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Abstract. The notion of a C
r,s-diffeomorphism related to a foliation is introduced. A perfectness

theorem for the group of C
r,s-diffeomorphisms is proved. A remark on C

n+1-diffeomorphisms is

given.

1. Introduction. The goal of this note is to show that some automorphism groups of a

foliated manifold are perfect. Let us recall that a group G is called perfect if G = [G, G],

where the commutator subgroup is generated by all commutators [g1, g2] = g1g2g
−1
1 g−1

2 ,

g1, g2 ∈ G. In terms of homology of groups this means that H1(G) = G/[G, G] = 0.

The following fundamental result is well-known. Throughout the subscript c indicates

the compactly supported subgroup, and the subscript 0 indicates the identity component.

Theorem 1.1 (Herman, Thurston, Mather). Let M be a smooth manifold, and let n =

dim(M). If r = 1, 2, . . . ,∞, r 6= n+1, then Diffr
c(M)0 is perfect. Consequently, this group

is simple as well.

The case r = ∞ and M = Tn is due to Herman [3] who applied a difficult small

denominator theory argument. Next, Thurston [8] used the result of Herman to obtain

that Diff∞
c (M)0 is perfect for an arbitrary manifold M (cf. [1] for the proof). By a

completely different method Mather [4] proved the first assertion for r 6= n + 1, r finite.

Finally, the second assertion follows from Epstein [2].

Given a foliated manifold (M,F) a diffeomorphism f : M → M is said to be leaf

preserving if f(Lx) = Lx for all x ∈ M , where Lx is the leaf of F passing through x.
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Theorem 1.2. Let (M,F) be a foliated smooth manifold with k = dimF , and let

Diffr
c(M,F) be the group of leaf preserving diffeomorphisms. Then Diffr

c(M,F)0 is per-

fect, provided r ≤ k, or r = ∞.

The proof of Theorem 1.2 for r = ∞ modifies arguments of Herman and Thurston

(cf. Rybicki [6]). In the case r ≤ k it is easily checked that the proof of Mather [4],

II, applies to leaf preserving diffeomorphisms thanks to ’foliated properties’ of Mather’s

operators Pi,A.

Observe that the group Diffr
c(M,F) is locally contractible (cf. [7]) and, consequently,

the identity component of it coincides with the totality of its elements that can be joined

to the identity by an isotopy in Diffr
c(M,F).

Our aim is to study here the remaining case of r > k, r finite. In the final section

we shall show how a possible analogue of Theorem 1.2 for r > k + 1 is related to the

simplicity of Diffn+1
c (M)0. Observe that there exist some strong arguments suggesting

that Diffn+1
c (M)0 is not simple (Mather [4], III, [5]). This suggests, in turn, that the

assertion of Theorem 1.2 for r > k might not be true. However, if we consider groups of

leaf preserving diffeomorphisms with some ’loss of smoothness’ in the transversal direction

then we are able to obtain a positive result.

Given a foliated manifold (M,F) with k = dimF , let Diffr,s(M,F) denote the group

of leaf preserving C1-diffeomorphisms which are of class Cr in the tangent direction, and

of class Cs in the transversal direction, where 1 ≤ s ≤ r. (See section 2.)

Theorem 1.3. The group Diffr,s
c (M)0 is perfect, provided r − s > k + 1.

In the whole paper we exploit the techniques from Mather’s fundamental paper [4].

We retain the notation of that paper as far as possible and we recall definitions and

facts from it. In particular, the construction of the rolling-up operators is adopted to

Cr,s-diffeomorphisms (section 4).

2. Preliminaries. Let r, s ≥ 1 and k ≥ 1 be fixed integers. Let f(x, y) = (f1(x, y), y),

where x ∈ R
k and y ∈ R

n−k.

Definition 2.1. A partial derivative of order p ≥ 1 of f is called s-admissible if it

contains at most s derivatives in the direction of the last n− k coordinates. We say that

f is of class Cr,s if it has all the s-admissible partial derivatives up to order r and they

are continuous. For f of class Cr,s and 1 ≤ p ≤ r we denote by Dp,sf : R
n → Lp(Rn, Rn)

the mapping, called the p-th derivative of f , consisting of s-admissible partial derivatives

of f of order p, and of zeros in place of partial derivatives of f of order p which are not

s-admissible. In other words, we may say that f is of class Cr,s if Dr,sf exists and is

continuous. The symbol Cr,s(n, k) will stand for the space of all mappings of the form

f(x, y) = (f1(x, y), y), which are of class Cr,s.

It is clear that Dr,sf = Drf if r ≤ s. In particular we have then the standard

derivative formulas for composed mappings

(2.1) D(f ◦ g) = (Df ◦ g) · Dg
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and

(2.2)
Dr,s(f ◦ g) = (Dr,sf ◦ g) · (Dg × . . . × Dg) + (Df ◦ g) · Dr,sg

+
∑

Ci,j1,...,ji
(Di,sf ◦ g) · (Dj1,sg × . . . × Dji,sg),

where the sum is over 1 < i < r, 1 ≤ jl, j1 + . . . + ji = r and Ci,j1,...,ji
are positive

integers independent of f and g.

Notice that for r > s the above formula (2.2) is no longer valid. The following fact is

simple but clue.

Proposition 2.2. Let f, g ∈ Cr,s(n, k). If an entry of the matrix Dr,s(f ◦g) on the l.h.s.

of (2.2) is an s-admissible partial derivative of f ◦ g then the corresponding entry on the

r.h.s. is expressed by means of s-admissible partial derivatives of orders ≤ r of f and g.

Proof. It suffices to make the following observation. Any partial derivative in the direction

of xi, i = 1, . . . , k, of f ◦ g cannot produce a partial derivative of f or g in the direction

of yj , j = 1, . . . , n− k. In case of g this is obvious, in case of f this follows from the fact

that g = (g1, g2) ∈ Cr,s(n, k) satisfies g2(x, y) = y and, consequently, ∂g2

∂xi
= 0.

Definition 2.3. A modulus of continuity is a continuous, strictly increasing function

α : [0,∞) → R, such that α(0) = 0 and α(tx) ≤ tα(x) for every x ∈ [0,∞) and t ≥ 1.

Let X, Y be two metric spaces, and let α be a modulus of continuity. We say that

f : X → Y is α-continuous if there exist C > 0 and ε > 0 such that for every x1, x2 ∈ X

and dX(x1, x2) ≤ ε we have dY (f(x1), f(x2)) ≤ Cα(dX(x1, x2)). f is called locally α-

continuous if each point has a neighborhood U such that f |U is α-continuous. Obviously

these concepts depend on equivalence classes of metrics only.

It is clear that every f : X → Y that is Lipschitz, is α-continuous for all moduli

of continuity α. In particular a C1-mapping f : U → R
n, where U ⊂ R

n, is locally

α-continuous for all moduli of continuity α.

The following fact is well-known.

Lemma 2.4. Let f : X → Y be a continuous mapping from a compact, convex subset of a

normed vector space to a metric space. Then there exists a modulus of continuity α such

that f is α-continuous.

We say that f is of class Cr,s,α if it is Cr,s and Dr,sf is locally α-continuous. Clearly

this notion does not depend on the choice of a norm on Lr(Rn, Rn). In the sequel the

symbol Cr,s,[α] will stand for Cr,s or Cr,s,α. We denote by Dr,s,[α](n, k) the group of leaf

preserving diffeomorphisms of class Cr,s,[α] on R
n with compact support which are iso-

topic to the identity through compactly supported Cr,s,[α]-isotopies, and by Dr,s,[α]
K (n, k)

the subgroup of Dr,s,[α](n, k) of diffeomorphisms supported in K.

Proposition 2.5. If f, g ∈ Cr,s,[α](n, k) then f ◦ g ∈ Cr,s,[α](n, k).

Proof. In fact, this is a consequence of Proposition 2.2.

Proposition 2.6. If f ∈ Cr,s,[α](n, k) and f has a C1-inverse, then f−1 ∈ Cr,s,[α](n, k).

Proof. We have the formula

D(f−1) = inv ◦Df ◦ f−1,



440 J. LECH AND T. RYBICKI

where inv is the inversion in L(Rn, Rn). It is well-known that inv is of class C∞. D(f−1)

is of class Cr−1,s−1. Considering each entry in matrix D(f−1) it is easy to see that

Dr,s(f−1) exists and is continuous.

A leaf preserving mapping of a smooth foliated manifold f : (M,F) → (M,F) is of

class Cr,s if for every x ∈ M and for every distinguished chart (V, v) on (M,F) with

f(x) ∈ V , there exists a distinguished chart (U, u) on (M,F) with x ∈ U , f(U) ⊂ V and

v ◦ f ◦ u−1 is Cr,s.

We define

Cr,s(M,F) = {f : (M,F) → (M,F) | f is Cr,s and f(Lx) ⊂ Lx, ∀x ∈ M}.
It is obvious that Cp+1,s+1(M,F) ⊂ Cp+1,s(M,F) ⊂ Cp,s(M,F), for 1 ≤ p < r. By

Diffr,s(M,F)0 we denote the group of all leaf preserving C1-diffeomorphisms on M of

class Cr,s which can be joined to the identity by a compactly supported Cr,s-isotopy.

The following fact can be proved as usual (cf. [1]).

Lemma 2.7. Let g∈Diffr,s
c (M,F)0. Then there exist open balls Ui and gi∈Diffr,s

c (M,F)0,

i = 1, . . . , l, such that supp(gi) ⊂ Ui and g = g1 . . . gl.

This fragmentation property enables us to reduce the proof of Theorem 1.3 to the

case of (M,F) = (Rn,Fk), where Fk = {Rk × {pt}}.
As a consequence of Lemmas 2.4 and 2.7 we have the following

Lemma 2.8. One has

Dr,s(n, k) =
⋃

Dr,s,α(n, k),

where the union is taken over all moduli of continuity α.

3. Basic estimates. Let s ≥ 1 and 0 ≤ p ≤ r. For f ∈ Cr,s(Rn, Rn) we define

‖f‖p,s = sup
x∈Rn

‖Dp,sf(x)‖ ≤ ∞,

and

‖f‖p,s,α = sup
x6=y∈Rn

‖Dp,sf(x) − Dp,sf(y)‖
α(‖x − y‖) ≤ ∞,

where ‖ · ‖ denotes the usual norm in the space of p-linear mappings. Further we put

µp,s(f) = ‖f − id ‖p,s and µp,s,α(f) = ‖f − id ‖p,s,α. Moreover, we denote

Mp,s,α(f) = sup{µ1,s,α(f), . . . , µp,s,α(f)}.
By simple computation we see that µ1,s(f) ≤ ‖f‖1,s + 1 and ‖f‖1,s ≤ µ1,s(f) + 1.

Further, we have µp,s(f) = ‖f‖p,s for p ≥ 2, and µp,s,α(f) = ‖f‖p,s,α for p ≥ 1.

Let K be a closed subset of R
n. We define

RK = sup{dist(q, Rn \ K) : q ∈ R
n} ≤ ∞

and

Rv
K = sup{dist(q, Rn \ K ∩ Lq) : q ∈ R

n} ≤ ∞.

Here q ∈ Lq ∈ F . Clearly RK ≤ Rv
K .

Proposition 3.1. Let K be a closed interval of R
n.
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(1) Assume that RK < ∞. Then there exists a constant C > 0, depending on RK and

α such that for all 1 ≤ p ≤ r

µp,s(f) ≤ Cµp,s,α(f),

whenever f ∈ Dr,s,α
K (n, k).

(2) If Rv
K < ∞ then there exists a constant C > 0, depending on Rv

K and α such that

for all 1 ≤ p < r

µp,s,α(f) ≤ Cµp+1,s,α(f),

for any f ∈ Dr,s,α
K (n, k).

Proof. The inequality in (1) follows by properties of moduli of continuity.

The proof of (2) consists of three steps. First, let us take (x, y1), (x, y2) ∈ R
n, where

x ∈ R
k and y1, y2 ∈ R

n−k. As K is an interval we can choose x0 ∈ R
k such that

(x0, y
1), (x0, y

2) ∈ Rn \ K and ‖x − x0‖ = ‖(x, yj) − (x0, y
j)‖ ≤ Rv

K , j = 1, 2.

We denote It(a, b) = ta + (1 − t)b. Then we have

‖Dp,sf(x, y1) − Dp,sf(x, y2)‖
= ‖Dp,sf(x, y1) − Dp,sf(x0, y

1) + Dp,sf(x0, y
2) − Dp,sf(x, y2)‖

=

∥

∥

∥

∥

∫ 1

0

(Dp+1,sf(It(x, x0), y
1) − Dp+1,sf(It(x, x0), y

2))(x − x0, 0) dt

∥

∥

∥

∥

≤ sup
t∈[0,1]

‖Dp+1,sf(It(x, x0), y
1) − Dp+1,sf(It(x, x0), y

2)‖‖x − x0‖.

Hence

‖Dp,sf(x, y1) − Dp,sf(x, y2)‖
α(‖(x, y1) − (x, y2)‖)

≤ sup
z∈Rk

‖Dp+1,sf(z, y1) − Dp+1,sf(z, y2)‖
α(‖y1 − y2‖) ‖x − x0‖

≤ Rv
Kµp+1,s,α(f).

In the next step we take (x1, y), (x2, y) ∈ R
n, where x1, x2 ∈ R

k and y ∈ R
n−k. If

‖x1−x2‖ > 1, we choose x1
0, x

2
0 ∈ R

k such that (x1
0, y), (x2

0, y) ∈ Rn \ K, ‖x1 −x1
0‖ ≤ Rv

K

and ‖x2 − x2
0‖ ≤ Rv

K . We obtain

‖Dp,sf(x1, y) − Dp,sf(x2, y)‖
α(‖x1 − x2‖)

≤ ‖Dp,sf(x1, y) − Dp,sf(x1
0, y)‖ + ‖Dp,sf(x2

0, y) − Dp,sf(x2, y)‖
α(1)

≤ 2

α(1)
‖f‖p+1,s(‖x1 − x1

0‖ + ‖x2 − x2
0‖).

If ‖x1 − x2‖ ≤ 1 then

‖Dp,sf(x1, y) − Dp,sf(x2, y)‖
α(‖x1 − x2‖) ≤ ‖f‖p+1,s‖x1 − x2‖

α(‖x1 − x2‖) ≤ ‖f‖p+1,s

α(1)

as t
α(t) is an increasing function. In view of (1) one has the inequality in (2).
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Finally, for arbitrary q, q′ ∈ R
n we take q0 ∈ R

n with q − q0 ∈ R
k × {0} and q′ − q0 ∈

{0} × R
n−k, and we use the preceding steps of the proof.

Lemma 3.2 ([4]). Let f be a C1-diffeomorphism and µ1,s(f) ≤ 1
2 . Then

µ1,s(f
−1) ≤ 2µ1,s(f).

Definition 3.3. We say that a polynomial F is admissible if it has no constant term

and its coefficients are nonnegative.

Lemma 3.4. Let 1 ≤ p ≤ r, let α be a modulus of continuity, and let K be a closed

interval of R
n such that Rv

K < ∞.

(1) There exist δ1 > 0 and C1 > 0 depending on n, p, α and Rv
K such that

µp,s,α(f ◦ g) ≤ µp,s,α(f) + µp,s,α(g) + C1µp,s,α(f)µp,s,α(g)

whenever f, g ∈ Dr,s,α
K (n, k) and µp,s,α(f), µp,s,α(g) ≤ δ1.

(2) For every λ > 1 there exists δ2 > 0 depending on n, p, α and Rv
K such that

µp,s,α(f−1) ≤ λµp,s,α(f)

provided f ∈ Dr,s,α
K (n, k) with µp,s,α(f) ≤ δ2.

Notice that Lemma 3.4 is formulated only for K such that Rv
K < ∞. But some parts of

its proof are valid for the weaker assumption RK < ∞. Moreover, the above inequalities

are valid for RK < ∞, if only p ≤ s.

Proof. We have for any q, q′ ∈ R
n

‖(Di,sf ◦ g)(Dj1,sg × . . . × Dji,sg)(q) − (Di,sf ◦ g)(Dj1,sg × . . . × Dji,sg)(q′)‖
α(‖q − q′‖)

≤ µi,s,α(f)(1 + µ1,s(g))‖g‖j1,s . . . ‖g‖ji,s + 2i−1‖f‖i,sµj1,s,α(g)‖g‖j2,s . . . ‖g‖ji,s.

Then from (2.2), Proposition 2.2 and Proposition 3.1 (1) we have

µp,s,α(f ◦ g) ≤ µp,s,α(f)(1 + µ1,s(g))‖g‖p
1,s + 2p−1‖f‖p,sµ1,s,α(g)‖g‖p−1

1,s(3.1)

+ µ1,s,α(f)(1 + µ1,s(g))‖g‖p,s + ‖f‖1,sµp,s,α(g)

+
∑

Ci,j1,...,ji

(

µi,s,α(f)(1 + µ1,s(g))‖g‖j1,s . . . ‖g‖ji,s

+ 2i−1‖f‖i,sµj1,s,α(g)‖g‖j2,s . . . ‖g‖ji,s

)

≤ µp,s,α(f) + µp,s,α(g) + Mp,s,α(f)F (Mp,s,α(g))

for arbitrary f, g ∈ Dp,s,α
K (n, k) with RK < ∞. Here F is an admissible polynomial

independent of f and g, and F = 0 for p = 1.

Hence, from (3.1) and Proposition 3.1 (2) we obtain (1) for sufficiently small µp,s,α(f)

and µp,s,α(g).

To show (2) we proceed by induction on p. First assume that p = 1 and RK < ∞.

For µ1,s(f) < 1 we have the formula

(3.2) (Df)−1 =
∞
∑

m=1

(−(Df − Id))m.
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Then from (3.2) we get

µ1,s,α(f−1) ≤ sup
q 6=q′

‖(Df)−1(f−1(q)) − (Df)−1(f−1(q′))‖
α(‖f−1(q) − f−1(q′)‖)

α(‖f−1‖1,s‖q − q′‖)
α(‖q − q′‖)

≤
√

λ

∞
∑

m=1

sup
‖(Df − Id)m(q) − (Df − Id)m(q′)‖

α(‖q − q′‖) ,

since from Proposition 3.1 (1) and Lemma 3.2

‖f−1‖1,s ≤ 1 + µ1,s(f
−1) ≤ 1 + 2Cµ1,s,α(f) ≤

√
λ,

provided µ1,s,α(f) is small. By using Lemma 3.1 (1) we get

µ1,s,α(f−1) ≤
√

λµ1,s,α(f)

∞
∑

m=1

mµ1,s(f)m−1

=
√

λµ1,s,α(f)
1

(1 − µ1,s(f))2
≤ λµ1,s,α(f)

for sufficiently small µ1,s,α(f).

For p ≤ s we obtain from (2.2)

Dp,s(f−1) = D(f−1)(Dp,sf ◦ f−1)(D(f−1) × . . . × D(f−1))(3.3)

+ D(f−1)
∑

Ci,j1,...,ji
(Di,sf ◦ f−1)(Dj1,s(f−1) × . . . × Dji,s(f−1)).

Now let p ≥ 2 and RK < ∞. Using (3.3), Propositions 2.2 and 3.1 (1) we have

‖
(

D(f−1)(Dp,sf ◦ f−1)(D(f−1))p
)

(q) −
(

D(f−1)(Dp,sf ◦ f−1)(D(f−1))p
)

(q′)‖
α(‖q − q′‖)(3.4)

≤ µ1,s,α(f−1)µp,s(f)(1 + µ1,s(f
−1))p + µp,s,α(f)(1 + µ1,s(f

−1))p+2

+ 2p−1µp,s(f)µ1,s,α(f−1)(1 + µ1,s(f
−1))p

≤ µp,s,α(f) + µp,s,α(f)F (µ1,s,α(f−1)),

where F is an admissible polynomial.

Similarly, we can estimate the second summand of (3.3) and then

‖(D(f−1)
∑

Ci,j1,...,ji
(Di,sf ◦ f−1)(Dj1,s(f−1) × . . . × (Dji,s(f−1)))

∣

∣

q

q′
‖

α(‖q − q′‖)(3.5)

≤ µ1,s,α(f−1)
∑

Ci,j1,...,ji
µi,s(f)

i
∏

l=1

(1 + µjl,s(f
−1))

+ (1 + µ1,s(f
−1))

∑

Ci,j1,...,ji
µi,s,α(f)(1 + µ1,s(f

−1))

· µji0
,s(f

−1)
∏

l 6=i0

(1 + µjl,s(f
−1))

+ (1 + µ1,s(f
−1))

∑

Ci,j1,...,ji
µi,s(f)µj1,s,α(f−1)2i−1

i
∏

l=2

(1 + µjl,s(f
−1))

≤ Mp−1,s,α(f)F (Mp−1,s,α(f−1)).
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Now, suppose Rv
K < ∞. From (3.4) and (3.5), by using Proposition 3.1 (2) and

induction on p, we obtain

µp,s,α(f−1) ≤ µp,s,α(f)(1 + F (µp,s,α(f))) ≤ λµp,s,α(f),

provided µp,s,α(f) is sufficiently small.

From the above lemma we obtain by standard arguments the following

Corollary 3.5. Let K ⊂ R
n be a compact interval, let p ≥ 1 and let α be a modulus

of continuity. Then (f, g) 7→ ‖f − g‖p,s,[α] is a metric on Dp,s,[α]
K (n, k). The induced

topology is called the Cp,s,[α]-topology. Dp,s,[α]
K (n, k) equipped with the Cp,s,[α]-topology is

a connected topological group.

4. Rolling-up operators Ψi,A. Following Mather [4], I, we let Ci := R
i−1×S1×R

n−i,

where S1 ∼= R/Z, i = 1, . . . , k. Let πi : R
n → Ci be the covering projection, and let

p̃i : R
n → R

n−1 and pi : Ci → R
n−1 be the projections, which omit the i-th coordinate.

Clearly pi ◦ πi = p̃i.

The mapping πi : R
n → Ci gives us a system of coordinates in a neighborhood of

any point of Ci, compatible with the foliation Fk,i = {Ri−1 × S1 × R
k−i × {pt}} on Ci.

Notice that the seminorms introduced above do make also sense on Ci, and the group

Dr,s,[α](Ci, k) is defined analogously as before.

Let A ≥ 1 and Ki = [−2, 2]i × [−2A, 2A]k−i × [−2, 2]n−k, i = 0, . . . , k. We have

that K0 = [−2A, 2A]k × [−2, 2]n−k ⊃ K1 ⊃ . . . ⊃ Kk = [−2, 2]n. Next, let K ′
i =

[−2A, 2A]i−1 × S1 × [−2A, 2A]k−i × [−2, 2]n−k.

Choose ρ̃A ∈ C∞(R, [0, 1]) with supp(ρ̃A) = [−2A − 1, 2A + 1] and ρ̃A = 1 on

[−2A, 2A]. We define ρA ∈ C∞(Rn, [0, 1]) by ρA(x, y) = ρ̃A(x1) . . . ρ̃A(xk), where x =

(x1, . . . , xk), y = (y1, . . . , yn−k). Then supp(ρA) = [−2A − 1, 2A + 1]k × R
n−k and

ρA|[−2A,2A]k×Rn−k ≡ 1. Let τi,A = FlρA∂i

1 ∈ Diff∞(Rn,Fk)0, where ∂i denotes the unit

vector field on R
n in the direction of the i-th coordinate, and FlXt denotes the flow of the

vector field X. Further we denote by Ti the unit translation in the direction of the i-th

coordinate, i.e. Ti = Fl∂i

1 .

Let f ∈ Dr,s,α(n, k) with supp(f) ⊂ K0 and µ0,s(f) ≤ 1
2 . For θ ∈ Ci we choose (x, y) ∈

R
n with πi(x, y) = θ and xi < −2A. Then we choose N ∈ N such that ((Tif)N (x, y))i

> 2A. We define Γi,A(f) : Ci → Ci as

Γi,A(f)(θ) = πi((Tif)N (x, y)),

which is independent of the choice of x and N .

It is obvious that Γi,A preserves the identity. There exists a neighbourhood U of

Id ∈ D1,s(n, k) such that

Γi,A : Dr,s,α
K0

(n, k) ∩ U → Dr,s,α

K′

i

(Ci, k)0

is continuous with respect to the Cr,s-topology. Moreover we have the following

Lemma 4.1. There exists δ > 0 depending on n, r, α and A such that

µr,s,α(Γi,A(f)) ≤ 9Aµr,s,α(f)
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for f ∈ Dr,s,α
K0

(n, k) ∩ U with µr,s,α(f) ≤ δ, and

µr,s,α(Γi,A(f)) ≤ 9µr,s,α(f)

for f ∈ Dr,s,α
Ki

(n, k) ∩ U , where i > 0, with µr,s,α(f) ≤ δ.

Proof. Let N ∈ N and choose ε > 0 such that
∑N−1

j=0 (1+ ε)j ≤ N +1. We will show that

(4.1) µr,s,α((Tif)N ) ≤ (1 + (1 + ε) + . . . + (1 + ε)N−1)µr,s,α(f)

for µr,s,α(f) sufficiently small.

By simple computation we have µr,s,α(Tif) = µr,s,α(f). Then for 1 < m < N from

(3.1) (which is valid for RK < ∞), Proposition 3.1 (2), and Lemma 3.4 (1) we obtain

arguing by induction

µr,s,α((Tif)m)

≤ µr,s,α(Tif) + µr,s,α((Tif)m−1) + Mr,s,α(Tif)F (Mr,s,α((Tif)m−1))

≤ µr,s,α(f) + (1 + . . . + (1 + ε)m−2)µr,s,α(f)

+ Mr,s,α(f)F ((1 + . . . + (1 + ε)m−2)Mr,s,α(f))

≤ µr,s,α(f) + (1 + . . . + (1 + ε)m−2)µr,s,α(f)

+ (Rv
K0

)r−1µr,s,α(f)F ((1 + . . . + (1 + ε)m−2)(Rv
K0

)r−1µr,s,α(f))

≤ µr,s,α(f) + (1 + . . . + (1 + ε)m−2)µr,s,α(f) + ε(1 + . . . + (1 + ε)m−2)µr,s,α(f)

≤ µr,s,α(f) + (1 + ε)(1 + . . . + (1 + ε)m−2)µr,s,α(f)

= (1 + . . . + (1 + ε)m−1)µr,s,α(f)

whenever µr,s,α(f) is sufficiently small.

Next we choose N ∈ N with 8A + 1 < N < 8A + 3. Then from (4.1)

µr,s,α(Γi,A(f)) = µr,s,α((Tif)N ) ≤ (N + 1)µr,s,α(f) ≤ 9Aµr,s,α(f)

for f ∈ Dr,s,α
K0

(n, k) ∩ U with µr,s,α(f) ≤ δ. Analogously

µr,s,α(Γi,A(f)) = µr,s,α((Tif)N ) ≤ µr,s,α((Tif)8) ≤ 9µr,s,α(f)

for f ∈ Dr,s,α
Ki

(n, k) ∩ U with µr,s,α(f) ≤ δ, where i > 0.

Consider the S1-action S1 × Ci → Ci given by

β · (x1, . . . , θ, . . . , xk, y) = (x1, . . . , β + θ, . . . , xk, y),

where y stands for y1, . . . , yn−k. Let Gr,s,α
i denote the group of equivariant Cr,s,α-diffeo-

morphisms of Ci,

Gr,s,α
i = {f ∈ Dr,s,α(Ci, k) : f(β · θ) = β · f(θ) ∀β ∈ S1 ∀ θ ∈ Ci}.

Proposition 4.2. Let α be a modulus of continuity and A ≥ 1. Then there exists a

neighborhood UA of id ∈ Diff1
c(R

n) depending on n, r, α and A such that for f, g ∈
Dr,s,α

K0
(n, k) ∩ UA with Γi,A(f)Γi,A(g)−1 ∈ Gr,s,α

i , the mappings τi,Af and τi,Ag are con-

jugate in Dr,s,α(n, k).

For the proof, see [4], I.

Now we will follow Mather [4], I, to define rolling-up operators Ψi,A. It is important

that all steps of definition Ψi,A are ’leaf preserving’.
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Let f ∈ UA∩Dr,s,α
K0

(n, k), where UA is as in Proposition 4.2. We can find g ∈ C1(Ci, Ci)

such that g ∈ G1,s,α
i and g = Γi,A(f) on {θ ∈ Ci : θi = 0} by the formula

g(x1, . . . , θi, . . . , xk, y) = Γi,A(f)(x1, . . . , 0, . . . , xk, y) + (0, . . . , θi, . . . , 0).

Moreover g depends continuously on f , so we can shrink UA such that g ∈ D1,s

K′

i

(Ci, k)0.

It is easily seen that

µr,s,α(g) ≤ µr,s,α(Γi,A(f)).

Let h = g−1Γi,A(f) ∈ D1,s

K′

i

(Ci, k)0.

We identify g, h and Γi,A(f) = gh with periodic diffeomorphisms of R
n supported in

K ′′
i = [−2A, 2A]i−1 × R × [−2A, 2A]k−i × [−2, 2]n−k. By abuse these periodic diffeomor-

phisms will be denoted by the same letters. It is easily seen that the lifted diffeomorphisms

have the same norms µr,s,[α] as the initial ones.

In order to perform further steps of the construction we need the following analog of

Proposition 3.1 for periodic diffeomorphisms.

Proposition 4.3. Let f be a periodic Cr,s-diffeomorphisms of R
n with period 1 with

respect to the variable xi for some i = 1, . . . , k, and let f |{x∈Rn : xi=0} = Id. Then for

every p = 0, . . . , r

(1) µp,s(f) ≤ µr,s(f), and

(2) µp,s,α(f) ≤ Crµr,s,α(f), where C > 0 depends on α.

Proof. Note that f is periodic with period 1 if and only if (f−Id)(x1, . . . , xi+1, . . . , xk, y)

= (f − id)(x, y). In order to show (1) we just integrate partial derivatives of f − Id with

respect to xi, and this procedure does not change s in µj,s. Here we use the periodicity

of f − Id and of its derivatives, and the condition f |{x∈Rn : xi=0} = Id for p = 0.

Now we prove (2). Let β ∈ N
n, |β| = p, β = (β′, β′′), where β′ ∈ R

k and β′′ ∈ R
n−k

and |β′′| ≤ s. First, let us take (x, y1), (x, y2) ∈ R
n, where x ∈ R

k and y1, y2 ∈ R
n−k.

We may write

Dβf(x, yj) =
∂|β′|

∂xβ′
(Dβ′′

f(x, yj))

and Dβ′′

f(x, yj) viewed as a function of x, is a periodic function with period 1 with

respect to xi which is equal to 0 on {x ∈ R
n : xi = 0}, for j = 1, 2. Then

‖Dβf(x, y1) − Dβf(x, y2)‖ =

∥

∥

∥

∥

∂|β′|

∂xβ′
(Dβ′′

f(x, y1) − Dβ′′

f(x, y2))

∥

∥

∥

∥

≤ sup
x∈Rk

∥

∥

∥

∥

∂|β′

i
|

∂xβ′

i

(Dβ′′

f(x, y1) − Dβ′′

f(x, y2))

∥

∥

∥

∥

= sup
x∈Rk

‖Dβif(x, y1) − Dβif(x, y2)‖

≤ sup
x∈Rk

‖Dp+1,sf(x, y1) − Dp+1,sf(x, y2)‖,

where β′
i = (β1, . . . , βi + 1, . . . , βk) and βi = (β′

i, β
′′), after integration along the xi-axis.
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Therefore

‖Dp,sf(x, y1) − Dp,sf(x, y2)‖
α(‖(x, y1) − (x, y2)‖) ≤ ‖Dp+1,sf(x, y1) − Dp+1,sf(x, y2)‖

α(‖y1 − y2‖)
≤ µp+1,s,α(f).

In the second case, where (x1, y), (x2, y) ∈ R
n with x1, x2 ∈ R

k and y ∈ R
n−k, we proceed

as in the proof of Proposition 3.1, by using the periodicity of f . The general case follows

from the first two cases.

We have µ1,s,α(g−1) ≤ 2µ1,s,α(g). From (3.4), (3.5) (bearing in mind that RK′′

i
=

2A < ∞), the above inequalities and Propositions 3.1 (1) and 4.3 we have by induction

on p

µp,s,α(g−1) ≤ µp,s,α(g) + Mp,s,α(g)F (Mp−1,s,α(g−1))

≤ µp,s,α(Γi,A(f)) + Mp,s,α(Γi,A(f))F (Mp−1,s,α(Γi,A(f)))

≤ 9Aµp,s,α(f) + Cp9Aµp,s,α(f)F (Cp−19Aµp−1,s,α(f))

≤ CpAµp,s,α(f)

if µp,s,α(f) is sufficiently small. Here C is independent of A. Therefore

µr,s,α(h) ≤ µr,s,α(g−1) + µr,s,α(Γi,A(f)) + Mr,s,α(g−1)F (Mr,s,α(Γi,A(f)))

≤ CrAµr,s,α(f)

for f ∈ UA ∩ Dr,s,α
K0

(n, k) with µr,s,α(f) ≤ δ1.

Fix a function ξ ∈ C∞(R, [0, 1]) of period 1, which equals 0 near m and equals 1 near

m + 1
2 , where m ∈ Z. We define functions

h− = (ξ ◦ pri) · (h − Id) + Id, h+ = h−1
− h.

Shrinking UA if necessary, h−, h+ ∈ Diff1,s

K′′

i

(Rn)0.

Then we have

µr,s,α(h−) ≤ sup
q 6=q′∈Rn

‖(Dr,s((ξ ◦ pri)(h − Id)))|qq′‖
α(‖q − q′‖)

≤
r

∑

j=0

(

r

j

)[

sup
q 6=q′

‖(Dj,s(ξ ◦ pri))|qq′‖‖Dr−j,s(h − Id)(q)‖
α(‖q − q′‖)

+ sup
q 6=q′

‖Dj,s(ξ ◦ pri)(q
′)‖‖(Dr−j,s(h − Id))|qq′‖

α(‖q − q′‖)

]

≤
r

∑

j=0

(

r

j

)

(‖ξ ◦ pr
i

‖j,s,αµr−j,s(h) + ‖ξ ◦ pr
i

‖j,sµr−j,s,α(h))

≤ C1µr,s,α(h).

By Lemma 3.4 and Proposition 4.3 there exists C2 > 0 independent of A such that

µr,s,α(h+) ≤ C2Aµr,s,α(f)
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for small µr,s,α(f). Let us take

E− = {(x, y) ∈ R
n : −1 ≤ xi ≤ 0}, E+ =

{

(x, y) ∈ R
n :

1

2
≤ xi ≤

3

2

}

,

and define Ψi,A(f) by

Ψi,A(f)|E+
= h+|E+

, Ψi,A(f)|E−
= h−|E−

,

and Ψi,A(f)|Rn\(E−∪E+) = Id.

Then we have

Γi,A(f)Γi,A(Ψi,A(f))−1 = Γi,A(f)h−1 = g ∈ Gr,s,α
i .

Shrinking UA if necessary and using Proposition 4.2 we see that τi,Af and τi,AΨi,A(f)

are conjugate.

Summing up the above considerations we have the following

Proposition 4.4. There exist a neighborhood UA of Id ∈ Diff1
K0

(Rn)0 and the operators

Ψi,A : UA → Diff1
K0

(n, k), 1 ≤ i ≤ k,

with the following properties.

(1) Ψi,A preserves the identity.

(2) Ψi,A : UA ∩ Dr,s,α
Ki−1

(n, k) → Dr,s,α
Ki

(n, k) is continuous with respect to the Cr,s-

topology.

(3) For every f ∈ UA ∩ Dr,s,α(n, k) we have

[f ] = [Ψi,A(f)] ∈ H1(Dr,s,α(n, k)).

(4) There exists δ > 0 depending on n, r, α, A, and C > 1 depending on n, r, α but

independent of A with

µr,s,α(Ψi,A(f)) ≤ CAµr,s,α(f)

for all f ∈ UA ∩ Dr,s,α(n, k) with µr,s,α(f) ≤ δ.

5. Proof of the Theorem 1.3. Let f ∈ Dr,s(n, k). In view of Lemmas 2.7 and 2.8 we

may assume that f ∈ Dr,s,α

[−2,2]n(n, k). Moreover, f can be chosen sufficiently close to the

identity in the Cr,s,α-topology due to Corollary 3.5. We have to show that f belongs to

the commutator subgroup [Dr,s,α(n, k),Dr,s,α(n, k)].

Let us take χA ∈ Diff∞
c (Rn)0 such that for any (x, y) ∈ [−2, 2]k × R

n−k one has

χA(x, y) = (Ax, y). Then for any g ∈ Dr,s,α(n, k) we define g0 = χAfgχ−1
A , and gi =

Ψi,A(gi−1) for i = 1, . . . , k. It is obvious by Proposition 4.4 that [gk] = [fg].

Lemma 5.1. Let r − s > k + 1. Then there exist A ≥ 1 and ε0 > 0 such that for every

0 < ε < ε0 and f, g ∈ Dr,s,α

[−2,2]n(n, k) with µr,s,α(f), µr,s,α(g) ≤ ε we have µr,s,α(gk) ≤ ε.

Proof. We can choose A so large that 3CkA1−r+s+k ≤ 1, where C is the constant from

Proposition 4.4 (4). There exists ε0 > 0 such that we have

µr,s,α(fg) ≤ µr,s,α(f) + µr,s,α(g) + C1µr,s,α(f)µr,s,α(g) ≤ 3ε,
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for every 0 < ε ≤ ε0 and f , g as above. In view of definition of Dr,s we have

‖Dr,s(χAfgχ−1
A )(x, y)‖ ≤ ‖A1−r+sDr,s(f ◦ g)(

1

A
x, y)‖.

Therefore, for q = (x, y), q′ = (x′, y′)

µr,s,α(χAfgχ−1
A ) = sup

q 6=q′

‖Dr,s(χAfgχ−1
A )(q) − Dr,s(χAfgχ−1

A )(q′)‖
α(‖q − q′‖)

≤ A1−r+s sup
q 6=q′

‖Dr,s(fg)( 1
A

x, y) − Dr,s(fg)( 1
A

x′, y′)‖
α(‖q − q′‖)

≤ A1−r+s sup
q 6=q′

‖Dr,s(fg)( 1
A

x, y) − Dr,s(fg)( 1
A

x′, y′)‖
α(‖( 1

A
x, y) − ( 1

A
x′, y′)‖)

≤ A1−r+sµr,s,α(fg) ≤ 3A1−r+sε.

If ε0 ≤ δ, where δ is the constant from Proposition 4.4 (4), we obtain

µr,s,α(gk) ≤ CkAkµr,s,α(χAfgχ−1
A ) ≤ 3CkA1−r+s+kε ≤ ε.

Lemma 5.2. Let a > 0. The set

L = {h ∈ Dr,s,α

[−a,a]n(n, k) : µr,s,α(h) ≤ ε}
equipped with the Cr,s-topology has the fixed-point property, i.e. every continuous mapping

L → L has a fixed point.

Proof. Let us consider

L′ = {h′ : h′ + Id ∈ L} ⊂ (Cr,s

[−a,a]n(Rn, Rn), ‖ · ‖r,s).

Here h′(x, y) = (h′
1(x, y), 0) is of class Cr,s,α.

We have the homeomorphism L ∋ h 7→ h − Id ∈ L′. L′ is closed in (Cr,s

[−a,a]n(Rn, Rn),

‖ · ‖r,s). Let us take

T : (Cr,s

[−a,a]n(Rn, Rn), ‖ · ‖r,s) ∋ h 7→ Dr,sh ∈ (C0
[−a,a]n(Rn, Lr(Rn, Rn)), ‖ · ‖sup).

T is continuous as

(5.1) ‖Th‖sup = sup
x∈Rn

‖Dr,sh(x)‖ = ‖h‖r,s.

For every h ∈ L′ we have

‖Th(x) − Th(y)‖ = ‖Dr,sh(x) − Dr,sh(y)‖

≤ ‖Dr,sh(x) − Dr,sh(y)‖
α(‖x − y‖) α(‖x − y‖) ≤ εα(‖x − y‖),

so T (L′) is equicontinuous, and it is bounded in view of (5.1). By Ascoli-Arzela’s theorem,

the set T (L′) is relative compact in (C0
[−a,a]n(Rn, Lr(Rn, Rn)), ‖ · ‖sup), so it is compact.

Hence L′ and L are compact. Since L is a convex subset of a Fréchet space, by

Schauder-Tychonoff’s theorem every continuous map L → L has a fixed point.

We choose ε > 0 as in Lemma 5.1. Then L has the fixed-point property, and the

mapping

Dr,s,α

[−2,2]n(n, k) ∋ g 7→ gk ∈ Dr,s,α

[−2,2]n(n, k),
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is continuous with respect to the Cr,s-topology. Hence there exists g ∈ L such that g = gk.

Therefore

[f ][g] = [fg] = [gk] = [g] ∈ H1(Dr,s,α(n, k)).

and [f ] = [Id] ∈ H1(Dr,s,α(n, k)). This completes the proof.

6. Remark on Cn+1-diffeomorphisms. It is still not known whether the group

Diffn+1
c (M)0 is perfect and simple. Mather in [5] considered the geometric transfer map

and proved that linearized forms of commutator equations are true iff r 6= n + 1. This

result strongly suggests that Diffn+1
c (M)0 is not perfect.

Observe that the perfectness of Diffn+1
c (M)0 is strictly related to the perfectness of

Diffr
c(M,F)0 for large r. In fact, let f ∈ Diffn+1

c (M)0 be sufficiently close to Id, and

let 0 < k < n. In view of Lemma 2.7 we may assume that f ∈ Diffn+1
c (Rn)0. Then

there exist g ∈ Diffn+1
c (Rn,Fk)0 and h ∈ Diffn+1

c (Rn,F ′
n−k)0 such that f = g ◦ h, where

Fk = {Rk × {pt}} and F ′
n−k = {{pt} × R

n−k} are the product foliations of R
n.

In fact, if f = (f1, f2) is sufficiently close to the identity then h = (h1, h2) given

by h(x, y) = (x, f2(x, y)), where x ∈ R
k, y ∈ R

n−k, is a diffeomorphism which belongs

to Diffn+1
c (Rn,F ′

n−k)0. Define g = (g1, g2) by g(x, y) = (f1(h
−1(x, y)), y). We have that

g ∈ Diffn+1
c (Rn,Fk)0, provided f is sufficiently close to the identity. Then

(g ◦ h)(x, y) = (g1(h(x, y)), g2(h(x, y))) = ((f1 ◦ h−1)(h(x, y)), h2(x, y))

= (f1(x, y), f2(x, y)) = f(x, y)

is the required decomposition.
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