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Abstract. We introduce topological Q-holonomy groupoids for singular foliations (M, F) with
an Ehresmann connection Q using Q-holonomy groups, which have a global character. We show
advantage of our groupoids over known ones.

1. Introduction. The concept of Ehresmann connection for foliations was introduced
by Blumenthal and Hebda [3] as a natural generalization of Ehresmann connections for
submersions.

The construction of Ehresmann connection is based on the existence of transfers of
horizontal curves along vertical curves through the vertical horizontal homotopy. Note
that this homotopy has already been used in global differential geometry (see, e. g., [8],
[10], [19]).

We extend the concept of Ehresmann connection to foliations (M, F) with singularities
in the sense of Stefan [20] and Sussmann [21] (Section 3).

Transversally complete singular Riemannian and totally geodesic foliations with com-
plete induced Riemannian metrics on the leaves have natural Ehresmann connections.

We define an Ehresmann connection Q of singular foliations (M, F) as a generalized
distribution @ on M, which is transverse to F, and a vertical horizontal property is
satisfied [34]. This property allows to transfer an integral curve o of Q (called horizontal)
along admissible curves (called vertical) lying in the leaf L = L(o(0)) of F. Unlike the
regular case this transfer is not unique in general (Remark 1).
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Therefore we define the xQ-holonomy group *Hg(L, a) of an arbitrary leaf L of (M, F)
as the transformation group of a quotient set Q,/p of the set £, of horizontal curves with
the origin in a. We stress that this group has a global character (Section 4).

For a singular Riemannian foliation this transfer keeps lengths of horizontal curves.
We use this property and prove a criterion of local stability of leaves of singular foliations
(Section 11, Theorem 5).

The concept of a topological holonomy groupoid was introduced by C. Ehresmann [6].
A new approach to the concept of the holonomy groupoid was found by J. Pradines [16],
[17]. He used germs of local transverse isomorphisms of foliation and defined the notion
of a differentiable holonomy groupoid. H. E. Winkelnkemper [23] suggested an equivalent
construction and called it the graph G(F) of the foliation F.

Under some assumptions holonomy groups of singular foliations were defined by M.
Bauer [1] and P. Dazord [4]. For Stefan foliation with only tractable singular leaves a
topological holonomy groupoid was defined by H. Suzuki [22]. B. Bigonnet and J. Pradi-
nes [2] indicated another construction of a graph of a singular foliation.

We introduce a graph G(F, Q) for regular foliation (M, F) with an Ehresmann con-
nection Q [28] (see also [30], [31]) and prove that this graph has important advantages
over the usual graph G(F). In particular, our graph is always a Hausdorff manifold, and
its projections onto M form a locally trivial fibration. It allows to apply this graph in
investigation of a topology of regular foliations admitting an Ehresmann connection.

R. A. Wolak [24] proved that a regular foliation F with an Ehresmann connection has
no vanishing cycles. Relations between sets with Hausdorff and non-Hausdorff graphs of
suspended foliations were investigated by G. Chubarov and the author [32].

The main goal of this paper is a construction of a topological groupoid of a singular
foliation with an Ehresmann connection. The global character of the *Q-holonomy group
xHg(L,a) allows us to introduce a topological holonomy groupoid *Gg(F) using our
xQ-holonomy groups (Section 6, Proposition 3).

We define a generalized Ehresmann connection of a singular foliation and 9Q-holonomy
group Hg(L,a) of a leaf L, and by contrast to the group *Hg(L, a) the set of horizontal
curves is formed by curves for which only endpoints may be singular (Section 8).

Using Q-holonomy groups Hg(L,a) we define a holonomy groupoid Gg(F) of a sin-
gular foliation (M, F, Q) with generalized Ehresmann connection Q. Under natural as-
sumptions we prove some properties of the groupoid Gg(F), in particular the property
of the topological space of Gg(F) to be Hausdorff (Section 9, Theorem 2).

As corollary, *Go(F) = Go(F) = G(F, Q) is Hausdorff for regular foliation with an
Ehresmann connection (M, F, Q), where G(F, Q) is the graph mentioned above.

In particular we prove that the holonomy groupoid Gg(F) of an orbit-like transver-
sally complete singular Riemannian foliation (M, F, Q) with a natural Ehresmann con-
nection Q = (TF)~* is Hausdorff (Section 12, Corollary 4).

We hope that the groupoid G o(F) will be applied to singular foliations with transver-
sal geometric structures. Nowadays the most studied class of these foliations is the class
of Riemannian foliations ([12]). R.A. Wolak [25] introduces and investigates singular fo-
liations on stratified manifolds admitting adapted linear connections.
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In recent work of C. Debord [5] a Lie groupoid of a singular foliation was constructed
by a new method using local Lie groupoids and their equivalences without holonomy
groups. As indicated in [5] the foliation F of R® by concentric spheres with unique
singular leaf 0 has no holonomy groupoid in the sense of C. Debord. This foliation (R3, F)
is a Riemannian foliation with the natural Ehresmann connection @ = (TF)+. Thus the
holonomy groupoids *Gg(F) and Gg(F) are well defined, and according to Corollary 4
the topological space Ggo(F) is Hausdorff.

A. Piatkowski [14] constructed the holonomy group of a leaf of a singular foliation
which can be considered as an analogous of a germ holonomy group of a regular folia-
tion. He proved a local transverse stability of a compact leaf with the trivial holonomy
group [14].

Under an additional assumption the local stability in the sense of Ehresmann of a
compact leaf with a finite holonomy group was proved by P. Dazord [4].

We state a theorem about global stability of a compact leaf L of maximal dimension
with a finite holonomy group Hg(L) (or a finite fundamental group 71 (L)), which belongs
to the author [34] (Section 10).

2. Foliations with singularities. We assume that all manifolds under consideration
are of class C", r > 1, connected, second countable, and Hausdorff, unless otherwise
stated. All neighbourhoods are open. Paths, curves and maps are piecewise differentiable.

Let M be an n-dimensional manifold. A map 7 assigning to each point x € M a p(z)-
dimensional subspace 7, in the tangent space T, M, is called a generalized distribution
on M. The distribution 7 is said to be differentiable if for any vector Y € 7, there exists
a differentiable vector field X in a neighbourhood U, of x such that X, =Y, X, € 7,
for any y € U,.

An immersed submanifold L of M is called an integral manifold of a generalized
distribution 7 if T, L = 7, for any = € L. An integral manifold L is said to be mazimal
if L is connected and coincides with each connected integral manifold containing L. If
through each point € M an integral manifold passes, then the generalized distribution
7T is said to be integrable.

The family F = {L, | « € J} of maximal integral manifolds L, of a generalized inte-
grable distribution 7 is called a differentiable foliation with singularities. L, considered
as a submanifold in M is called a leaf of the foliation F.

H. Sussmann proved that a C'°°-smooth generalized distribution 7 is integrable if and
only if 7 is involutive (a generalization of Frobenius’ theorem) [21].

Let (M, F) be a differentiable foliation with singularities. It is known [4] that at each
point x € M there exists a chart (W, ¢) such that

(F1) (W) =U x V, where U is a neighbourhood of the origin in R?, V' is a neighbour-
hood of the origin in R?, p = p(x) is the dimension of the central leaf L(x) passing
through z, and ¢ = n — p;

(F2) o(x) = (0,0) e U x V4

(F3) for any leaf L € F, o(LNW) =U x I, where | :== {v € V | p=1(0,v) € L}.



474 N. I. ZHUKOVA

A chart (W, ) satisfying (Fy)—(F3) is said to be fibred at z, and W is called a fibred
neighbourhood. Also we call x the center of this chart.

J. Kubarski [11] shown that Stefan’s definition of a singular foliation is equivalent to
the existence of a partition F = {L, | & € J} of M into connected immersed submanifolds
L, such that for each © € M, there is a fibred chart at  with respect to . From this fact
and Dazord’s result [4] follows the equivalence of Stefan’s and Sussmann’s approaches to
the notion of a C'*°-smooth singular foliation.

Let (W, ¢) be a fibred chart, o(W) = U x V. Without loss of generality, we can assume
that U and V are neighbourhoods homeomorphic to R? and RY, respectively. In this work
we assume that charts under consideration are fibred.

The arc-wise connected component of W N L, will be called a local leaf of the leaf L,
in chart or in the neighbourhood W and will be denoted by ZZV, where y € W N L,,.

Note that, in the fibred neighbourhood W, of z, the dimension p(y) of any leaf L(y),
y € W, is not less than p(z). Hence the leaf dimension function p(z), x € M is lower
semi-continuous.

Since p(z) < n, x € M, where n = dim M, there exists the maximal dimension pg
of leaves of foliation F with singularities. A point z is said to be regular if a leaf of
dimension pg passes through x. If a point x € M is not regular, x is said to be singular. If
dim L = pg, the leaf L is said to be regular, otherwise L is called a singular leaf. A foliation
whose leaves have constant dimension is called regular. Therefore regular foliations form
a subclass of the class of foliations with singularities.

Let us denote by M° the union of leaves of maximal dimension pg. If z € M°, and
(W, ) is a fibred chart at z, then for any y € W the leaf L(y) also has dimension py,
hence W C MP°. Thus the union MY of regular leaves is an open subset in M.

3. Ehresmann connection for foliations with singularities. A generalized distri-
bution @ on the manifold M is said to be transversal to the foliation F if on M there
exists a Riemannian metric g such that Q, is the orthogonal complement to the space
7. tangent to the leaf L(z) in the Euclidean vector space (T, M, g.), i.e., for any x € M

T:cM:,];@Qma

where @ is the orthogonal sum. The subspace Q,, x € M, and vectors in Q will be called
horizontal. A piecewise differentiable curve o is said to be horizontal if its tangent vectors
are horizontal. The distribution 7 tangent to the leaves of F is said to be vertical. A
curve h is said to be vertical if h lies in a leaf of F.

A vertical horizontal homotopy (v.h.h.) is a piecewise differentiable map H : I} X I, —
M, where I} = I = [0, 1] is such that for any (s,t) € I; x I the curve H|, (4} is horizon-
tal and the curve H |}y, is vertical (see Fig. 1). The pair of curves (H|, x {0y, H|{0} x1.)
is called the base of the v.h.h. A pair of paths (o,h) such that o(0) = h(0), o is a
horizontal path, and h is a vertical path, is said to be admaissible.

DEFINITION 1. A generalized distribution Q transversal to the foliation F with singular-
ities is called an Ehresmann connection for F if for any admissible pair of paths (o, h)
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Fig. 2. Different vertical horizontal homotopies H; and Hs of the singular Riemannian foliation
with the same base (o, h)

there exists a v.h.h. with the base (o, h). A foliation (M, F) with singularities admitting
an Ehresmann connection Q is denoted by (M, F, Q).

Let H be a v.h.h. with the base (0,h), and ¢ := H|j, x{1}, h = Hl{1yxr,- We say
that the curve & is obtained from o by transfer along h via the v.h.h. H and denote it
by o %> o or by o > 5 and similarly h %> hor h > h.

Note that, in general, an Ehresmann connection Q is not a differentiable generalized
distribution. However, Q possesses a “generalized differentiability” property because Q is
the orthogonal complement to the differentiable generalized distribution 7 tangent to F
(with respect to a Riemannian metric g on M).

Also note that our definition of Ehresmann connection for foliations with singularities
naturally generalizes the definition of Ehresmann connection for regular foliations [3].

REMARK 1. If (M, F, Q) is a regular foliation with an Ehresmann connection, it is well
known that there exists a unique vertical horizontal homotopy H with the given base
(0, h). This is not true in general for singular foliations (M, F, Q). Hence transfer of o
along h is a multivalued function (see Fig. 2).

4. *Q-holonomy group for foliation with singularities. For any foliation with sin-
gularities admitting an Ehresmann connection @ we introduce an *Q-holonomy group.
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Let €, be the set of horizontal curves with initial point a. Take an equivalence relation
p on Q, as follows. Curves o and ¢’ in Q, are said to be p-equivalent if there exist a
vertical loop hg at a homotopic to the constant loop e, in L(a) and a v.h.h. H with the
base (o, ho) such that H|;, « (1} = o’ (Fig. 3).

L'=L'(Cx)

Fig. 3. The curves o and ¢’ are p-equivalent

One can directly check that p is an equivalence relation in €,. Let us denote by [o],
the p-equivalence class of a curve o, and by Q,/p the set of equivalence classes.

ProroOSITION 1. The map
Q,: Qy/p xmi(L,a) = Qa/p: ([0],,[R]) — [5],,

where [h] € m1(L,a), H is a v.h.h. with the base (o,h), and o ELIN G, defines a right
action of the fundamental group m (L, a) of L(a) on the quotient set Q,/p.

Proof. Let us demonstrate that ®, is correctly defined, i.e., does not depend on

1) the choice of the loop h in the class [h] € m1(L,a) and the choice of the v.h.h. H
with the base (o, h);
2) the choice of ¢ in the class [o],.

1. In a leaf L let us take paths h and I’ joining a with b. Suppose that h is homotopic
to B/ in L, and o is a curve in Q,. Let H, H' be v. h. hs with the bases (o, h) and

(o,h'), respectively, and o RN G, 0 H S o Let us prove that [5], = [0'],. Since h is
homotopic to A’ in L, the loop ¢¢ := h~'h’ is homotopic to the constant path e, in L.
Then we set

H'(s,2t — 1), if (s,t) € I; x [L,1],

29

K(s,t) := {H(S,l —2t), if (s,t) € I; x [0, %]’

and obtain that K is a v.h.h. with the base (&, ¢o) such that K|; .13 = o. Hence

[6]p = [0"],-
2. Let 0 € Q,, h be a vertical loop at a, and H be a v.h.h. with the base (o,h).
Take any path o* € [0],. Then there exists a v.h.h. K with the base (c*, ho), where



HOLONOMY GROUPOIDS OF SINGULAR FOLIATIONS 477

[ho] = [ea] € m1(L, a), which provides the p-equivalence between o* and o, i.e., K(s,0) =
o*(s), K(s,1) = o(s), s € I, and K(0,t) = ho(t), t € I. Let us define the map
H*: I x I, — M:

H (s.1) K(s,2t), if (s,t) € Iy x [0, 4];
s,t) =
H(s,2t —1), if (s,t) € I, x [$,1].

Since K(s,1) = H(s,0) = o(s), s € I, we have that H* is a v.h.h. as well as K and H.
The pair of paths (c*, hoh) is the base of H*. In addition, o* .~ 5. Since [hoh] =
[h] € m1(L,a), from the definition of ®, we get that ®,([c*],, [h]) = [7],. Thus the map
®, is correctly defined.

One can easily check that @, defines a right action of m1(L,a) on Q,/p. m

DEFINITION 2. The kernel of the action ®,, *Kg(L,z) := ker ®, = {[h] € 71 (L,a) |
(Viol, € Qa/p) ®a(lo]p, [h]) = [0],}, is a normal subgroup in 71 (L, a). Hence we have the
quotient group

xHg(L,a) :=m(L,a)/ker ®,.

Let us call the group *Hg (L, a) the xQ-holonomy group for the singular foliation with
an Ehresmann connection (M,F, Q).

As in [15], the * indicates that *Hg(L,a) is a holonomy group of foliation with
singularities, which differs from the known holonomy groups. For a regular foliation each
equivalence class [0], consists of one horizontal curve o, hence the set §,/p is bijective to
the set Q. In this case *xHg (L, a) coincides with the group Hg(L, a), which was defined
in [3] (and was called the Q-holonomy group in [28], [30]). It is not difficult to show that
the following statement takes place.

PROPOSITION 2. For any points a and b in a leaf L of the foliation (M,F, Q) there exists
an isomorphism xHg(L,a) — xHg(L,b), which is unique up to inner automorphisms of
these groups.

By Proposition 2 we can speak about the *Q-holonomy group of a leaf L with under-
standing that this group is the algebraic group *Hg (L) which does not depend on a € L.
We say that a leaf L has finite *Q-holonomy group if this group is finite.

5. Subordinated charts. Let (M, F, Q) be a singular foliation with Ehresmann con-
nection. Let us consider a fibred chart (W, ) at a point a, (W) = U x V. Then
Fw = {o (U x {y}) | y € V} is a simple foliation in W, and let 7: W — W/Fy
be the projection on the space of leaves. We say that the distribution Q has the property
of local transversal projectability if at an arbitrary point a € M there exists a fibred chart
(W, ) with center a such that, for an arbitrary curve o € €, in W at each point y in
the local leaf [V there exists a curve oy € Q, smoothly depending on y and satisfying
Togy =moo.

After this we assume that for a foliation (M, F, Q) the Ehresmann connection Q has
the property of local transversal projectability.

DEFINITION 3. Let (W, ¢) and (V%) be two fibred charts with center in a and b € L(a)
respectively of singular foliation (M, F). We say that chart (V, 1) is subordinated to the
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chart (W, ) if the following conditions are satisfied:

1) W) =Uy x V1, (V) =Us x Vo, with0 € Vo C Vi CRY, g =n—p, p = p(a).

(ii) Let L be an arbitrary leaf of F such that L NV # (. Then for any connected
component ¢(LNV) of LNV the set ¢~ 1(¢)(c(LNV))) belongs to some connected
component of the intersection L N W.

For regular foliations the notion of subordinated charts was introduced by R. Pa-
lais [13].

Let a, b be points of the same leaf L € F. Connect a with b by a path h in L and cover
the set h([0,1]) by a finite chain of charts (W, pr) with center at ax, = h(t), tx € [0,1],
k=0,...,m, where (Wy, o) = (W, ¢), ag = a, a,, = b. Without loss of generality we
can assume that the sets Wi N Wy 1 NA([0, 1]) are connected and an arbitrary local leaf
of Wi.41 intersects some local leaf of Wy.

By analogy with [13] using a local transversal containing a point h(71) € Wi N Wa,
71 € [0,1], we change coordinates in the neighbourhood W; such that (W7, 1) becomes
a subordinated chart to (Wy, ¢p). If necessary we decrease Wi to Vi C Wi such that
(Vi,41) becomes a subordinated chart to (Wy, po) with center a;.

After this we construct a chart (V2,3) with center as subordinated to (V1,41). Re-
mark that the relation of subordination is transitive, so (V,1)2) is subordinated to (W, ¢).
By analogy in several steps we construct a chart (V1) with center b subordinated to
(W, ). Thus we have the following theorem.

THEOREM 1. Let (M, F) be a singular foliation and (W, ) be a fibred chart with center
a € M. For an arbitrary point b € L(a) there exists a fibred chart (V,1) with center b
subordinated to the chart (W, ).

The analogous theorem for a regular foliation was proved by R. Palais [13].

Moving along h~! from b to a we can construct fibred charts (V,x) and (V’,x’) with
centers a and b such that each of them is subordinated to the other. In this case we shall
call (V,x) and (V', x') mutually subordinated charts.

REMARK 2. Let (U, ) and (V,4) be mutually subordinated charts. From the property
of transversal projectibility and construction of a subordinated chart it follows that for
any admissible pair (o, h) with o lying in U, where ¢(0) = h(0) is the center of U, there

exists such v.h.h. H that o 25> 0, and ¢ is contained in V.

6. Groupoid of xQ-holonomy. Let (M, F,Q) be an arbitrary singular foliation with
an Ehresmann connection Q. We denote by [h] the homotopic class of vertical paths
containing h. Let x,y be both in a leaf L of F. Denote by A(x,y) the set of all piecewise
smooth path from z to y in L. We use notations introduced above. Two paths hy, hy €
A(z,y) are called equivalent if and only if [h; - hy'] € *Ko(L,z), where [hy - hy'] €
™ (L, .13)

In other words hy ~ hy if and only if the homotopy class [h; - hy '] of the loop hy - hy*
acts on the factor set €2, := €, /p in the trivial way. We denote by (h) the equivalence
class containing h.
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DEFINITION 4. We call the set
*Go(F) :=={(z,(h),y) |x € M N yeL(x) N heAz,y)}

a graph of singular foliation (M,F) with an Ehresmann connection Q.

The equality

(z, (h),y) o (2,(9), ) := (2,(g - 1), ),

where ¢ - h is the product of paths g and h, defines a partial multiplication o in *Gg(F)
relative to which *G o (F) is a groupoid called the xQ-holonomy groupoid of this foliation.

The maps p1: *Go(F) — M: (x,{h),y) — x and pa: *Go(F) — M: (z,(h),y) — vy
are called the source and range maps or canonical projections.

Now we introduce a topology in *Gg(F). Let ¢ = (a, (h),b) be any point in *Gg(F)
and (W, ) and (W', ¢’) be arbitrary fibred neighbourhoods with centers a and b, respec-

tively. Suppose that there is a horizontal curve o in W, ¢ € §,, and a transfer o %> o,

such that there exists a curve o’ € [§], € Qy, o’ (I) € W'. It is equivalent to the existence
of a path i/ homotopic to h and v.h.h. K such that o %> o', o'(I) C W’. Consider two
arbitrary points x,y in local leaves Z}T"El) and ll‘f,/(ll) respectively. We take paths ¢, in l}fgl)
from z to o(1) and ¢, in l?,/(,l) from y to o’(1). Let A/ £} and gi=ty-h- t,; ' We
have an element (z, (g),y) that belongs to *Gg(F).

Denote by V(¢, W, W’) the set of all elements (z,{(g),y) of *Gg(F) defined in the

indicated way by ¢ and the charts (W, ¢) and (W', ¢').
The following lemma will be useful later.

LEMMA 1. If products of vertical paths h-k and k'-g have common ends, then the following
equalities are equivalent

(h-k)=(K'-g) and (K" h)={(g-k7").

PROPOSITION 3. The set ¥ := {V(c, W,W')} forms a base of some topology T in xG o (F)
relatively to which xGg(F) is a topological groupoid. A set L := p7 (L), L € F is open
in the space *Ggo(F) if and only if Q, = {eq}, where e, is the constant path at a € L.

Proof. Let Vi := V(cy, W1, W{) and Vs := V(ca, Wa, W)) be two arbitrary sets from X,
with V1 N Vy # 0, and ¢ := (a1, (h),b1), c2 := (az, (g9),b2). Consider an arbitrary point
z€VINVa. As z € Vq, 80 z = (z, (ty - h- t;1>,y) by construction of V;. As z € Vs, so
z=(x,{(T0- G- T7;1>,y), with x € Wy N Wa, y € W] N W), there are o € Qq,, v € Qa,,

I € [h], ¢’ € |g] and some transfers i’/ Hsh, g LIRS g (Fig. 4).
o gl

As six points z, h(0), h(1),§(0),G(1) and y lie in the same leaf L' of F, there exist
pairwise mutually subordinated fibred neighbourhoods of these points contained in W73 N
Wy and W{NWJ, respectively. Denote the indicated neighbourhoods at = and y by Wisax
and Wy > y.

Let us show the inclusion V := V(z, Wl, Wg) C V1 NV,. At first we check the inclusion
V C V,. Consider any point w = (u, (t, - k - t;1),v) in V, where k := t, - h - t;l and

there exists § € ), in W; such that k is the result of some transfer &’ %> l~€, K € [k],
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Fig. 4. A construction of ¥V C V1 NV,

with § 25> 5, b€ 2, in Wo. According to the choice of W4, Wa, there are some v.h.h.

1) t£>> 61,06 TK—>> 61 in Wy and W respectively. Denote ¢, s ta, ty KN fy. We take
x y

Lemma 1 into account and have (h) = (t;* - k- t,). Hence we may put 2’ :=t; -k - t,.
Let us construct a v.h.h. K by the formula
K(s,1—4t), tel0,1],
K(s,t):=% Hi(s, 4t —1),t €[5, 3], se€[0,1],
K'(s,2t — 1), t € [1,1],

then §; 25> §; and 1/ 25> k- ty = h (Fig. 4).

So we have w = (u, (7, - iL~T;1>,v), where 7y, 1=ty - by, Ty 1= by ~t~y. Therefore w € V.

The inclusion ¥V C Vs, can be shown analogously. Thus Y is a base of some topology
7 in *Gg(F).

The continuity of the partial multiplication in *Gg(F) can be checked in the usual
way.

Now we assume the existence of a point a € M such that Q, = {e,}. In this case
for any b € L = L(a) and arbitrary fibred charts (W7, 1) and (Wa, ¢2) with centers
a, b, respectively, the set V = V(e, W1, W3), ¢ = (a,(h),b), is formed by points z =
(z, (ty - h- t;h),y), withz e [V, y € 1,"?,ie. ¥V C L:=p;'(L). Therefore L is an open
set in *Gg(F).

Evidently, if L is an open set in *Gg(F), then Q, ={e,},Va € L. =

Let Gg(F) be the graph of a regular foliation (M, F, Q) with an Ehresmann connec-
tion introduced in [28] ([30], [33]).

PROPOSITION 4. Let (M, F,Q) be a reqular foliation with an Ehresmann connection.
Then the holonomy groupoid *Gg(F) coincides with Ggo(F).

Proof. Let V = V(c, W1, Ws) be a neighbourhood of point ¢ = (a, (h),b) from the base 2
of topology in *Gg(F). Consider an arbitrary point z = (x, (t, - h - ty_1>, y) in V, defined

by a path k' € [h], a horizontal curve o in W7 and v.h.h. H, with o %> 0. Recall that
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ty and t, are paths in local leaves from z to o(1) and y to &(1) respectively. Let v be
another horizontal curve in W) and K be a v.h.h. with the base (v, "), b’ € [h], with

07 %> A, h" XS h, and z = (z, (T4 - h- T?;1>, y). In the regular case as all local leaves of

fibred neighbourhoods are simply connected, the vertical paths ¢, - h- t;l and 7, - h - TJl
are homotopy equivalent. Therefore the point z does not depend on the choice of the
curves vy and t,, t,.

Thus in regular case the topology in *G o (F) defined by Proposition 3 coincides with
the topology in the graph Go(F) introduced in the usual way [30]. =

7. Simple transversal bifibrations

DEFINITION 5. Let p;: M — B;, i = 1,2, be a submersion with connected fibres. Suppose
that the universal covering manifold of M is a product of two manifolds X; x X5. If the
universal covering map x: X; X Xo — M transforms fibres of the trivial fibrations Fj,
where Fy := {X; x {v} | v € Xo}, Fy := {{u} x X5 | u € X1}, to corresponding fibres
of the submersion p; then the quintuple (M, p1, pe, B1, Bs) is called a simple transversal
bifibration by Ya. Shapiro and the author [18].

Remark that two submersions p;: M — B;, 1 = 1,2, of M with connected fibres form
a simple transversal bifibration if and only if the distribution Q; tangent to fibres of
p2: M — B is an Ehresmann connection for the submersion p,: M — Bj.

It is well known that a diffeomorphism group ¥ of manifold N is a group of covering
transformations of some regular covering map f: N — B onto the factor manifold N/¥ =
B if and only if ¥ acts freely and properly discontinuously, i.e. for z,y € N, where y does
not belong to the orbit ¥ - x of z, there exist two neighbourhoods V and W of x and y
respectively such that for any ¢ € ¥, ¢ # idy, ¥(V)NW = 0 holds. The next proposition
follows from the work of Ya. Shapiro and the author [18].

PROPOSITION 5. Let (M, p1,p2, B1,Bs) be a simple transversal bifibration. Let x be an
arbitrary fized point in M, x; := p;(x) € B; and Y; := p;l(:zci)7 where © = 1,2. Then we
have the following:

(i) pi: M — B is a locally trivial fibration with a standard fiber Y;.

(i) The map p: M — By X By: x — (p1(x),p2(x)) is an regular covering map with
the group ¥ of covering transformations.

(iii) The restrictions p1ly,: Yo — By and paly, : Y1 — Ba are regular covering maps
with groups Vo and Vi of covering transformations respectively, and there exist group
isomorphisms 6;: U — ;.

(iv) The action of U on the product Y1 X Ya given by the rule

YY1, y2) = (01()y1,02(1)y2), Y(y1,y2) € Y1 x Ya,

is free and properly discontinuous. It defines a simple transversal bifibration ((Y7 X
Y2)/¥, f1, fa, B1, Ba), where fi: W - (y1,y2) — Vi - ys, (y1,92) € Y1 x Yo, and there is

a diffeomorphism Z such that the following diagram is commutative
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B, & M 22, B,
f1 _ fa
N 1E /
(Vi x Y2) /.

(v) The inclusion j:Y; — M induces an isomorphism of the fundamental group
m1(Y;, ) onto a normal subgroup Gy; of m1 (M, x), and U is isomorphic to the factor group
7T1(M,.T)/(G11 X G22).

DEFINITION 6. The algebraic group W satisfying conditions of Proposition 5 is called the
structure group of this bifibration.

The above notion is well defined, i.e. it does not depend on the choice of the canonical
bifibration ((Y; xY2) /W, f1, f2, B1, B2) satistying the conditions of Proposition 5. Remark
that each submersion p; forms the fibration with the structure group W.

DEFINITION 7. A bifibration (M, p1, ps, By, B2) is called symmetricif the fibrations p;: M
— By, i = 1,2, are isomorphic (in the category of fibrations).

PROPOSITION 6. Let xGg(F) be the holonomy groupoid of a singular foliation with an
Ehresmann connection (M,F,Q) and p1,ps: * Go(F) — M be the canonical projec-
tions. Let x be an arbitrary point in M, L = L(z) and L := p; *(L). The quintuple
(L,p1|n, p2|L, L, L) is a symmetric simple transversal bifibration with the structure group
U, that is isomorphic to the holonomy group xHg(L).

Proof. Let us introduce a smooth structure in L := p; *(L), L € F. Let ¢ = (a, (h),b) be
an arbitrary point in L. Let (W7, ¢1) and (Wa, ¢2) be an arbitrary mutually subordinated
charts with centers a, b respectively and V := V(¢, Wq, Ws). Denote U := VNL, p = dim L.
The map x: U — R? x RP: (x,(t, - h - t;1),y) = (e1(2),92(y)) is a homeomorphism
onto p1(W1) X ¢o(Wa) = RP x RP. The set of all these pairs {(I/, x)} forms a C*°-atlas
of 2p-dimensional manifold in L. The restrictions p1|r,: L — L and ps|r.: L — L become
submersions onto L.

We show that fibres of p;, ¢ = 1,2, are arc-wise connected. Take two arbitrary points

c1 = (a, (h),b) and ¢y = (a, (g),d) in the fibre p; ' (a). As the formula

[0, e o.4]
CCRE et it LY

defines a homotopy of maps h and g in L, so u(t) := (a, (k;),(h=% - g)(t)) is a path in
pfl(a) from ¢; to co. Analogously, fibres of po are also arc-wise connected.

Let v(t) be an arbitrary path in L, and v(0) = b. An arbitrary point z € p, *(b) has a
form z = (a, (h),b), a € L. A homotopy r¢(s) := (h-v|jo4q)(s), (t,8) € I x I, I =[0,1], is
situated in L. Hence z(t) := (a, (1), v(t)) is a path in the fibre p; ! (a) such that z = 2(0)
and ps 0 2(t) = v(t), t € I. Therefore the distribution P formed by tangent spaces to
leaves of the submersion pi|r,: L — L is an integrable Ehresmann connection for the
submersion ps|r,.

Thus (L,p1|L,p2|L, L, L) is a simple transversal bifibration. The symmetry of the
projections p1,pa: * Ggo(F) — M gives rise to the symmetry of the restrictions p;|r, and

p2|L~
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According to Proposition 5 (ii) the map p: L — L X L: (z, (h),y) — (z,y) is a regular
covering map. Using the definition of L C *Gg(F) it is not difficult to check that the
group of the covering transformations ¥ of p is isomorphic to *Hg(L). =

8. Generalized Ehresmann connection for foliation with singularities and its
holonomy. Let (M, F) be a foliation with singularities and M° be the union of leaves
of maximal dimension. Let Q be a generalized distribution on M which is transversal to
the foliation F (we use terminology introduced in Section 2). Q is called a generalized
Ehresmann connection of F if for any admissible pair of paths (o, h), where o((0,1)) C
M?, there exists a v.h.h. with the base (o, ). Thus, we extend the notion of Ehresmann
connection for foliations with singularities by considering only horizontal paths without
singular points except for the endpoints.

Let (M, F, Q) be a singular foliation with a generalized Ehresmann connection. Then
the distribution Q° := Q|0 is an Ehresmann connection for the regular foliation (M?,
F9), where FO = Flppo. Let Q0 := {0 € Q, | 0((0,1]) € M°} and Q = {0 €
Qo | 0((0,1)) € M°} then Q0 C QF. If 0 € QU each path ¢’ which is p-equivalent
to o also lies in Q0. Therefore Q0/p C Q/p. For any admissible pair of paths (o, h),
where o € QF, there exists a v.h.h. with the base (o, h). Let ®}([c],,[h]) := [7],, where

[h] € m1(L,a), o M.~ 7. Similar to the proof of Proposition 1, one can check that
®* defines a right action of the fundamental group m1(L,a) on the quotient set 2 /p.
For a singular foliation with a generalized Ehresmann connection (M, F, Q), we call the
quotient group Ho(L, a) := m1(L,a)/ ker ¥ the Q-holonomy group of the leaf L ata € L.

In the case of a regular foliation (M, F) with an Ehresmann connection Q we have
M = MP° and the group Hg (L, x) coincides with the Q-holonomy group of L, at & € L.

As ker @ C ker ®,, we have the following assertion.

PROPOSITION 7. For any leaf L of a singular foliation (M, F, Q) with a generalized Ehres-
mann connection there exists a group epimorphism v : xHg(L,a) — Hg(L,a) such that
the diagram
™1 (L, a)
o B8
/ \
*Ho(L,a) —— Hgo(L,a),

where a and (8 are the quotient maps, is commutative.

Since M? is an open (possibly disconnected) submanifold in M, for any leaf L C M°
we have the germ holonomy group I'(L,a), a € L, which is widely used in the foliation
theory. Evidently, there exists a natural group epimorphism x: Hg(L,a) — I'(L, a) such
that x o 8 =+, where v: m1(L,a) — I'(L, a) is the projection, which maps [h] € m1(L, a)
to the germ of holonomy diffeomorphism corresponding to the path h. The following
statement establishes a relation between different holonomy groups of a regular leaf L.

COROLLARY 1. For any leaf L C M° of singular foliation with generalized Ehresmann
connection the diagram
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m(L,a)

e 15 {
«Ho(L,a) <> Ho(L,a) == I'(L,a),

where a, (3, v are the quotient maps, and v, x are the group epimorphisms, is commuta-
tive.

If for an admissible pair of paths (o, h) there exists a unique v.h.h. H with the base
(o,h), o RN g, h KRN E, we say that the curve o is obtained by transfer of o along h,

the path h is obtained by transfer of h along o, and denote it by o LS o, h 5> i~L, as
in the regular case.

9. Q-holonomy groupoid of foliations with generalized Ehresmann connec-
tions. Let (M,F,Q) be a foliation with generalized Ehresmann connection. If in the
definition of *G o (F) we use the holonomy groups Ho (L, z), L € F, instead of the groups
xHo(L,x) we shall get a groupoid Go(F) = {(z,{h},y)}, which will be called a Q-
holonomy groupoid. Topology in Gg(F) is introduced similarly to the groupoid *G g (F).

PROPOSITION 8. Let (M,F,Q) be a foliation with generalized Ehresmann connection.
Then for any admissible pair (o,h), where o([0,1)) C M° there exists a unique vertical
horizontal homotopy H with the base (o, h).

Proof. Given the horizontal curve o € 2, with o([0,1)) C M?, take a path h in the leaf
L(b) such that h(0) = b. Since F is a foliation with a generalized Ehresmann connection
Q, there exists a v.h.h. H with the base (o, h). Suppose that there exists another v.h.h.
K with the same base (0,h). For any 7 € (0,1), we have ol € Q). In M there
exists the unique v.h.h. with the base (ol -, k), hence H|jo 11x1, = K|[0,-]x1,, and then
H|[071)X12 = K\[o’l)xh,. Since H and K are continuous, and M is Hausdorff, we obtain
that H =K. m

The following lemma is analogous to Lemma 1.

LEMMA 2. If products of vertical paths h-k and k'-g have common ends, then the following
equalities are equivalent:

{h-kY={K-g} and {K'' -h}={g-k'}.

Let us consider the following conditions for a singular foliation (M,F,Q) with a
generalized Ehresmann connection.

(P;) The union M? of leaves of maximal dimension is connected and dense in M.

(P2) For each point ¢ = (a,{h},b) in Go(F) there is a neighbourhood V = V(c¢, Wy, Wa)

from the base ¥ of a topology in Ggo(F) defined above satisfying the following
conditions:
(i) There is a dense saturated subset MY in M° such that a point z = (z, {t, - h -
t;l},y) €V, where z,y € L, C MY does not depend on the choice of paths o, ¢,
t, and v.h.h. with the base (o, '), b’ € [h] used by us in the construction of z, i.e.
z is defined only by z, y and {h}.
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(ii) There exists a fibred neighbourhood W at point b, Wy C W with the following
property. Let (071, k) be an arbitrary admissible pair of paths in Wg, where § € QY

and k([0,1]) € MJ. Let k be the result of the unique transfer k Tk ‘according
to Proposition 8, with & being a loop. Then the loop k lies in W, i.e. k( ) € W,
vt € [0, 1].

THEOREM 2. Let (M,F,Q) be a foliation with generalized Ehresmann connection satis-
fying (Py) and (P3). Then the following properties are fulfilled:

(i) The space of Q-holonomy groupoid Go(F) is Hausdorff.

(i) There exists a natural smooth structure on L := pl_l(L)7 L e F, and dimL =
2p, p = dim L, and the quintuple (L, p1|L,p2|L, L, L) is a symmetric simple transversal
bifibration, and its structure group U is isomorphic to the holonomy group Ho(L).

(iii) The map f: * Go(F) — Go(F): (x,{h),y) — (x,{h},y) is a natural epimor-
phism of groupoids.

Proof. (i). Consider two different points ¢; = (a1,{h1},b1) and ca = (az2,{h2},b2) in
Go(F). If a1 # az (or by # by) there are fibred neighbourhoods Wy 3 a3, W1 > ag such
that W7 N Wll = (). Hence V(Cl, W1, Wg) N V(CQ, Wll, WQI) = 0.

Suppose that there are two different points ¢; = (a,{h},b) and c2 = (a, {g}, b) which
are not separated. As by properties (P;) and (i) of (P,) the set M is dense in M,
there exists a sequence {z,} C p;'(MJ) which converges both to ¢; and cy. Hence for
arbitrary fibred neighbourhoods W7 > a and W5 > b in M there is a member of the
sequence z,, € V1 NV, ﬂpl_l(Mg), where Vy := V(ey, W1, Wa) and Va := V(co, Wi, Wa).
Consider V; and V; satisfying the assumption (Ps).

By the definition V; point z,, € V1 Np; (MY) if and only if the following conditions
are satisfied: 1) there is a horizontal curve o € QU in Wi; 2) there exists a vertical path
W € [h] and a v.hh. H such that the result & of the transfer o l> G, b i> h

3) zm = (z,{ts - h-t;'},y). Similarly z,,, = (x, {72 - G- 7, '}, 9), Where v€QYin W1 and
there exist ¢’ € [g] and v.h.h. H' with the base (v, ¢’) such that v LIRS 4,9 LIRS g.
g’ v

By the property (i) of (P,) without loss of generality we can assume that ¢ = v and
ty = Tg.

According to Lemma 2 the equality {t, - h- t;l} ={t,-g- Ty_l} is equivalent to
{h} ={§ -k}, where k := ety

By Proposition 8 there exists a unique v.h.h. H with the base (071, iL) Aso € QY so
the equivalent class [67'], contains only one curve 5~!. From this fact and the equality
{h} = {g - k} it follows that the results of the transfers 0~ along h and along § - k are
the same and equal to 6 !. Denote by K the unique v.h.h. with the base (71, k). Let

k L1>> k, then k is a loop in b (see Fig. 5). According to the property (ii) of (Ps) the
.

path k lies in fibred neighbourhood W, hence k is a loop in b belonging to the local leaf

ZZI;V‘ As ZZV is diffeomorphic to R9, the loop k is homotopic to the constant path e; and

{¢ -k} ={¢'} = {g}. Therefore we have g - k i>> ¢ - k. Denote § := ¢ - k. Consider
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Fig. 5. {k} = {es} and {¢' -k} = {¢"}

an arbitrary curve § € €Q,. Let ¢ hi»> 01, 6 i~>> d2. V.h.hs ¥ and @ induce transfers
’ gk

of the product of path o1 - § along h and along § - k with results 6! - d; and 6! - s,
respectively. As {h} = {§-k} so [671-81], = [67" - 0a],, hence [61], = [02],. Therefore
{n} = {¢’ -k} = {g}, i.e. ¢, = ¢, that is in contradiction with the assumption. Thus
Go(F) is Hausdorff.

The proof of the statement (ii) is similar to the proof of Proposition 6.

Applying Proposition 7 we get the assertion (iii). m

COROLLARY 2. Let (M, F,Q) be a regular foliation with an Ehresmann connection. Then
the manifold of the graph Ggo(F) is always Hausdorff.

Proof. From the proof of Proposition 4 it follows that the condition (i) of (P») is fulfilled.
In regular case in (ii) of (P,) as k is a loop, k is also a loop in 1,"> and k lies in ;"2
Hence the condition (ii) of (P,) is true for W = W,. Thus the conditions (P;) and (P)
are satisfied. m

REMARK 3. The Hausdorff topological space Gg(F) has a partition into manifolds
{pr'(L)| LeF}

10. A global stability of compact leaves with finite Q-holonomy. In this section
we consider singular foliations with generalized Ehresmann connections (M, F, Q).
Consider the following condition:

(Py) The set M° of regular points is connected and for each singular leaf L there is a
horizontal curve o: [0,1] — M such that (0) € L and o((0,1]) C MP°.

Remark that the assumption (Pjf) implies (P;). The following theorem is proved by
us in [34].

THEOREM 3. Let (M, F,Q) be a singular foliation with generalized Ehresmann connec-
tion, satisfying the condition (Py). If there exists a compact leaf Lo in M with a finite
holonomy group Hg(Lg) (or m1(Ly)), then each leaf L, € F is compact and has a finite
holonomy group Hg(L,,) (m1(L,,) respectively).
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This theorem can be considered as an analog of the famous Reeb theorem on global
stability of a compact leaf Ly with a finite group m1(Lg) of C"-differentiable, r > 2
regular foliation of codimension one of a compact manifold.

11. Singular Riemannian foliations. Let F be a singular foliation on a Riemannian
manifold (M, g). The foliation F is called a Riemannian foliation if any geodesic of g
orthogonal to F at one point is orthogonal to F at any point of its domain. A foliated
Riemannian manifold (M, F,g) is called transversally complete if the natural parameter
on each horizontal geodesic changes over (—oo, +00).

The two following theorems belong to the author [29].

THEOREM 4. Let (M,F,g) be a transversally complete singular Riemannian foliation.
Then:

1. The generalized orthogonal distribution Q = (TF)L to F is an Ehresmann connec-
tion for F.

2. The transfers with respect to Q keep the length of horizontal geodesics, i.e. if v %>
3 then 1(y) = 1(7).

A singular leaf L is called tractable if L has a saturated neighbourhood W which
satisfies the requirements:

1) W is isomorphic to a fibre bundle over L with the standard fibre V' (transversal to
F) endowed with the induced foliation Ay;

2) the structure group of this fibre bundle is the group of automorphisms of the
foliation Ay, and the foliation on W, which is given locally as product of the leaf L by
Ay, coincides with F|yy .

THEOREM 5. For a leaf L of a transversally complete singular Riemannian foliation F
the following conditions are equivalent:

1. L s proper;

2. L is closed as subset of M;
3. L is tractable;

4. L is locally stable.

COROLLARY 3. Let F be as in Theorem 4 and M be compact. Then each tractable leaf L
of F is also compact.

For regular Riemannian foliations Theorem 5 was proved by the author in [26]. Under
an additional assumption about the existence of a complementary topological foliation
F1, a local stability of a proper leaf had been proved by C. Ehresmann [6]. A parallel
foliation on a Riemannian manifold admits the complementary orthogonal parallel foli-
ation. Therefore such foliations are always regular and form a subclass of the class of
previous foliations. For parallel foliations the equivalence of the conditions 1. — 3. was
proved in [9], where the proof was considerably simpler, due to specificity of the case.
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12. The Q-holonomy groupoid of a singular Riemannian foliation. In this sec-
tion let (M,F,g) be a transversally complete singular Riemannian foliation. It has a
natural Ehresmann connection @ = (T'F )J-. Let us consider Q as a generalized Ehres-
mann connection, where piece-wise horizontal geodesics play the role of horizontal curves.

Let (M, F) be an orbit-like foliation in the sense of Molino relative to a smooth action
of the compact group O(m). It follows from the theory of compact transformation groups
that the manifold M© of regular points is open connected and dense in M. Therefore for
any transversally complete orbit-like singular Riemannian foliation (M, F, Q) conditions
(Py) and (Py) are fulfilled and Theorem 3 is true.

THEOREM 6. Let (M,F,Q) be a singular transversally complete Riemannian foliation
with a natural generalized Ehresmann connection Q = (TF )J-, and suppose the condition
(P}) is satisfied. Then the Q-holonomy groupoid G o(F) is Hausdorff.

Proof. 1t is sufficient to check that property (P2) is satisfied and to apply Theorem 2. Let
us denote by M) the set of all leaves L,, of the regular foliation 9 := F| 0 with the trivial
germ holonomy group I'(L,, ). According to the result of Epstein-Millett—Tischler [7]
My is a dense Gs-subset in M°. As was shown by the author [27] there exists a canonical
isomorphism of the groups I'(Lq, z) and Hgo(Lq, ) of the regular Riemannian foliation
(M°, F° Q%) with the Ehresmann connection QY := Q|,0. Therefore the Q°-holonomy
group Hgo(Ly,x) is also trivial.

Consider any point ¢ = (a,{h},b) € Go(F) and its neighbourhood V = V(¢, Wy, Ws)
from the base ¥ of the topology of Go(F). Let z = (x,{t, - h - t,;'},y) be an arbi-
trary point in V, and x,y € L, C MJ. Here h is the result of a transfer of k' €

[h] along a horizontal curve o respective to v.h.h. H, ie. A’ RN h, Suppose that
z = (¢, {m% - h- 7, '} y), where h” s b, e [h], K is a v.h.h. with the base
v

(v,h”). It is not difficult to show that a check of the condition (i) of (P,) is reduced
to the case h” = h'. As H(I; x I3) U K(I; x I3) is a simply connected subset in
M, so there are two paths k; from o(1) to (1) in the local leaf I} and ky from

(1) to (1) in I;">, where o %> g, vy %> 3, W %> h, such that [h] = [k; -

h - k;l]. Remark that the paths k; and ¢;! - 7, have common endpoints. By virtue
of the equality Hgo(Ly,x) = 0 and Proposition 8 we have {k;} = {t;! - 7,}. Anal-
ogously, {ka2} = {t;l - Ty}. Therefore {iz} = {t;' 7 h - 7'y_1 - t,} and by Lemma 2
{to - h - t, = {m h - 7, '}, i.e. z depends only on z, y and {h}. Hence the condi-
tion (i) of (Pz) is true. Remark that the neighbourhoods W; and Wj are as small as
desired.

Let (W,() be a fibred chart at b containing open n-dimensional ball Dj.(b) with
center b and the radius 2¢ > 0 in Riemannian manifold (M, g). Let (W, ¢) be a fi-
bred chart at b, and Wo C DZ(b), ¢ = @|w,. According to Theorem 4 transfers keep
lengths of horizontal curves. Therefore the pair Wy C W satisfies to the condition (ii)
of (PQ) | ]

COROLLARY 4. Let (M, F, Q) be a singular transversally complete Riemannian foliation
with a natural generalized Ehresmann connection Q@ = (TF)L. If (M, F) is an orbit-like
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foliation in the sense of Molino or if each singular leaf of (M,F) is isolated in M, then
the Q-holonomy grupoid Go(F) is Hausdorff.

COROLLARY 5 ([23]). The manifold of the graph of a regular Riemannian foliation (M, F)
on a complete Riemannian manifold (M, g) with the bundle-like metric g is Hausdorff.
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