kn de
omposes over the standard basis (ei)
n
i=1,that is P : r 7→ ∑n

i=1 Pi(r)ei, where the Pi are smooth parametrizations of the �eld K.14. Eu
lidean and hermitian di�eologi
al ve
tor spa
es. The de�nition of eu-
lidean or hermitian stru
tures on di�eologi
al ve
tor spa
es is a natural extension of thestandard de�nitions. They will be applied in the following in the study of in�nite spheresand in�nite proje
tive spa
es.14.1. Eu
lidean and hermitian di�eologi
al stru
tures. Let E be a real (respe
tively 
om-plex) di�eologi
al ve
tor spa
e, and (X,Y) 7→ X · Y be an eu
lidean (respe
tively hermi-tian) produ
t de�ned on E. If the eu
lidean (respe
tively hermitian) produ
t is di�eren-tiable, (E, ·) is 
alled a eu
lidean (respe
tively hermitian) di�eologi
al ve
tor spa
e.14.2. Fine eu
lidean or hermitian spa
es. Any real (respe
tively 
omplex) di�eologi-
al ve
tor spa
e E, equipped with its �ne di�eology and equipped with any eu
lidean(respe
tively hermitian) stru
ture is an eu
lidean (respe
tively hermitian) di�eologi
alve
tor spa
e.Proof. This is a 
onsequen
e of the property of linear maps to be di�erentiable on �nedi�eologi
al ve
tor spa
es (art. 13.3).14.3. Uniqueness for �nite dimensional eu
lidean spa
es. The di�eology of any �nitedimensional eu
lidean (or hermitian) di�eologi
al spa
e is the �ne di�eology.



370 P. IGLESIAS-ZEMMOURProof. Let (e1, . . . , en) be an orthonormal basis of E. Let P : U −→ E be a plot of E. Forany r in U, P(r) =
∑n

k=1(ek · P(r))ek. Ea
h map Pk(r) : r 7→ ek · P(r) is di�erentiableby hypothesis. Hen
e, P is a plot of the �ne di�eology.14.4. D-topology and topology of the norm. The norm topology of a hermitian di�eologi-
al spa
e E does not ne
essarily 
oin
ide with the D-topology. But, any open ball B(x, ρ),
entered in x ∈ E, of radius ρ, is D-open. Indeed, its preimage by any plot P : U −→ Eis the preimage of ] − ∞, ρ2[ by r 7→ ‖x − P(r)‖2, but this map is di�erentiable hen
eD-
ontinuous. Thus, the ball B(x, ρ) is D-open. We 
an dedu
e, using the di�erentiabilityof translation and homotheties, that any open set for the norm topology is D-open. Inother words, the topology of the norm is weaker than the D-topology.15. Di�eologi
al manifolds. Using di�eologi
al ve
tor spa
es, we extend the ordinaryde�nition of manifolds to manifolds modeled on di�eologi
al ve
tor spa
es. Note that tobe a manifold is not an extra stru
ture added to the di�eology, but it is a property of thedi�eology. On
e a set is equipped with a di�eology, this spa
e is or is not a manifold, itdepends only on the di�eology. Hen
e di�eologies are or are not manifold di�eologies.15.1. Manifolds. Let X be a di�eologi
al spa
e, and let E be a di�eologi
al ve
tor spa
e.We say that X is a di�eologi
al manifold modeled on E if X is lo
ally di�eomorphi
 to
E at ea
h point. In other words, if for any x ∈ X there exists a lo
al di�eomorphism(art. 6.8) F : U −→ X, 
alled 
hart, su
h that U ⊂ E and x ∈ F(U).15.2. Generating manifolds. Let E be some di�eologi
al ve
tor spa
e. A di�eologi
alspa
e X is a di�eologi
al manifold modeled on E if and only if there exists a family Aof lo
al di�eomorphisms from E to X, 
alled 
harts, generating the di�eology of X. Inother words, for a di�eologi
al spa
e, to be or not to be a manifold (modeled on somedi�eologi
al ve
tor spa
e) is a property not an extra stru
ture.Any family of 
harts generating the di�eology of X is 
alled an atlas of X. Note thatthere exists an atlas made up with all the lo
al di�eomorphisms from E to X, this atlasis 
alled the saturated, or maximal, atlas of X.Proof. Let X be generated by a family A of lo
al di�eomorphisms from E to X. Pi
kany point x ∈ X, and let P : {0} −→ X be the 
onstant plot su
h that P(0) = x. Byhypothesis, there exists a 
hart F ∈ A and a lifting Q : {0} −→ E su
h that P = F ◦ Q.Hen
e, F is a lo
al di�eomorphism from E to X, su
h that x ∈ val(F). Therefore X is adi�eologi
al manifold modeled on E. Conversely, let us assume that X is a di�eologi
almanifold, that is lo
ally di�eomorphi
 to E at ea
h point. Then, let us 
hoose for ea
hpoint x ∈ X, a lo
al di�eomorphism φ : U −→ X su
h that x ∈ φ(U). Let A be the setof all these 
hosen lo
al di�eomorphisms, when x runs over X. Let P : V −→ X be a plotand r ∈ V, let x = P(r) and φ ∈ A su
h that x ∈ φ(U). Now, let Q = φ−1 ◦ P ↾ W,where W = P−1(φ(U)). Sin
e φ is a lo
al di�eomorphism φ(U) is D-open. And sin
e
P is D-
ontinuous, W is open. Hen
e, Q is a lo
al lifting of P along φ. Therefore, anyplot of X 
an be lifted along some element of the family A. And, this is the de�nitionof a generating family of X. Thus, the di�eology of X is generated by a family of lo
aldi�eomorphisms from E to X.
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al manifolds modeled on the numeri
al spa
e
Rn, for some integer n, are the standard manifolds of dimension n. Note that the standardmanifolds form a full faithful sub
ategory [M
L71℄ of the 
ategory {Di�eology}.15.4. Submanifolds. Let X be a di�eologi
al spa
e and M ⊂ X. The subset M willbe 
alled a submanifold of X if, equipped with the subset di�eology (art. 4.6), M is amanifold. Subsets of X are just subspa
es or are submanifolds, depending on the indu
eddi�eology. Note that submanifolds 
an be embedded or not. For example, an irrationalwinding in the 2-torus is just a submanifold, di�eomorphi
 to R, while a rational windingis an embedded submanifold, di�eomorphi
 to S1. Another example, the in�nite sphere
S de�ned below is an embedded submanifold of the Hilbert spa
e H (art. 17.2) .THE DIFFEOLOGICAL INFINITE HOPF FIBRATIONIn this 
hapter we introdu
e the unit sphere S of the Hilbert spa
e H of square-summablesequen
es. The sphere S is equipped with the subset di�eology of the �ne di�eology of H.We 
all it the in�nite sphere. We show that the in�nite sphere is a 
ontra
tible di�eologi
almanifold modeled on H. We 
onstru
t then the in�nite proje
tive spa
e P, whi
h is alsothe quotient of the in�nite sphere by the a
tion of S1. This de�nes the in�nite Hopf�bration. We show, in parti
ular, that P, equipped with the quotient di�eology of S, is adi�eologi
al manifold modeled on H.16. The spa
e of square-summable sequen
es. Here, we des
ribe the main 
on-stru
tion relative to the spa
e of 
omplex square-summable sequen
es, equipped with the�ne di�eology.16.1. The �ne hermitian spa
e H. Let H be the set of square-sumable 
omplex sequen-
es, indexed by the nonzero integers.

H =
{

Z : N⋆ −→ C

∣∣∣ Z = (Zk)∞k=1,
∞∑

k=1

Z∗
kZk = lim

N−→∞

N∑

k=1

Z∗
kZk <∞

}
,where N⋆ denotes the set of nonzero positive integers and z∗ denotes the 
omplex 
on-jugate of a 
omplex number z. The spa
e of 
omplex numbers C is naturally equippedwith the standard di�eology. And in the following, the spa
e H is equipped with the �nedi�eology (art. 13.1).Let us re
all that a parametrization P : U −→ H is a plot for the �ne di�eology if andonly if, for ea
h r0 in U there exists an open superset V of r0 in U, and a lo
al family

(λα,Zα)α∈A, #A <∞, su
h that:
(P ↾ V)(r) =

∑

α∈A

λα(r)Zα, with λα ∈ C∞(V,C) and Zα ∈ H.Note that the fun
tions λα are smooth for the real smooth stru
ture of C, we are nottalking about holomorphi
 fun
tions here.Now let us re
all the usual sesquilinear produ
t de�ned on H:For all Z,Z′ ∈ H, Z · Z′ =
∞∑

k=1

Z∗
kZ′

k.



372 P. IGLESIAS-ZEMMOURThe sesquilinear map (Z,Z′) 7→ Z · Z′ is a hermitian produ
t. So, the pair (H, ·) is a �nehermitian di�eologi
al ve
tor spa
e over C (art. 14.2). We will denote, as usual, by ‖ · ‖the norm asso
iated to the hermitian produ
t:For all Z ∈ H, ‖Z‖ =
√

Z · Z.And we introdu
e also the notation prk for the k-th proje
tion from H onto CFor all Z = (Zk)∞k=1 ∈ H, prk(Z) = Zk ∈ C, k > 0.17. The in�nite sphere. The unit sphere S of the Hilbert spa
e H is de�ned as usualby:
S =

{
Z ∈ H

∣∣∣ Z · Z =

∞∑

k=1

|Zk|2 = 1
}
.The sphere S will be 
alled the in�nite sphere and will be equipped with the subsetdi�eology (art. 4.6) of the �ne di�eology of H.17.1. The plots of the unit sphere. By de�nition (art. 4.6), a plot P : U −→ S is a plot of

H taking its values in S. That is, for any point r0 of U there exists an open superset Vof r0 and a �nite lo
al family (λα,Zα)α∈A, su
h that:for all r ∈ V, P(r) =
∑

α∈A

λα(r)Zα with ∑

α,β∈A

λ∗α(r)λβ(r)Zα · Zβ = 1,for some λα ∈ C∞(V,C) and Zα ∈ H. For example, pi
k two orthonormal ve
tors Zaand Zb of H, that is ‖Za‖ = ‖Zb‖ = 1 and Za · Zb = 0. The parametrization P : t 7→
cos(t)Za + sin(t)Zb, where t ∈ R, is a plot of S.17.2. The in�nite sphere as a di�eologi
al spa
e. The in�nite sphere S, equipped withthe subset di�eology of the �ne di�eology of H, is a manifold modeled on H (art. 15.1).Moreover, the sphere S is embedded in H (art. 6.6) and 
ontra
tible (art. 8.4).Proof. The proof will be given in several steps. First of all we shall identify the Hilbertspa
e of 
omplex summable sequen
es with the spa
e of real summable sequen
es. Thiswill identify, at the same time, the unit spheres of these two spa
es. Then, we shall showthat the real in�nite sphere is a 
ontra
tible manifold modeled on the Hilbert spa
e ofreal summable sequen
es, and then that it is embedded, whi
h will prove the proposition.Let us �rst introdu
e the Hilbert spa
e HR:

HR =
{

X : N⋆ −→ R

∣∣∣ X = (Xk)∞k=1,
∞∑

k=1

X2
k = lim

N−→∞

N∑

k=1

X2
k <∞

}

equipped with the �ne di�eology. This spa
e 
an be also 
onsidered as the subspa
e of
H in whi
h all 
oe�
ients are real.Step 1: The spa
es H and HR are di�eomorphi
. Let us introdu
e the following twomaps, for any X = (Xk)∞k=1 belonging to HR, or for any Z = (Zk)∞k=1 belonging to H :






Fold : X 7→ Z with Zk = X2k−1 + iX2k, for all k > 0

Unfold : Z 7→ X with X2k+1 = ℜ(Zk+1) and X2k = ℑ(Zk), for all k ≥ 0,



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 373where ℜ and ℑ denote the real and imaginary parts. These two maps are bije
tive andea
h other's inverse: Unfold = Fold−1. Let us now 
he
k that they are di�erentiable. Let
P : U −→ HR be a plot. Lo
ally P(r) writes ∑

α∈A λα(r)Xα, where (λα,Xα)α∈A is a lo
alfamily. Now,
Fold(P(r)) = Fold

( ∑

α∈A

λα(r)Xα

)
=

∑

α∈A

λα(r)Fold(Xα),sin
e Fold is R-linear and the λα are real valued fun
tions. Writing Zα = Fold(Xα),we have Fold(P(r)) =
∑

α∈A λα(r)Zα, so Fold ◦ P is a plot of H. Therefore the map
Fold is di�erentiable. Conversely, let us 
onsider a plot P : U −→ H. Lo
ally P(r) writes∑

α∈A λ(r)Zα, where (λα,Zα)α∈A is a lo
al family. But now the λα are 
omplex valuedfun
tions and the Zα are 
omplex ve
tors. Let us de
ompose λα = µα+iνα, where µα and
να are real valued fun
tions. Now, P(r) =

∑
α∈A[µα(r) + iνα(r)]Zα =

∑
α∈A µα(r)Zα +∑

α∈A να(r)iZα. But iZα is still an element of H. Hen
e, the union of the two lo
alfamilies (µα,Zα)α∈A and (να, iZα)α∈A is still a lo
al family (ρβ, ζβ)β∈B, where the ρβare now real valued fun
tions. Thus, lo
ally P(r) =
∑

β∈B ρβ(r)ζβ. But, the Unfoldmapping is 
learly R-linear, thus denoting ξβ = Unfold(ζβ) we get lo
ally Unfold(P(r)) =∑
β∈B ρβ(r)ξβ, where the ρβ are real smooth fun
tions and the ξβ are elements of HR.Therefore Unfold ◦ P is a plot of HR and Unfold is di�erentiable. In 
on
lusion H and

HR are di�eomorphi
.Step 2: The in�nite sphere is di�eomorphi
 to the real in�nite sphere. Let us 
onsider
X ∈ HR, and Z = Fold(X). Now, Zk = X2k−1 + iX2k, hen
e |Zk|2 = X2

2k−1 + X2
2k. And,therefore ‖Z‖2 =

∑∞
k=1 ‖Zk‖2 = (X2

1 + X2
2) + (X2

3 + X2
4) + · · · =

∑∞
k=1 X2

k = ‖X‖2. In
on
lusion, Fold sends the real in�nite sphere
SR =

{
X ∈ HR

∣∣∣ X · X =

∞∑

k=1

X2
k = 1

}

onto S. Now, sin
e Fold is a di�eomorphism from HR to H it follows that its restri
tion to
SR is a di�eomorphism onto S, where SR and S are equipped with the subset di�eology.Step 3: The real in�nite sphere as a di�eologi
al manifold. Let us 
onsider the followingstereographi
 maps:

F+ : HR −→ SR with F+ : ξ 7→ X =
1

‖ξ‖2 + 1

(
‖ξ‖2 − 1

2ξ

)

and
F− : HR −→ SR with F− : ξ 7→ X =

1

1 + ‖ξ‖2

(
1 − ‖ξ‖2

2ξ

)

where the matrix notation denotes the 
orresponding sequen
e in HR

(
a

ξ

)
∼ (a, ξ1, ξ2, . . .) where a ∈ R ξ = (ξ1, ξ2, . . .) ∈ HR.The maps F+ and F− are stereographi
 maps of SR, the image of F+ is SR − {e1}, andthe image of F− is SR − {−e1}, where e1 is the ve
tor whose �rst 
oordinate is 1 and



374 P. IGLESIAS-ZEMMOURthe others are zero. More generally we shall denote by ek the ve
tor de�ned by:
prk(ek) = 1 and prj(ek) = 0 if j 6= k.Let us denote, now, for any X ∈ HR:

X = (X1,X+) with X1 = pr1(X) and X+ = (X2,X3, . . .) ∈ HR.The inverse maps are given by:
F−1

+ : SR − {e1} −→ HR with F−1
+ : X 7→ ξ =

X+

1 − X1
,and

F−1
− : SR − {−e1} −→ HR with F−1

− : X 7→ ξ =
X+

1 + X1
.Let us show now that the stereographi
 maps are lo
al di�eomorphisms from HR to SR.We 
onsider only F+ sin
e the 
ase F− is 
ompletely analogous. We already 
he
ked that

F+ is inje
tive, and its domain is H whi
h is obviously D-open in H. We shall prove that
S− {e1}, the image of F+, is D-open in S. Then, we shall prove that F+ is di�erentiableas well as F−1

+ , de�ned on S − {e1} equipped with the subset di�eology. And �nally,applying the 
riterion (art. 6.8), it will follow that F+ is a lo
al di�eomorphism.a) The map F+ is inje
tive. We already exhibited F−1
+ .b) The map F+ is di�erentiable. Let us 
onsider a parametrization P : U −→ HR.For any r0 ∈ U there exists an open superset V of r0 in U, a �nite set of indi
es A, anda lo
al family (λα,Xα)α∈A su
h that:

P ↾ V : r 7→
∑

α∈A

λα(r)XαSo,
F+ ◦ (P ↾ V) : r 7→

(
ǫ(r)∑

α∈A µα(r)Xα

)

with
ǫ(r) =

‖
∑

α∈A λα(r)Xα‖2 − 1

‖
∑

α∈A λα(r)Xα‖2 + 1
and µα(r) =

2λα(r)

‖
∑

β∈A λβ(r)Xβ‖2 + 1The denominator of ǫ and µα never vanishes, hen
e the fun
tions ǫ and µα belong to
C∞(V,R). Now F+ ◦ (P ↾ V) rewrites:

F+ ◦ (P ↾ V)(r) = ǫ(r)

(
1

0

)
+

∑

α∈A

µα(r)

(
0

Xα

)
.This exhibits the map F+ ◦ (P ↾ V) as a �nite linear 
ombination of ve
tors of HR withsmooth parametrizations of R as 
oe�
ients. Therefore, F+ ◦ P is a plot of HR. Sin
e

F+ ◦P takes its values in SR, it is a plot of the subset di�eology of SR ⊂ HR, where HRis equipped with the �ne di�eology. Hen
e, F+ is di�erentiable.
) The map F−1
+ is di�erentiable. Let P : U −→ SR − {e1} be a plot. For any r0 ∈ Uthere exists an open superset V of r0 in U, a �nite set of indi
es A, a lo
al family

(λα,Xα)α∈A su
h that:
P ↾ V : r 7→

∑

α∈A

λα(r)Xα,
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F−1

+ ◦ (P ↾ V) : r 7→
∑

α∈A

µα(r)Xα,+ with µα(r) =
λα(r)

1 − ∑
β∈A λβ(r)Xβ,1

.Sin
e the Xβ,1 form a �nite set of 
onstant numbers, the parametrization ∑
β∈A λβ(r)Xβ,1is smooth, and never equal to 1 sin
e P takes its values in SR−{e1}. Thus, for ea
h α ∈ A,

µα(r) is a smooth parametrization of R. The parametrization F−1
+ ◦ (P ↾ V) is 
learly a�nite linear 
ombination of ve
tors of HR with 
oe�
ients smooth parametrizations of

R. Hen
e, F−1
+ ◦ (P ↾ V) is a plot of the �ne di�eology of HR. Now, F−1

+ ◦ P is lo
ally,at ea
h point of U, a plot of HR, so it is a plot of HR. Therefore, F−1
+ is a di�erentiablemap from SR − {e1} to HR.d) The subset SR −{e1} is open for the D-topology. Let us re
all that a set is D-openif and only if its preimage by any plot is open. Let P : U −→ SR be a plot, for any

r0 ∈ U there exists an open superset V of r0 in U, a �nite set of indi
es A, a lo
al family
(λα,Xα)α∈A su
h that:

P ↾ V : r 7→
∑

α∈A

λα(r)XαHen
e,
(P ↾ V)−1(SR − {e1}) =

{
r ∈ V

∣∣∣
∑

α∈A

λα(r)Xα,1 6= 1
}
.But the parametrization PV : r 7→

∑
α∈A λα(r)Xα,1 is smooth, a fortiori 
ontinuous. So,the preimage of R − {1} is open. Thus, P−1(SR − {e1}) is an union of open sets of U,and therefore open. Hen
e, P−1(SR − {e1}) is open for any plot P, that is SR − {e1} isD-open.In 
on
lusion, the di�eology of the real in�nite sphere SR is generated by F+ and F−,therefore SR is, by de�nition (art. 15.1), a di�eologi
al manifold, modeled on HR. Now,sin
e HR and H are di�eomorphi
, S is a di�eologi
al manifold modeled on H. The �rstsenten
e of the proposition is proved.Step 4: The in�nite sphere is 
ontra
tible. Let us prove now that the in�nite sphere SR,equipped with the subset �ne di�eology of HR, is 
ontra
tible. That is, there exists adi�erentiable path γ of C∞(SR) 
onne
ting the identity 1S : X 7→ X with the 
onstantmap ê1 : X 7→ e1.The proof of this proposition, uses the following linear map, 
alled the shift operator :

Shift : HR −→ HR, with Shift(X)1 = 0 and Shift(X)k = Xk−1, k > 1.In other words Shift(X) = (0,X) = (0,X1,X2, . . .). The shift operator is 
learly a linearoperator, hen
e is di�erentiable for the �ne di�eology. It is inje
tive and preserves thes
alar produ
t. It inje
ts stri
tly the in�nite sphere into an equator.We prove the 
ontra
tibility of the in�nite sphere in two steps, �rst we shall show thatthe 
onstant map ê1 is homotopi
 to the shift operator, and then, that the shift operatoris homotopi
 to the identity 1S. Then, applying the smashing fun
tion (art. 8.3) to thepair of homotopies we get a path 
onne
ting the 
onstant map to the identity.



376 P. IGLESIAS-ZEMMOURa) Homotopy between ê1 and Shift. Let us 
onsider the following 1-parameter familyof deformations:for all t ∈ R, for all X ∈ SR, ρt(X) = cos

(
πt

2

)
e1 + sin

(
πt

2

)
Shift(X).For any t ∈ R, ρt(X) ∈ SR. Sin
e addition and multipli
ation by a smooth fun
tion aredi�erentiable, the map (t,X) 7→ ρt(X) is di�erentiable. Thus, the map t 7→ ρt is a pathof C∞(SR) 
onne
ting ê1 and Shift, pre
isely:

ρ0 = ê1 and ρ1 = Shift.b) Homotopy between Shift and 1S. Let us 
onsider the following 1-parameter familyof deformations:for all t ∈ R, for all X ∈ HR, σt(X) = tX + (1 − t)Shift(X).Note that ker(σt) = 0, this is 
lear for t = 0, and for nonzero t it follows indu
tivelyby observing that the 
ondition σt(X) = 0 writes (X1,X2,X3, . . .) = t−1
t

(0,X1,X2, . . .).In parti
ular σt is nowhere zero on the sphere, so we 
an de�ne ρt : SR −→ SR by:
ρt(X) =

1

‖σt(X)‖σt(X).Let us 
he
k that (t,X) 7→ ρt(X) is di�erentiable. First of all, (t,X) 7→ σt(X) is 
learlydi�erentiable. Sin
e the s
alar produ
t is di�erentiable, it follows that (t,X) 7→ ‖σt(X)‖2is di�erentiable; and be
ause this map takes its values in ]0,∞[, its square root is di�er-entiable. In 
on
lusion, t 7→ ρt is a path in C∞(SR), and
ρ0 = Shift and ρ1 = 1S.We proved, with a) and b) that SR is 
ontra
tible. The whole proposition is thus proved.17.3. Vanishing homotopy groups. Note that sin
e SR is 
ontra
tible, all its homotopygroups vanish: for all k ∈ N⋆, πk(SR) = {0}.This fa
t is known in the topologi
al framework, we proved that it is also true in di�eology.18. The in�nite proje
tive spa
e. Let us re
all some set theoreti
 
onstru
tions,today 
lassi
. Let us introdu
e:

C⋆ = C − {0} and H⋆ = H − {0}.Now, let us 
onsider the group C⋆ a
ting on H⋆ by multipli
ationFor all (z,Z) ∈ C⋆ × H⋆, (z,Z) 7→ zZ ∈ H⋆.The quotient of H⋆ by this a
tion of C⋆ is 
alled the in�nite 
omplex proje
tive spa
e, orsimply the in�nite proje
tive spa
e, and it is denoted P. The restri
tion of the a
tion of
S1 to S ⊂ H⋆ gives the following set theoreti
 equivalen
es

P = H⋆/C⋆ ≃ S/S1 ≃ SR/SO(2,R).Indeed, the sphere S interse
ts every C⋆-orbit in H⋆. The tra
e on S of the a
tion of
C⋆ is the a
tion of S1 identi�ed to the set of 
omplex numbers of modulus 1. Hen
e,
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H⋆/C⋆ ≃ S/S1. The last equivalen
e is obtained by identifying H to HR + iHR or
HR × HR, thanks to the unique de
omposition Z = X + iY, where Z belongs to H and
X and Y belong to HR. The a
tion of S1 ∼ SO(2,R) on the pair (X,Y) is given by:

(
cos(t) − sin(t)

sin(t) cos(t)

) (
X

Y

)
=

(
cos(t)X − sin(t)Y

sin(t)X + cos(t)Y

)
.Now, let us equip the in�nite proje
tive spa
e P with the quotient di�eology of thesubset di�eology of H⋆ ⊂ H. We shall see that these identi�
ations are also valid fromthe di�eologi
al point of view. That is, H⋆/C⋆, S/S1 and SR/SO(2,R) are di�eomorphi
.18.1. The in�nite proje
tive spa
e as a di�eologi
al spa
e. The in�nite proje
tive spa
e

P is a di�eologi
al manifold modeled on H. The proje
tion π : H⋆ −→ P is a C⋆ prin
ipaldi�eologi
al �bration, lo
ally trivial. The proje
tive spa
e P is naturally di�eomorphi
to the quotient S/S1, moreover the restri
tion πS of π : H⋆ −→ P to the sphere S is aprin
ipal S1 di�eologi
al �bration, lo
ally trivial. The homotopy of P is given by:
π2(P) = Z and πk(P) = {0}, if k 6= 2.The prin
ipal �brations π or πS are not trivial.Proof. P is a di�eologi
al manifold, modeled on H. Let us denote by [Z] = [Z1,Z2, . . .]the 
lass in P of an element Z = (Z1,Z2, . . .) of H. Let us 
onsider the various a�nesubspa
es Hk ⊂ H de�ned by:

Hk = {Z ∈ H | Zk = 1}, k ∈ N⋆.These spa
es interse
t the orbits of the group C⋆ in one and only one point. The orbitswhi
h do not meet Hk are those su
h that Zk = 0. However, the orbit of any point Z ∈ H⋆interse
ts some Hk, in other words ∪k∈N⋆C⋆Hk = H⋆, or π(∪k∈N⋆Hk) = P. For ea
h
k ∈ N⋆ let us de�ne the inje
tion jk : H −→ H⋆ by

j1(Z) = (1,Z) and jk(Z) = (Z1, . . . ,Zk−1, 1,Zk, . . .), if k > 1.And let us de�ne also the map
Fk = π ◦ jk, Fk : H −→ P.We shall prove now that the Fk are indu
tions onto D-open sets of P, and therefore arelo
al di�eomorphisms (art. 6.8):a) The map jk is an indu
tion. Let us 
onsider a plot P of H with values in Hk,lo
ally:

P(r) =
∑

α∈A

λα(r)Zα and Pk(r) =
∑

α∈A

λα(r)Zα,k = 1, Pk = prk ◦ P.Let us de�ne ζα by:
ζα = (Zα,1 , . . . ,Zα,k−1, 1,Zα,k+1, . . .).For ea
h α in A, ζα belongs to Hk. Let ek be the sequen
e with only one nonzero term,equal to 1, at the pla
e k. From the 
ondition above, we have lo
ally:
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P(r) =
∑

α∈A

λα(r)ζα −
∑

α∈A

λα(r)ek +
∑

α∈A

λα(r)Zα,kek

=
∑

α∈A

λα(r)ζα +
(
1 −

∑

α∈A

λα(r)
)
ek.Now, sin
e the ve
tors ζα and ek belong to Hk, the plot j−1

k ◦ P writes lo
ally
j−1
k ◦ P(r) =

∑

α∈A

λα(r)j−1(ζα) +
(
1 −

∑

α∈A

λα(r)
)
j−1(ek)but jk(0) = ek implies j−1

k (ek) = 0, hen
e:
j−1
k ◦ P(r) =

∑

α∈A

λα(r)j−1(ζα).This exhibits the parametrization j−1
k ◦ P as a plot of H, hen
e jk is an indu
tion.b) The map Fk is 
learly di�erentiable and inje
tive.
) Let Q : U −→ P be a plot with values in Fk(H), and let r0 ∈ U. By de�nition of thequotient di�eology, there exists a superset V of r0 and a plot P : V −→ H⋆ su
h that Q ↾

V = π ◦P. By hypothesis, for ea
h r ∈ V, Pk(r) 6= 0, where Pk = prk ◦P, therefore P′ : V

−→ H⋆ de�ned by P′(r) = P(r)/Pk(r) takes its values in Hk. Sin
e Pk is di�erentiable, P′is di�erentiable and Q ↾ V = π◦P′. The plot P′ takes its values in Hk, and jk is an indu
-tion, so the 
omposition j−1
k ◦P′ is a plot of H. But, by 
onstru
tion, j−1

k ◦P′ = F−1
k ◦Q,thus F−1

k ◦ Q is a plot of H and F−1
k is di�erentiable. Therefore, Fk is an indu
tion.d) Now let us prove that the image of Fk is D-open. Sin
e the D-topology of thequotient di�eology is the quotient topology of the D-topology (art. 6.5), it is enough toprove that the preimage by π of the Fk(H) is D-open in H⋆. We saw that π−1(Fk(H))is the set of all Z ∈ H su
h that Zk 6= 0, i.e. pr−1

k (C⋆). But prk is linear, hen
e smooth,hen
e 
ontinuous. Sin
e C⋆ is open it follows that π−1(Fk(H)) is open.So, we just proved that the Fk are lo
al di�eomorphisms. Sin
e their images 
over P,the spa
e P is a di�eologi
al manifold modeled on H.Let us prove now, that π is a C⋆ prin
ipal �bration. Let us 
onsider the map
Φk : H × C⋆ −→ H⋆ su
h that Φk(Z, z) = zjk(Z).The previous part of the proof proved that Φk is a di�eomorphism 
overing Fk. It 
om-mutes with the a
tion of C⋆. Thus, the proje
tion π is a di�eologi
alC⋆ prin
ipal bundles,lo
ally trivial.The restri
tion πS : S −→ P is a di�eologi
al �bration. The restri
tion to the in�nitesphere has been des
ribed above. Just the a
tion of S1 remains from the a
tion of C⋆.Now, thanks to the proje
tion Z 7→ Z/‖Z‖, the natural bije
tion S/S1 −→ P = H⋆/C⋆is a di�eomorphism (art. 5.6). The proje
tion π to S is a redu
tion of the �bration H⋆

−→ P to the subgroup S1 ⊂ C⋆, therefore it is a �bration [Igl85℄.The homotopy of P. We apply the exa
t sequen
e of homotopy for di�eologi
al bundle(art. 9.2), sin
e the total spa
e S is 
ontra
tible we get πk(P) = πk−1(S
1), whi
h givesthe homotopy groups of P, in parti
ular the only nontrivial one: π2(P) = π1(S

1) = Z.The �bration is not trivial. Indeed, otherwise the �rst homotopy group π1(S) wouldbe equal to π1(P × S1) = π1(P) × π1(S
1) = {0} × Z = Z whi
h is not the 
ase.
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hapter we introdu
e a homogeneous symple
ti
 form Ω on the square H2
R

=

HR ×HR, whi
h we 
all the standard symple
ti
 form. This di�erential form is invariantby translation. The form Ω is the exterior derivative of a 1-form Λ, 
alled the Liouvilleform, be
ause it is the restri
tion to H2
R

of the general Liouville's form de�ned on the1-form bundle of any di�eologi
al spa
e [PIZ05℄. The restri
tion ̟ of Λ to the in�nitesphere SR is a 
onne
tion 1-form, for the natural a
tion of the group SO(2,R) de�ningthe Hopf �bration. The 
urvature of ̟ is a 
losed 2-form ω de�ned on P ∼ SR/SO(2,R),whi
h generalizes the standard Fubini-Study form of the �nite dimensional 
onstru
tion.19. The Liouville form on the Hilbert square. The following proposition gives thede�nition of the Liouville form on the square H2
R
, a natural extension of the Liouvilleform of the �nite dimensional 
ase R2n.19.1. The Liouville form. Let P : U −→ HR × HR be a plot, V ⊂ U an open subsetsu
h that there exists a �nite lo
al family (λα, (Xα,Yα)), where the λα are smooth realfun
tions de�ned on V, and the (Xα,Yα) are ve
tors of HR × HR, su
h that:

P ↾ V : r 7→
∑

α∈A

λα(r)(Xα,Yα).Let Λ(P ↾ V) be the following 1-form, de�ned on V:
Λ(P ↾ V) =

1

2

∑

α,β∈A

(Xα · Yβ − Yα · Xβ)(λαdλβ − λβdλα).1. If P′ is any plot of HR ×HR su
h that P ↾ V = P′ ↾ V, then Λ(P ↾ V) = Λ(P′ ↾ V).2. There exists a 1-form Λ(P) on U su
h that for any open subset V ⊂ U, Λ(P ↾ V) =

Λ(P) ↾ V.3. The map Λ : P 7→ Λ(P) is a 1-form of HR × HR.Proof. Let us prove su

essively:1. Let us develop the restri
tion of P′ to V,
P′ ↾ V : r 7→

∑

α′∈A′

λ′α′(r)(X′
α′ ,Y′

α′).Then, P ↾ V = P′ ↾ V implies
∑

α∈A

λαXα =
∑

α′∈A′

λ′α′X′
α′ and ∑

α∈A

λαYα =
∑

α′∈A′

λ′α′Y′
α′ .Let us note that:

Λ(P ↾ V) =
( ∑

α∈A

λαXα

)
·
( ∑

β∈A

dλβYβ

)
−

( ∑

α∈A

λαYα

)
·
( ∑

β∈A

dλβXβ

)
.Thus, we have:

Λ(P ↾ V) − Λ(P′ ↾ V) =
( ∑

α∈A

λαXα

)
·
( ∑

α′′∈A′′

dλ′′α′′Y′′
α′′

)

−
( ∑

α∈A

λαYα

)
·
( ∑

α′′∈A′′

dλ′′α′′X′′
α′′

)



380 P. IGLESIAS-ZEMMOURwhere A′′ is the following reordering of the two sets of indi
es A and A′, λ′′α′′ , X′′
α′′and Y′′

α′′ following this reordering: let A = {1, . . . , a} and A′ = {1, . . . , a′} we denote
A′′ = {1, . . . , a′′} su
h that a′′ = a+ a′ and:

λ′′α′′ = λα if 1 ≤ α′′ ≤ a and λ′′α′′ = λ′α′ if a+ 1 ≤ α′′ ≤ a+ a′,

Y′′
α′′ = Yα if 1 ≤ α′′ ≤ a and Y′′

α′′ = −Y′
α′ if a+ 1 ≤ α′′ ≤ a+ a′,

X′′
α′′ = Xα if 1 ≤ α′′ ≤ a and X′′

α′′ = −X′
α′ if a+ 1 ≤ α′′ ≤ a+ a′.With this reordering we get:

∑

α∈A

λαYα =
∑

α′∈A′

λ′α′Y′
α′ ⇒

∑

α′′∈A′′

λ′′α′′Y′′
α′′ = 0,

∑

α∈A

λαXα =
∑

α′∈A′

λ′α′X′
α′ ⇒

∑

α′′∈A′′

λ′′α′′X′′
α′′ = 0.Let us proje
t this ve
tor on ea
h fa
tor R by the proje
tion prk:

∑

α′′∈A′′

λ′′α′′Y′′
α′′ = 0 ⇒ for all k ∈ N,

∑

α′′∈A′′

λ′′α′′Y′′
α′′,k = 0,

∑

α′′∈A′′

λ′′α′′X′′
α′′ = 0 ⇒ for all k ∈ N,

∑

α′′∈A′′

λ′′α′′X′′
α′′,k = 0.But X′′

α′′,k and Y′′
α′′,k are just numbers, ∑

α′′∈A′′ λ′′α′′X′′
α′′,k and ∑

α′′∈A′′ λ′′α′′Y′′
α′′,k aresmooth fun
tions of r ∈ V. Sin
e these fun
tions vanish identi
ally, so do their derivatives,with respe
t to r. And we get:for all k ∈ N,

∑

α′′∈A′′

dλ′′α′′Y′′
α′′,k = 0 ⇒

∑

α′′∈A′′

dλ′′α′′Y′′
α′′ = 0,

for all k ∈ N,
∑

α′′∈A′′

dλ′′α′′X′′
α′′,k = 0 ⇒

∑

α′′∈A′′

dλ′′α′′X′′
α′′ = 0.And �nally Λ(P ↾ V) = Λ(P′ ↾ V).2. Let us 
onsider a 
overing Ui of U su
h that the plot P, restri
ted to ea
h Ui, is thesum of a �nite linear 
ombination of ve
tors with smooth parametrizations as 
oe�
ients.Let i and j be two indi
es of the 
overing, let us denote Pi = P ↾ Ui. By the previousstatement we have

Λ(Pi) ↾ Ui ∩ Uj = Λ(Pj) ↾ Ui ∩ Uj .Be
ause a di�erential form is lo
al (art. 10.4), there exists a 1-form Λ(P) = supi Λ(Pi),de�ned on U su
h that Λ(P) ↾ Ui = Λ(Pi)3. It remains to show that the map Λ is a 1-form on HR × HR. That is, to 
he
kthat for any plot P : U −→ HR × HR, and for any smooth parametrization F : U′ −→ U,
Λ(P ◦ F) = F∗(Λ(P)). Let r′0 ∈ U′ and r0 = F(r′0), let

P ↾ V : r 7→
∑

α∈A

λα(r)(Xα,Yα)



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 381as usual. Let us de�ne now V′ = F−1(V) and λ′α = λα ◦ F, we have
Λ(P ◦ F ↾ V′)r′(δr′) =

∑

α,β∈A

Xα · Yβ λ′α(r′)dλ′β(r′)(δr′)

=
∑

α,β∈A

Xα · Yβ λα(F(r′))dλβ(F(r′))(D(Fr′)(δr′))

=
∑

α,β∈A

Xα · Yβ λα(r)dλβ(r)(δr),

with r = F(r′) and δr = D(F)r′(δr′), this is the de�nition of the pull-ba
k. Therefore,
Λ(P ◦ F ↾ V′) = F∗(Λ(P ↾ V)). Sin
e this is true lo
ally, and sin
e it's a lo
al property,it's true globally and Λ(P ◦ F) = F∗(Λ(P)).19.2. The 
omplex pi
ture of the Liouville form. Let us 
onsider the identi�
ation of Hwith HR×HR de�ned by the unique de
omposition Z = X+iY, with (X,Y) ∈ HR×HR.Let P : r 7→ ∑

α∈A λα(r)Zα be a plot of H, where (λα,Zα)α∈A is a lo
al family. The λαare 
omplex valued fun
tions and the Zα are ve
tors of H. Let us de�ne the symbol dZby :
dZ(P) : r 7→

∑

α∈A

dλα(r)Zα where P : r 7→
∑

α∈A

λα(r)Zα.Here dλα needs to be understood as
dλα = daα + idbα, where λα = aα + ibα.Then, the Liouville form ̟, pulled ba
k on H by the isomorphism Φ : Z 7→ (X,Y), writes:

Φ∗(̟) =
1

2i
[Z · dZ − dZ · Z].Proof. This identity is obtained just by developing the 
omputation as follows:

(Z · dZ − dZ · Z)(P) =
∑

α∈A

λ∗α(Xα − iYα)
∑

β∈A

dλβ(Xβ + iYβ)

−
∑

α∈A

dλ∗α(Xα − iYα)
∑

β∈A

λβ(Xβ + iYβ)

=
∑

α,β∈A

λ∗αdλβ [XαXβ + YαYβ + i(XαYβ − YαXβ)]

−
∑

α,β∈A

dλ∗αλβ [XαXβ + YαYβ + i(XαYβ − YαXβ)]

=
∑

α,β∈A

(XαXβ + YαYβ)(λ∗αdλβ − dλ∗αλβ)

+ i
∑

α,β∈A

(XαYβ − YαXβ)(λ∗αdλβ − dλ∗αλβ).

But, ∑
α,β∈A(XαXβ + YαYβ)(λ∗αdλβ − dλ∗αλβ) = 0 for symmetry reasons. Hen
e, devel-oping, for ea
h index, λα = aα + ibα, we get:
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(Z · dZ − dZ · Z)(P) = i
∑

α,β∈A

(XαYβ − YαXβ)(λ∗αdλβ − dλ∗αλβ)

= i
∑

α,β∈A

(XαYβ − YαXβ)(aαdaβ − aβdaα + bαdbβ − bβdbα)

−
∑

α,β∈A

(XαYβ − YαXβ)(aαdbβ + aβdbα − bαdaβ − bβdaα).But, the se
ond term of the right hand side vanishes for symmetry reasons. So, thereremains:
(Z · dZ − dZ · Z)(P) = i

∑

α,β∈A

(XαYβ − YαXβ)(aαdaβ − aβdaα)

+ i
∑

α,β∈A

(XαYβ − YαXβ)(bαdbβ − bβdbα).Let us now 
ome ba
k to the map Φ : Z 7→ (X,Y), identifying H and HR×HR. The plot
Φ◦P writes ne
essarily Φ◦P(r) =

∑
j∈J

µj(r)(Xj,Yj). Then, by developing ∑
α∈A λαZαwe obtain the family (µj , (Xj,Yj))j∈J as the union of two families:

(µj , (Xj ,Yj))j∈J = (aα, (Xα,Yα)α∈A ∪ bα, (−Yα,Xα)α∈A).Applying the form ̟ to Φ ◦ P, with this family, we get:
̟(Φ ◦ P) =

∑

α,β∈A

(XαYβ − YαXβ)(aαdaβ − aβdaα)

+
∑

α,β∈A

(−YαXβ + XαYβ)(bαdbβ − bβdbα).Comparing the last two expressions we get ̟(Φ ◦P) = (1/2i)(Z · dZ− dZ ·Z)(P). Thanksto lo
ality (art. 10.4), this equality is still satis�ed for any plot of H2
R
. Hen
e, we 
an
on
lude that:

Φ∗(̟) =
1

2i
[Z · dZ − dZ · Z].The proof is 
omplete.20. The symple
ti
 form on the Hilbert square. The standard symple
ti
 form of

HR ×HR is just the exterior derivative of the Liouville form. It generalizes the standardsymple
ti
 form of even dimensional real ve
tor spa
es, and its lo
al expression is givenby the following proposition.20.1. The symple
ti
 form of HR × HR. Let Ω be the exterior derivative of Λ,
Ω = dΛ, i.e. Ω(P) = d[Λ(P)]for any plot P : U −→ HR × HR. Let V ⊂ U be a domain su
h that there exists a lo
alfamily (λα, (Xα,Yα))α∈A su
h that:
P ↾ V : r 7→

∑

α∈A

λα(r)(Xα,Yα).
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t 
omputation give the lo
al expresion of the 2-form Ω in the plot P:
Ω(P ↾ V) =

∑

α,β∈A

(Xα · Yβ − Yα · Xβ)dλα ∧ dλβ .Moreover the symple
ti
 form Ω is invariant under the translations of HR ×HR. We 
all
Ω the standard symple
ti
 form of the square HR × HR.20.2. Why is Ω symple
ti
? The word symple
ti
 in the last proposition (art. 20.1) needshowever to be dis
ussed. I use it be
ause the momentum map of HR × HR, a
ting onitself by translation and preserving ω, satis�es the 
ondition I suggest for ω to be 
alleda symple
ti
 form. Here is an abridged des
ription of the general 
onstru
tion, a fulldis
ussion on symple
ti
 di�eology 
an be found in [PIZ05℄.Let X be a 
onne
ted di�eologi
al spa
e. Let ω be a 
losed 2-form on X. Its whole sym-metry group Diff(X, ω) 
onsists of all di�eomorphisms of X whi
h preserve ω, equippedwith the fun
tional di�eology (art. 7.1). Let G be any group of symmetries, that is anysubgroup of Diff(X, ω), and let G∗ be the spa
e of moments of G (art. 11.2) equippedwith the fun
tional di�eology of spa
e of di�erentiable forms [PIZ05℄.The 2-point momentum map. The 2-point momentum map of G is a di�erentiable map
ψ de�ned on X×X with values in a quotient G∗/Γ, where Γ is the holonomy group of the
G-a
tion. The holonomy group Γ is a homomorphi
 image of the �rst homotopy group
π1(X), and is G-invariant in G∗. It is the obstru
tion to the G-a
tion being hamiltonian.The 2-point momentum map satis�es the Chasles 
o
y
le relation

ψ(x, x′) + ψ(x′, x′′) + ψ(x′′, x) = 0and is G-equivariant:
ψ(g(x), g(x′)) = Ad∗(g)(ψ(x, x′)), for all g ∈ G.The 1-point momentum maps. Sin
e X is 
onne
ted, there always exists a di�erentiablemap µ from X to G∗/Γ su
h that

ψ(x, x′) = µ(x′) − µ(x).We 
an 
hoose µ(x) = ψ(x0, x) where x0 is any point of X. I 
all the maps µ, the 1-pointmomentum maps. We may also simply 
all them momentum maps, sin
e they extend theusual de�nition of the momentum maps. Sin
e the spa
e X is 
onne
ted, two momentummaps di�er only by a 
onstant. If µ 
an be 
hosen equivariant the 2-point momentummap ψ is said to be exa
t, and µ is 
alled a primitive of ψ.The asso
iated 
ohomology 
lass θ. If the 2-point momentum map ψ is not exa
t, thevarian
e of any 1-momentum map µ de�nes a non trivial 1-
o
y
le θ by:
µ(g(x)) = Ad∗(g)(µ(x)) + θ(g), where θ ∈ Z1(G,G∗/Γ).Two di�erent 1-point momentum maps de�ne two 
ohomologous 
o
y
les. The 
ohomol-ogy 
lass [θ] ∈ H1(G,G∗/Γ) extends the so-
alled Souriau 
ohomology 
lass. Note that ifthe 2-point momentum map ψ is exa
t, a primitive µ of ψ (that is a 1-point momentummap) is still de�ned modulo a 
onstant. But, this time this 
onstant is invariant underthe 
oadjoint a
tion of G.
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ases. Whether µ is equivariant or not, we 
an show [PIZ05℄ that when
G a
ts transitively on X, µ is automati
ally a �bration onto its image whi
h is always ana�ne 
oadjoint orbit, that is an orbit of the a�ne 
oadjoint a
tion:

gθ : µ 7→ Ad∗(g)(µ) + θ(g), for any g ∈ G and any µ ∈ G∗/Γ.What has been said until now applies the same way to the whole symmetry group
Diff(X, ω). In this 
ase the momentum map is the universal momentum map of (X, ω),sin
e any other momentum map, relative to any subgroup G ⊂ Diff(X, ω) fa
torizesthrough it. Now, it seems to me natural to de�ne symple
ti
 forms as follow:Symple
ti
 di�eologi
al spa
es. LetX be a di�eologi
al spa
e. A 
losed 2-form ω de�nedon X is said to be symple
ti
 if X is homogeneous under the symmetry group Diff(X, ω)and if any 1-point momentum map µ of Diff(X, ω) is a 
overing onto its image. In this
ase, the pair (X, ω) is 
alled a symple
ti
 di�eologi
al spa
e.This de�nition needs however some 
omments. First of all, if this property is satis�edfor some group of symmetries G ⊂ Diff(X, ω), it is a fortiori satis�ed for the whole groupof symmetries Diff(X, ω). Hen
e, it is su�
ient to �nd the good symmetry group for
he
king that a 
losed 2-form is symple
ti
. Se
ondly, if a 1-point momentum map is a
overing onto its image then all the 1-points momentum maps are 
overings, sin
e theydi�er just by a 
onstant.Now, let us 
ome to the very reason of this de�nition. In the usual 
ase of a �-nite dimensional real manifold, the Darboux theorem asserts that a symple
ti
 man-ifold (X, ω) is lo
ally homogeneous under Diff(X, ω). Hen
e, a good generalization ofsymple
ti
 manifolds needs to in
lude this property, whi
h ex
ludes the non homoge-neous situations, altought this 
ondition 
ould weakened by 
onsidering the pseudo-group of lo
al automorphisms, but that is still not done. Then, if X is homogeneousunder Diff(X, ω) or one of its subgroups, any 1-point momentum map µ is a �brationonto an a�ne 
oadjoint orbit. The spa
e X 
an be regarded as pre-symple
ti
. But, the
hara
teristi
s of µ are exa
tly the 
hara
teristi
s of ω. Hen
e to be non degenerate isequivalent for µ to have its 
hara
teristi
s dis
rete, that is to be a 
overing onto itsimage.I know that many authors 
onsider som kinds of �symple
ti
 stru
tures� on non ho-mogeneous spa
es, as for example on orbifolds where singularities 
an be ex
hanged bydi�eomorphisms only with other singularities of same type. Personally, for the reason justexpressed above, I would prefer to talk about �symple
ti
 strati�ed di�eologi
al spa
es�,althout symple
ti
 strati�ed di�eologi
al spa
es 
an be more general than orbifolds. Butwe still miss a name for the general 
ase of a di�eologi
al spa
e equipped just with a
losed 2-form, whi
h is the basis of all this analysis.21. The symple
ti
 stru
ture on the in�nite proje
tive spa
e. We 
onsider nowthe restri
tion ̟ of the Liouville form Λ to the sphere SR, it is obviously invariant bythe a
tion of SO(2,R). In the 
omplex pi
ture, the a
tion of S1 ∼ SO(2,R) is given bymultipli
ation. For any point Z ∈ S, the orbit map Ẑ, from S1 to S, is de�ned by:

Ẑ : S1 −→ S with Ẑ(τ ) = τZ.
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onne
tion form. Let̟ be the restri
tion of the Liouvilleform of H2
R
to the in�nite sphere SR. For any Z in S, the pull-ba
k of the Liouville form

̟ by the orbit map Ẑ 
oin
ides with the standard length 1-form of the 
ir
le S1:
Ẑ∗(̟) =

dz

iz
.In other words, ̟ is an S1-
onne
tion form of the Hopf �bration π : S −→ P.Proof. It is enough to test the 1-form Z∗(̟) on the 1-plots of S1 (art. 10.5). And sin
ethe di�eology of S1 is generated by the homomorphism F : R −→ S1, with F(t) = eit, itis enough to test Z∗(̟) on F. Now,

F∗(Ẑ∗(̟)) = (Ẑ ◦ F)∗̟ = ̟(Ẑ ◦ F) = ̟([t 7→ F(t)Z]).Let us develop F(t)Z in terms of (X,Y):
Z =

(
X

Y

)
, F(t) =

(
cos(t) − sin(t)

sin(t) cos(t)

)
, F(t)(Z) =

(
cos(t)X − sin(t)Y

sin(t)X + cos(t)Y

)
.In other words, our plot t 7→ F(t)(Z) 
an be des
ribed in terms of (art. 13.1) the lo
alfamily (λ1,X1,Y1) = (cos,X,Y), (λ2,X2,Y2) = (sin,−Y,X).Now, let us apply the de�nition,

̟([t 7→ F(t)Z]) =
∑

α,β∈{1,2}

XαYβ(λαdλβ − λβdλα)

= X1Y2(λ1dλ2 − λ2dλ1) + X2Y1(λ2dλ1 − λ1dλ2)

= X · X[cos(t)d(sin(t)) − sin(t)d(cos(t))]

+ (−Y) · Y[sin(t)d(cos(t)) − cos(t)d(sin(t))]

= X · Xdt+ Y · Ydt
= [X · X + Y · Y]dt

= dt

= F∗(dz/iz).The proof is 
omplete.21.2. Fubini-Study form on the in�nite proje
tive spa
e There exists a unique 
losed2-form ω de�ned on P su
h that
π∗ω = d̟, π : S −→ P.It is, by de�nition, the 
urvature of ̟, viewed as a S1-
onne
tion form on S. This form

ω will be 
alled the in�nite Fubini-Study symple
ti
 form.Proof. In general, when we have a subdu
tion π : A −→ B and a form α on A, for provingthat there exists a form β on B su
h that π∗(β) = α, we have to 
he
k that: for any pairof plots P and P′ of A su
h that π ◦P = π ◦P′, α(P) = α(P′) [PIZ05℄. But in the 
ase ofprin
ipal di�eologi
al �bration this 
ondition splits into two 
onditions:a) the form α must be invariant under the stru
ture group, andb) it must vanish on the �verti
al� plots, that is the plots whose images are 
ontainedin the �bers.
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an be found in [PIZ05℄. In our 
ase, the �ber hasdimension 1. So, d̟ ne
essarily vanishes on the verti
al plots, and we noted already that
̟ (therefore d̟) is S1-invariant (art. 21.1). Hen
e, there exists a 2-form ω of P, su
hthat d̟ = π∗ω.21.3. The in�nite Fubini-Study form is not exa
t. The Fubini-Study form ω on P is the
urvature of the 
onne
tion ̟. It is 
losed but not exa
t, and its value on any 2-
y
le isa multiple of 2π. In other words, its group of periods is

Per(ω) =

{∫

σ

ω

∣∣∣∣ σ ∈ H2(P,Z)

}
= 2πZ.Proof. ω is not exa
t. Suppose we had ω = dǫ. Then, ̟ − π∗(ǫ) would be 
losed: d[̟ −

π∗(ǫ)] = π∗(ω − dǫ) = 0. Sin
e S is 
ontra
tible (art. 17.2), it would follow [PIZ05℄ that
̟ − π∗(ǫ) is exa
t, say ̟ − π∗(ǫ) = df . But then the integral over a �ber S = π−1(p)would vanish: ∫

S
̟ =

∫
S
π∗(ǫ) +

∫
S
df = 0 +

∫
∂S
f = 0 + 0, whereas we know that∫

S
̟ =

∫ 2π

0
dt = 2π.The periods of ω. Let us 
onsider now a 2-simplex σ in P, su
h that ∂σ = 0, i.e.its boundary goes on one point p. Let us 
ompute the integral ∫

σ
ω =

∫
σ
π∗(d̟) =∫

π∗σ
d̟. Here, π∗σ is a lifting σ∗ of σ, that is a simplex of S su
h that π ◦ σ∗ = σ. So,∫

σ
ω =

∫
∂σ∗

̟, but ∂σ∗ is a map sending a « 
ir
le » � the boundary of the standard2-simplex � to the 
ir
le π−1(p). Sin
e ̟ ↾ π−1(p) ∼ dt, by de�nition of the degree:∫
∂σ∗

̟ = deg(∂σ∗)
∫ 2π

0
dt ∈ 2πZ.22. The 
anoni
al line bundle over the in�nite proje
tive spa
e. It is di�
ultto talk about the Hopf �bration without talking about its C-asso
iated line bundle.22.1. The Hopf line bundle. Let us 
onsider the diagonal a
tion of C⋆ on the produ
t

H⋆ × C, endowed with the produ
t di�eology. It is easy to 
he
k that this a
tion isdi�erentiable. Now, the quotient spa
e:
L = H⋆ ×C⋆ C = {[Z, z] | (Z, z) ∼ (τZ, τz), τ ∈ C⋆}equipped with its quotient topology, is a di�eologi
al bundle, on P, lo
ally trivial. Theproje
tion is de�ned by π : [Z, z] 7→ [Z]. Moreover, L is a di�eologi
al manifold modeledon H.Proof. Let us 
onsider the following maps Φk:

Φk : H × C −→ L su
h that Φk(Z, z) = [Fk(Z), z] ∈ L,where Fk are the 
harts de�ned in proposition 18.1. The Φk are di�eomorphisms whi
h
ommute with the a
tion of C⋆, therefore L is lo
ally di�eomorphi
 to H × C ∼ H atea
h point. The set of (Φk)k∈N⋆ is an equivariant atlas of L.22.2. Se
tions of the line bundle. Note that, by restri
tion to S ⊂ H⋆ and S1 ⊂ C⋆, weget:
L = S ×S1 C = {[Z, z] | (Z, z) ∼ (τZ, τz), τ ∈ S1}.Outside the null-se
tion, the line bundle L is di�eomorphi
 to H⋆, the point 0 ∈ H isrepla
ed by P. The spa
e L is the blow-up of H at the point 0.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 387Now, let ψ : S −→ C be a di�erentiable fun
tion su
h that ψ(τZ) = τψ(Z), for all
τ ∈ S1 and Z ∈ S. The map [ψ] de�ned by:

[ψ] : P −→ L su
h that [ψ]([Z]) = [Z, ψ(Z)]is a di�erentiable se
tion of the bundle π : L −→ P.Proof. The proof is an appli
ation of general 
onstru
tions about asso
iated di�eologi
al�ber bundles, developed in [Igl85℄.THE SYMMETRIES OF THE INFINITE HOPF CONSTRUCTIONWe used the word symple
ti
 to des
ribe the 2-form ω de�ned on the in�nite proje
tivespa
e P (art. 21.2). But we have to justify this terminology. A

ording to the suggestionabove (art. 20.2) we shall show that the proje
tive spa
e is equivalent to a 
oadjoint orbitof the unitary group U(H), that is the subgroup of GL(H) preserving the hermitianform. First of all we shall show that P is homogeneous under U(H), for the di�eologiesinvolved. Then, we 
ompute expli
itly the momentum map of the a
tion of U(H) on Pand show that it is bije
tive. This will identify P with the image of the momentum map,that is with a 
oadjoint orbit of U(H).23. The in�nite sphere as a homogeneous spa
e. On one hand, the ve
tor spa
e
H is equipped with its �ne di�eology, the sphere S ⊂ H inherits its di�eology by indu
-tion. On the other hand, the spa
e of linear maps L(H) is equipped with the fun
tionaldi�eology, as group of di�erentiable maps of H, the subgroup U(H) ⊂ L(H) inherits,by indu
tion, this fun
tional di�eology des
ribed in (art. 13.7). The group U(H) a
tstransitively on the sphere S [Bou72℄. We shall show that S is a homogeneous spa
e of
U(H). That is, pre
isely: the di�eology of the sphere S is the quotient of the fun
tionaldi�eology of U(H).23.1. The in�nite sphere as homogeneous spa
e. Let π : U(H) −→ S be the map π(A) =

Ae1. The map π is a subdu
tion, where U(H) is equipped with the fun
tional di�eologyand the sphere S with the subset di�eology of the �ne di�eology of H. In other words,the sphere S is a di�eologi
al homogeneous spa
e of U(H).
S ≃ U(H)/StU(H)(e1) and StU(H)(e1) ≃ U(H).Proof. The proof will be given in two steps:1. The map π is surje
tive. Let Z and Z′ be two elements of S. If Z and Z′ are 
ollinearthen there exists τ ∈ S1 ≃ U(C) su
h that Z′ = τZ. But, the map Z 7→ τZ belongs to

U(H). Now, if Z and Z′ are independent over C, let E be the plane spanned by thesetwo ve
tors and let F be its orthogonal for the hermitian produ
t. A

ording to Bourbaki[Bou72℄ E and F are supplementary H = E ⊕ F. The ve
tors Z and Z′ are ve
tors ofthe unit sphere S3 ⊂ E ≃ C2, now the group U(C2) a
ts transitively on S3, there exists
A ∈ U(C3) su
h that Z′ = AZ. This map, extended to H by the identity on F, belongsto U(H) and maps Z to Z′. Therefore, the a
tion of U(H) is transitive on S, whi
h isequivalent to the assertion that π is surje
tive.



388 P. IGLESIAS-ZEMMOUR2. The map π is a subdu
tion. Let Q : U −→ S be a plot. We want to lift lo
ally Qalong the proje
tion π, that is for any r0 ∈ U, �nd a plot P : V −→ U(H), de�ned onsome superset V of r0, su
h that P(r)(e1) = Q(r), for any r ∈ V. So, let r0 ∈ U, let Vbe a superset of r0, let j : Cm −→ H be an inje
tion, and let φ : V −→ Cm be a smoothparametrization su
h that Q ↾ V = j ◦ φ. Let us denote E = j(Cm). The plot Q of Stakes its values in E, and hen
e in the unit sphere of E: S(E) = E ∩ S. The di�eologyindu
ed on S(E) is the standard di�eology: S(E) ≃ S2m−1. Thus Q ↾ V is an ordinarydi�erentiable map from V into S(E). But, we know that the proje
tion from U(m) onto
S(Cm) is a submersion, a fortiori a subdu
tion. So, for any r0 ∈ V there exists a domain
W ⊂ V and a smooth lifting ϕ : W −→ U(m) su
h that Q(r) = ϕ(r)(em

1 ), for any r ∈ W,where em
1 is the ve
tor (1, 0, . . . , 0) ∈ Cm. Let us assume that e1 = j(em

1 ), if it is notthe 
ase we 
onjugate everything with some well 
hosen linear map. Now, let F be theorthogonal of E. The spa
e H is the dire
t sum of E and F, i.e. H = E⊕F [Bou72℄. Anyve
tor Z ∈ H has a unique de
omposition Z = ZE + ZF su
h that ZE ∈ E and ZF ∈ F.Let us de�ne the following map:for all r ∈ W, for all Z ∈ H : P(r)(Z) = ϕ(r)(ZE) + ZF.For any r ∈ W the map P(r) is di�erentiable be
ause the de
omposition Z 7→ (ZE,ZF) islinear, di�erentiable for the �ne di�eology. Moreover P(r) 
learly preserves the Hermitianprodu
t, and it's 
learly invertible. The map P lifts Q lo
ally:for all r ∈ W, P(r)(e1) = ϕ(r)(em
1 ) + 0 = Q(r).It remains to 
he
k that P is a plot of the fun
tional di�eology of U(H). But this isquite 
lear, a �nite family of ve
tors splits into 
omponents in E and in F, be
ause thefamily is �nite one has a �nite interse
tion of open sets whi
h is open and we get thedesired property. The inverse of P(r) does not give any more problem. Thus, the proof is
omplete.24. The proje
tive spa
e as a 
oadjoint orbit. In this se
tion we give �rst a def-inition of the momentum map of the a
tion of a di�eologi
al group preserving a 
losed2-form, in the spe
ial 
ase where the form is exa
t and the group preserves a primitive.The general de�nition of the momentum map in di�eology 
an be found in [PIZ05℄. Weapply this de�nition to the a
tion of U(H) a
ting on the in�nite sphere equipped withthe form d̟. Then, we show that the momentum map fa
torizes through P in a bije
tiononto a 
oadjoint orbit of U(H). Thanks to the equivarian
e of the momentum map, thisidenti�es P to a 
oadjoint orbit.24.1. The momentum map of the unitary group. Let us 
onsider the a
tion of U(H)on S, let us denote AS : Z 7→ AZ, where (A,Z) ∈ U(H) × S. This a
tion preserves theLiouville form ̟, that is for all A ∈ U(H), A∗

S(̟) = ̟. The momentum map asso
iatedto the a
tion of U(H) on S, regarding d̟ is, by de�nition the map
µ : Z 7→ Ẑ∗(̟), Ẑ : U(H) −→ S, Ẑ(A) = AZ.In fa
t the momentum map is de�ned modulo a 
onstant (art. 20.2). We make impli
itlyfor µ and m a 
hoi
e of 
onstant.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 3891. The momentum map µ takes its values in the spa
e U∗ of moments of U(H)(art. 11.2).2. The momentum map µ is equivariant under the a
tion of U(H):For all A ∈ U(H), for all Z ∈ H, µ(AZ) = Ad∗(A)(µ(Z)).3. The value of the momentum map µ, on any 1-plot P of U(H), is given by
µ(Z)(P) =

1

2i

[
P (t)(Z) · dP(t)(Z)

dt
− dP(t)(Z)

dt
· P (t)(Z)

]
dt, (♣)where, lo
ally:

P(t)(Z) =
∑

α∈A

λα(t)Zα, and dP(t)(Z) =
∑

α∈A

dλα(t)

dt
Zα.4. The momentum map µ is homogeneous of degree two:For all Z ∈ U(H), for all z ∈ C, µ(zZ) = |z|2µ(Z).5. The momentum map µ fa
torizes through P: there exists m ∈ C∞(P,U∗) su
h that

µ = m ◦ π, where π is the proje
tion from S onto its quotient P.6. The map m : P −→ U∗ is the momentum map of U(H) a
ting on S, relative to theFubini-Study form ω.7. The momentum map m : P −→ U∗ is inje
tive.Therefore, the image of P under the momentum map m is a 
oadjoint orbit of U(H), themomentum map m identi�es, as di�eologi
al spa
es, P and this 
oadjoint orbit.Proof. Let us prove su

essively:1. µ(Z) is a moment of U(H). The 1-form ̟, de�ned on S is invariant by the a
tionof the unitary group U(H), hen
e for any A ∈ U(H), L(A)∗(µ(Z)) = L(A)∗ ◦ Ẑ∗(̟) =

(Ẑ◦L(A))∗(̟), but Ẑ◦L(A) = AS◦Ẑ, hen
e L(A)∗(µ(Z)) = (Ẑ◦L(A))∗(̟) = Ẑ∗(A∗
S(̟)) =

Ẑ∗(̟) = µ(Z). Therefore µ(Z) ∈ U∗ for any Z ∈ S.2. The momentum map µ is equivariant. Let A ∈ U(H), and Z ∈ H. We have µ(AZ) =

ÂZ
∗
̟, but ÂZ = Z◦R(A), so µ(AZ) = (Z◦R(A))∗(̟) = R(A)∗(Ẑ∗(̟)) = R(A)∗(µ(Z)) =

Ad∗(A) ◦ µ(Z). That is µ ◦ AS = Ad∗(A) ◦ µ.3. Expression of µ. This expression is a dire
t appli
ation of the 
omplex formulationof the momentum map (art. 19.2).4. The momentum map is quadrati
. It's just an appli
ation of the formula ♣. Butwe 
an get this property dire
tly. Let z ∈ C and Z ∈ H, we have µ(zZ) = ẑZ
∗
(̟) =

(zẐ)∗(̟) = Ẑ∗(z∗(̟)). Now, let us use the 
omplex expression of the Liouville form(art. 19.2),
̟ =

1

2i
[Z · dZ − dZ · Z].By de�nition of the symbol dZ, we get obviously d(zZ) = zdZ. And, thus z∗(̟) = z∗z̟ =

|z|2̟, that is µ(zZ) = |z|2µ(Z).5. The momentum map fa
torizes through P. This is a dire
t 
onsequen
e of P ≃ S/S1and part of the proposition 4) with |z| = 1.6. The map m is the momentum map of U(H) on P. This proposition makes referen
eto the general de�nition of the momentum map for di�eologi
al spa
es [PIZ05℄. The
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toriality of the momentum map expresses that: if a group G has an hamiltoniana
tion on two spa
es (X, ω) and (X′, ω′) su
h that π : X −→ X′ is a subdu
tion 
ommutingwith the two a
tions of G, so the respe
tive momentum maps µ and µ′ 
an be 
hosensu
h that µ′ = π ◦ µ.7. The momentum map m is inje
tive. Let us 
onsider Z and Z′ two elements of Ssu
h that µ(Z) = µ(Z′). If Z and Z′ are 
ollinear, then Z′ = τZ and [Z] = [Z′], where [Z]is the 
lass of Z in P. Then, let us assume that Z and Z′ are not 
ollinear. Let E be the
omplex 2-plane generated by Z and Z′. Let us 
onsider an orthonormal basis of E madewith Z as �rst ve
tor and v as se
ond, and let Z′ = aZ + bv. We have a∗a+ b∗b = 1 and
b 6= 0. Let us now 
onsider the plot P : R −→ U(H) de�ned as follows:

P(t)(Z) = Z, P(t)(v) = eitv and P(t) ↾ E⊥ = 1.The plot t 7→ P(t)(Z) de
omposes a

ording to the family {(1,Z)}, applying the formula
♣ we get µ(Z)(P) = 0. But, the plot t 7→ P(t)(Z′) de
omposes a

ording to the family
{(a,Z), (b exp(it), v)}, and

dP(t)(Z′)

dt
= ibeitv.Applying ♣ we get now µ(Z′)(P) = b∗b. But then, µ(Z′)(P) = µ(Z)(P) = 0 implies b = 0,whi
h is in 
ontradi
tion with the hypothesis b 6= 0. Therefore, µ(Z) = µ(Z′) if and onlyif Z′ = τZ, with τ ∈ S1.8. The in�nite proje
tive spa
e P is equivalent to a 
oadjoint orbit of U(H). Sin
e theproje
tion from U(H) onto S is a subdu
tion, and P is the quotient of S, the proje
tionfrom U(H) onto P is a subdu
tion (art. 5.5). Now, by de�nition, the di�eology of the
oadjoint orbit O = m(P) is the quotient di�eology of U(H) by the stabilizer of somepoint (art. 11.3). Hen
e, the momentum map m is di�erentiable, as well as its inverse,that is m is a di�eomorphism from P onto O.25. The a
tion of the maximal torus. We denote by T(H) the subgroup of U(H)de�ned by:

τ : (Zk)∞k=1 7→ (τkZk)∞k=1 with τ = (τk)∞k=1, and τk ∈ S1 for all k.We 
all T(H) the standard maximal torus(1) of U(H). As a group, T(H) is isomorphi
to the in�nite produ
t of 
ir
les ∏∞
k=1 S1, indexed by the integers, with pointwise multi-pli
ation. But its di�eology inherits the di�eology des
ribed in (art. 13.7). We shall seenow that, here again, di�eology 
an give a formal status to what is expe
ted about themomentum map of this group.25.1. The momentum map of the maximal torus. The momentum map of the maximaltorus T(H) is the restri
tion to T(H) of the momentum map of the group U(H). Morepre
isely, let us 
onsider the orbit map of a point Z ∈ S relative to T(H):

Ẑ : T(H) −→ S, ∀τ ∈ T(H) Ẑ(τ ) = τ (Z).

1Here, it is just a name.
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k by Ẑ of the 1-form ̟, de�ned on S, is a T(H) invariant 1-form on T(H),that is an element of the spa
e of moments T∗. The map
µ : S −→ T∗ su
h that µ(Z) = Ẑ∗(̟),is the momentum map of T(H) on S. The fa
torization of µ on P is the momentum mapof T(H) on P for the Fubini-Study form ω:

m : P −→ T∗, m([Z]) = µ(Z).The momentum map m is given by the following formula:
m([Z]) =

∞∑

k=1

|Zk|2 pr∗k(ε),where ε is the standard length form on S1. More pre
isely, for any plot P : U −→ T(H),
U ∈ Rm, m(Z) writes:

m([Z])(P) =
∞∑

k=1

|Zk|2 P∗
k(ε) with Pk = prk ◦ P.

Note that for any r ∈ U, any ve
tor δr ∈ Rm, the sequen
e N 7→
∑N

k=1 |Zk|2 P∗
k(ε)r(δr)
onverges, whi
h gives a meaning to this formula.Proof. Let us re
all the expression of ̟ given in (art. 19.2),

̟ =
1

2i
[Z · dZ − dZ · Z] with dZ(P)(r) =

∑

α∈A

dλα(r)Zα.Hen
e,
Ẑ∗̟ =

1

2i
[(τZ · d(τZ) − d(τZ) · τZ]

=
1

2i
[Z · (τ∗dτZ) − Z · (τdτ∗Z)]

=
1

2i
[Z · (τ∗dτ − τdτ∗)(Z)]

=
1

2i

∞∑

k=1

|Zk|2(τ∗kdτk − τkdτ
∗
k ).But, τk ∈ S1, so τ∗kdτk = −τkdτ∗k . Hen
e:

1

2i
[τ∗kdτk − τkdτ

∗
k ] =

1

i
τ∗kdτk = τ∗k (ε)and therefore

µ(Z) = Ẑ∗̟ =

∞∑

k=1

|Zk|2τ∗k (ε).To avoid a misinterpretation of the last equality, due to the in�nite sum, let us spe
ify itsmeaning. Let P : U −→ T(H) be a plot. Let P(r) =
∑

α∈A λα(r)Zα be a lo
al expressionof P, on V ⊂ U. The λα 
an be real by a good 
hoi
e of the Zα. Let Zα = Xα + iYβ and
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Z = X + iY, developing the expression on µ(Z), we get:
µ(Z)(P ↾ V) =

∞∑

k=1

(X2
k + Y2

k)
∑

α,β∈A

(Xα,kYβ,k − Yα,kXβ,k)(λαdλβ − λβdλα)or
µ(Z)(P ↾ V) =

∑

α,β∈A

(λαdλβ − λβdλα)

∞∑

k=1

(X2
k + Y2

k)(Xα,kYβ,k − Yα,kXβ,k),whi
h is a �nite sum of summable series.Now, let us 
ome ba
k to the expression µ(Z) =
∑∞

k=1 |Zk|2τ∗k (ε), it is 
lear that µ(Z)is invariant by the diagonal a
tion of S1. And therefore m([Z]) = µ(Z) is well de�ned.25.2. The image under the momentum map of T(H). The image of the in�nite proje
tivespa
e by the momentum map m is the 
onvex hull, in the ve
tor spa
e T∗, of the relativemomenta
mk = pr∗k(ε) ∈ T∗, k = 1 · · ·∞.The momentum mk is indeed the momentum map of the subgroup S1

k of elements of
T(H) for whi
h only the k-th 
omponent is not the identity.

m(P) =
{ ∞∑

k=1

tkmk

∣∣∣ for all k ∈ N⋆ : tk ≥ 0, and ∞∑

k=1

tk = 1
}
.For any sequen
e (tk)∞k=1 su
h that ∑∞

k=1 tk = 1, and ea
h tk is not negative there existssome Z ∈ H su
h that |Zk|2 = tk, we 
an 
hoose Zk =
√
tk.
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