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Tubular neighborhoods play an important role in modern differential topology. The
main aim of the paper is to apply these constructions to geometry of structures on Rie-
mannian manifolds. Deformations of tensor structures on a normal tubular neighborhood
of a submanifold in a Riemannian manifold are considered in section 1. In section 2, this
approach is used to obtain a Kéahlerian structure on the corresponding normal tubular
neighborhood of the null section in the tangent bundle T'M of a smooth manifold M. In
section 3, we consider a new deformation of a tensor structure on some neighborhood of
a curve and introduce the so-called geometric antigravitation.

Some results of the paper were announced in [4], [5]. The work [3] is close to our
discussion.

1. Deformations of structures on a tubular neighborhood of a submanifold

1°. Let (M’,¢') be a k-dimensional Riemannian manifold isometrically embedded in an
n-dimensional Riemannian manifold (M, g). The restriction of g to M’ coincides with ¢’
and for any p € M’

TP(M) = Tp(M/) ® Tp(M/)L-
So, we obtain a vector bundle M’ — T(M')* : p — T,(M’)* over the submanifold M.
There exists a neighborhood Uy of the null section Oy in T(M’)% such that the mapping

X exp: v (T(V), €XPr(y) V), U E Uo,
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is a diffeomorphism of ﬁo onto an open subset U C M. The subset U is called a tubular
neighborhood of the submanifold M’ in M. We assume that ¢ is a positive number such
that for any p € M’, the open geodesic balls B(p, 5)C B(p, g) C U. For example, such a
number ¢ exists if M’ is compact. We denote U = exp(UoﬂT (M")+), D(p; 5) = B(p; §)N
Up, D(p;e) = B(p;e) N U It is clear that dlmU = dim D(p; §) = dim D(p;e) =n — k.
For any point o € M’, we can consider an orthonormal frame (X1,,..., X, ) such that
T,(M') = Lin[X1,0,..., Xk,o| and T, (M') = Lin[Xkt1.05--+,Xn.o)- There exist coordi-
nates x1,...,x, in some neighborhood Vb C M’ of the point o such that 8 |0 = Xio,
i=1,..., k We consider orthonormal vector fields Xj1, ..., X, which are cross-sections
of the vector bundle p +— T,(M’)* over Vo and the neighborhood Wy = Uper, ﬁ;. The
basis {Xkt1,p,--.,Xnp} defines the normal coordinates xxi1,...,z, on ifvp, [7]. For any
point = € VI’70, there exists the unique point p € % such that z = exp,(t§), ||| = 1,
& e T, (M’) A point = € WA/:) has the coordinates z1,...,z%, Tg41,...,2, where
T1i,...,T) are coordinates of the point p in VO and Tkt1,--.,Ty are normal coordinates
of x in U We denote X; = —1 i=1,n, on WO Thus, we can consider normal tubu-
lar neighborhoods Tb(M';5) = U,cpr D(p; 5) and Tb(M';e) = U,cpp D(pie) of the
submanifold M’.

2. Let K be a smooth tensor field ot type (r,s) on the manifold M and for z € I/{N/O7 let
K, = Z kh """(I)Xih%®"'®XILT73; ®X%1 ®.“®ng,

J1yeeds
il,...,ir,jl,...,j

where {X},..., X2} is the dual basis of T (M), x = exp,(t€), [[£]| = 1, € € T,(M')*

We define a tensor field K on M in the following way.

a) x € D(p; 5), then

E: Z k“ ..... lr(p)le,x(g)®X2Tx®Xil®®nge’

J1seesds
UlyeenslrJ1ye00]s

b) z € D(p;e)\D(p; 5), then

K= Y ki exp, (2 - €)X

(TP T T
®"'®Xi,,,z®lex®"'®X£S;
c) x € M\U,; D(p;€), then
K, =K,.
It is easy to see that the tensor field K is independent of the choice of coordinates in I/IA/'/O
for every point o € M’'.

DEFINITION 1. The tensor field K is called a deformation of the tensor field K on the
normal tubular neighborhood of a submanifold M’.

REMARK. The obtained tensor field K is continuous but it is not smooth on the bound-
aries of the normal tubular neighborhoods Th(M’; £) and Tb(M’; ), K is smooth in other
points of the manifold M.
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3% We consider a deformation g of the Riemannian metric g on the normal tubular
neighborhood Th(M';¢e) of a submanifold M'. For x € Wy, © = exp,(tf), [€] =

¢ € T,(M'), we define the Riemannian metric g in the following way.

a) gp = gp for any p € M’;

b) 92(Xi, X;) = 7ij(x) = gi;(p), where X; =
Wo, = € D(p; §);

¢) 92(Xi, X;) = gij(x) = gij(exp, (2t — €)€)), for any = € D(p; )/ D(p; 5);
d) g» = g for each point x € M\ ¢y D(p; ).

1 =1

6] _ 0 s
oz’ , 1, X] - ij J = 1ana on

The independence of g of a choice of local coordinates follows and the correctly defined
Riemannian metric g on M has been obtained.

It is known from [8] that every autoparallel submanifold of M is a totally geodesic
submanifold and a submanifold M’ is autoparallel if and only if VxY € T(M’) for any
X,Y € x(M'), where V is the Riemannian connection of g.

THEOREM 1. Let M’ be a submanifold of a Riemannian manifold (M,g) and g be the
deformation of g on the normal tubular neighborhood To(M';e) of M’ constructed above.
Then M’ is a totally geodesic submanifold of (Tb(M'; 5), ).

Proof. For any point z € D(p; §) C W, the functions Gij(z) = g:j(p) and %g;g =0,1=
k+1,n on D(p;5) because the vector fields X; = 8%[ are tangent to D(p;5). By the
formula of the Riemannian connection V of the Riemannian metric g, [7], we obtain for

ihj=Lk l=k+1n

(1.1) 20,(Vx,, X, Xi) = X;,9(X;, X0) + X, 9(X;, X))
— X1,9(Xi, Xj) + 9p([Xi, X5, X0) + 9p ([ X0, Xi], X5)
9gi; _

+ gp(Xi, [X1, X)) = —

8xl o

Here we use the fact that [X;, X;] = [X;,X;] = [Xi,X;] = 0 and that g(X;,X;) =
9(X:, X)) = 0 because X; € T(M')*. Thus, Vx,X; € T(M') and from the remarks
above the theorem follows. m

COROLLARY 1. Let R be the Riemannian curvature tensor field of g. Then R wvanishes
on every D(p; 5) forp e M'.

Proof. From the formula (1.1) it is clear that Vx, X,,, = 0 for [,m = k + 1,n. The rest is
obvious. m

4% Let (F,&,n,g) be an almost contact metric structure (acms) on M and M’ = St be a
closed integral curve of the vector field £ passing through a point o € M’. We consider a
tubular neighborhood U of the submanifold M’ and for any point o € M’ the coordinate
neighborhood Wo = UpEV U with the coordinates x1, ..., Za,, Tont+1 Where 9,41 is the

coordinate of the point p € VO C M’ and 1, .. :cgn are normal coordinates of 1’ € ’UVO,
z=expy(tv), |v|=1vel,(M) . IfX;=5~i=12n+1on Wo, then 812 —=¢

and 5 6‘ i =1, 2n, are orthonormal vectors for any p € Vo7 {X1,, ..., Xonp} define the
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normal coordinates x1,..., T3, on ﬁp, see 19, We can choose cross-sections X1, ..., Xo,
of the vector bundle p — T,(M’)* over Vo in such a way that FX; = X,44, i = 1, n;
FX;=-X;_,,j=n+12n. A deformation g of the Riemannian metric g is defined on
the normal tubular neighborhood Th(M’; €) of M’, see 3°. Further, a deformation F' of
the (1,1) tensor field F on M is defined in the following way.

a)x € D(p;5) C f]p c Wo,
FyX; = FpX;, i =1,2n; F6 =0;
b) @ € D(p;)\D(p; 5),
z=exp,(tv),| v|=1, veT,(M)*;
FuXi = Fexp ((2t—2)n) Xiy 1= 1,20, F,6 = 0;
¢) x € M\U,cp D(pse),
EF,=F,
It is clear that g (FX,FY) = g(X,Y) for X,Y € Lin[¢]* in the cases a), ¢). In the
case b) we obtain
9o (Fe Xiy FirX5) = Gexp, ((2t—e)w) (Fexp, ((2t—e)) Xis Foxp, ((2t—)) X5)
= Gexp, ((2t—e) (Xi, Xj) = Gz (Xi, X).
If 3(X) = g(X,¢§) for X € x(M) then we have got the correctly defined acms
(F', & n, g) on M.
PROPOSITION 2. The curve M’ is a geodesic with respect to ¥V and D(p; 5) is a flat

totally geodesic submanifold of (Tb(M'; 5), g) for any p € M'. The structure (F, g) is

a Kdhlerian one on every D(p; §5), p€ M'.

Proof. The equality ?5]05 = 0 directly follows from (1.1). From Corollary 1 we see that
?Xin = 0on D(p;5), i, j = 1,2n, and the first conclusion of the Proposition 2 is
fulfilled. Further, we have

@XiFXj — F?Xin = :thin =0,

where l=n+j,7=1,njorl=j—mn,j=n+1, 2n. Soweobtain@ﬁzOonD(p;%)
and (F, g) is a Kéhlerian structure on every D(p;5), p€ M'. =

2. Embedding of a Riemannian manifold into a Kéahlerian one

19. Let (M, g) be an n-dimensional Riemannian manifold and 7'M be its tangent bundle.
For the Riemannian connection V we consider the connection mapping K of V [1], [6],
defined by the formula

(2.1) VxZ=KZxX,

where Z is considered as a mapping from M into T'M and the right hand side means a
vector field on M assigning to p € M’ the vector KZ, X, € M, =T,(M).

If U € TM, we denote by Hy the kernel of K|rys, and this n-dimensional subspace
of T My is called the horizontal subspace of TMy = Ty (T M).
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Let 7 denote the natural projection of T'M onto M, then 7, is a C'*°-map of TTM
onto TM. If U € TM, we denote by Vi the kernel of m, 7y, and this n-dimensional
subspace of T My is called the vertical subspace of TMy (dimTMy = 2dim M = 2n).
The following maps are isomorphisms of the corresponding vector spaces (p = 7(U))

Tr*\TMU : HU — MP’K\TMU : VU — Mp

and we have
TMy =Hy & V.

If X € x(M), then there exists exactly one vector field on TM called the ”horizontal
lift” (resp. ”vertical lift”) of X and denoted by X" (X"), such that for all U € TM

(2.2) Xl = Xrw), KX{ =0y,
(23) ﬂ'*X;} = O‘n’(U)a KXZ‘} = XTK'(U)'
Let R be the curvature tensor field of V, then following [1] we have
(2:4) (X7, Y] =0,
(2.5) (X", vV = (VxY)",
(2.6) (X", Y"y) = [X,Y],
(2.7) K(X", Y"y) = R(X,Y)U.

For vector fields X = X" @ XY and Y = Y" @ Y” on T M, the natural Riemannian
metric § =<, > is defined on T'M by the formula

(2.8) < X,Y >=g(m.X,mY)+ g(KX,KY).
It is clear that the subspaces Hy and Vi are orthogonal with respect to <, >.

It is easy to verify that th, )_(51, .. .,)_(7’1‘7 )_(f, )_(5, . ,Xﬁ are orthonormal vector
fields on TM if so are X3, Xo,..., X, on M, ie. g(X;, X;) = 5;
20, We define a tensor field J on T'M by the equalities
(2.9) JXM =XV JX"=-X" X e x(M).
Since J2 = —I and < JX,JY >=< X,Y >, (TM,J,<,>) is an almost Hermitian
manifold.

Further, we want to analyze the second fundamental tensor field h of the pari (J, <, >),
see (2.11) below, cf. [2]. It is obvious that (J, <,>) is a Kéhlerian structure if and only
if h=0.

The Riemannian connection V of the metric g =<,>onTM is defined by the formula
(see [7])

(210)  <VxY,Z>=iX<V,Z>+Y<Z X >
—Z<X,Y>+<Z/JX,Y]>+<Y,[Z X]>
+ <X, [2,Y]>), XY, Z € x(M).
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For orthonormal vector fields X )7 Z on TM we obtain

(2.11) hgyz =<hgY,Z>=1< +JIVJY,Z >
=i(<V YZ>—<VXJY JZ >)
=1(<[X,Y],Z>+<[Z2,X],Y >+<[Z2,Y],X >
- <[X,JY),JZ> - < [JZ,X),JY >—<[JZ,JY],X>).

Using (2.4)-(2.7) and (2.11) we consider the following cases for the tensor field h
assuming all the vector fields to be orthonormal.

119 hgugngn = L(< (X2, V1,20 > + < (28, X4, 7" >
+<[ZM Y, X > - < (XM YN, JZ2" > - < [JZ" XM, 07 >
— <[JZ"M VM, X" >) = 1(9((X,Y), Z) + (2. X].Y)
+9([2,Y], X)— < [ X", Y"), 2" > — < [2", X", V" >
- <27, Y7, X" >) = 39(VxY, Z) — §(9(VxY, 2)
—9(VxZ,Y)) = 5(9(VxY,Z) = g(VxY, Z)) = 0.
2.19) hgnynze = (< [X" Y], 2" > + < (27, X", V" >
+<[Z20, Y, X" > — < [ XM JYM), T2V > — < [JZ¥, X", JY" >
—<[JZ",JY", X" >) = L(g(R(X,Y)U, Z)
<[Z'M XM, YY >) = Yg(R(X,Y)U,Z) + g(R(Z, X)U,Y))
= —1(9(R(X.Y)Z,U) + g(R(Z, X)Y,U)).

By similar arguments we obtain

3.19) hgnpuvgn = — ( (R(Z,X)Y,U)+ g(R(X,Y)Z,U)).
4.19%) hgopnzn = _Z( (R(Z,Y)X,U)).

5.1°) hxvyvze = 3(9(R(Z,Y)X,U)).

6.19) hguyogn =0

719 hgugnge =0

8.1%) hgnypvze =0
Thus the second fundamental tensor field A (of the structure (J, <, >)) strongly depends
on the connection V.

3% We have constructed the almost Hermitian structure (J,§ =<, >) on TM with the
help of a Riemannian metric g on M, i.e. we have obtained an injective mapping

E:(M) = (TM): g~ (J,§=<,>),
where (M) is the set of Riemannian metrics on M and (T'M) is the set of almost Hermitian
structures on T'M.
DEFINITION 2. A smooth manifold M will be called an e-manifold if there exists a normal
tubular neighborhood Th(M,¢) in TM with respect to § =<,>= E(g) on T'M induced

by some g € (M), where M is considered as the null section Oy in TM (M 32 p — O, €
OM C TM).
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It is clear that any smooth compact manifold is an e-manifold.

THEOREM 3. Let M be an e-manifold and Tb(M,e) be the corresponding normal tubular
neighborhood in TM with respect to § =<,>= E(g) on TM. Then M(Oy) is a totally
geodesic submanifold of the Kdhlerian manifold (Tb(M, 5), J,g), where the almost Her-
mitian structure (J,g) is the deformation of the structure (J,<,>) defined above.

Proof. It follows from Theorem 1 that M is a totally geodesic submanifold of the Rie-
mannian manifold (Tb(M, §), g).

Let Wy be a coordinate neighborhood in TM considered in 1°,1. A point « € Wo has
the coordinates z1,...,2,, Tni1,-..,T2, Where x1,...,x, are coordinates of the point
pin Vo C M and Tpil,..., T2, are normal coordinates of 2 in D(p; §).

Let denote X; = 52—, i = 1, 2n, Vx,X; = >, TH Xy, Vx, X; = 3, ThH Xy, JX; =
Zk Jka, jX] = Zk Jka, gij = Q(Xi,Xj), gij = g(XZ,XJ) where @ and v are
Riemannian connections of metrics g and g, respectively.

i Using the construction of 2°,1 we have gi;(x) = gi;(p), Ji(z) = Ji(p) on Tb(M, )N
Wp. According to [7] we can write

_ = L (Ogk; | OGik  Ogij
2.12 Tl =~ z - =1,
( ) zl:glk 2 (8% + Ox;  Oxy
It follows from (2.12) that T;(z) = I'};(p) and T};(z) = 0, i.e. Vx,X; = 0 for i =
n—+1, 2n.
Further, we get

(Vx,)X; =Vx,JX; = JVx,X; = > Vx,J; Xy

k
—J (Z fijk> = Z (JFVx, Xk + (X JF) Xy
k k
SORL X = S (T - T+ X TF) X,
k, 1 k, 1
(V. )X;) (@) = 37 (AT = TL JF + X,J%) () X
k, 1
= > ((JITh = T4 ) (0) + (X3 TF) (2)) X

k, 1
It follows that Vx,J =0 fori=n+ 1, 2n. Fori =1, n, (Xijjl“)(a:) = (X,»Jf)(p) and
we obtain
(Vx, X)) = Y (STl = DI+ XG0T F) () X
k, 1

On the other hand we can write
(Vx,J)X;)(p) = Z (JITE =T TF + X0 T5) () X
k, 1

According to [2], we have ((Vx,J)X;) (p) = (2hx,JX;) (p) where the tensor field A is
defined by (2.11). From 1.1°)-8.1°) it follows that h, = 0 for any p € M’ (U = O,, € Opr).
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Finally, we have obtained that V.JJ = 0 and the structure (.J,g) is a Kéhlerian one on
TH(M,5). m

COROLLARY 3. Any compact smooth manifold of dimension n can be embedded in a
Kahlerian manifold of dimension 2n as a totally geodesic submanifold.

49, Let M be an arbitrary smooth Riemannian manifold. For any point p € M we can
consider a set {d(p)} of positive numbers such that the mapping expjy(s(p)) is defined
and injective on U(d(p)) C T, M. Let e(p) = sup{d(p)}.

LEMMA 4 ([6]). The mapping M — Ry : p+— &(p) is continuous on M.
From the constructions above it is evident that the following proposition is true.

PROPOSITION 5. There ezists a function £(p) continuous on M such that the subset
TH(M,e(p)) = Upers D(p;e(p)) of TM defined by the Riemannian metric g = E(g) on
TM induced by some g € R(M) is a normal tubular neighborhood of M considered as the
null section Op; of TM.

All the constructions considered above for the case € = const can be generalized to
the case of a positive continuous function (p) on M.

THEOREM 6. Let M be a smooth real manifold and Tb(M,e(p)) be the corresponding nor-
mal tubular neighborhood in T M with respect to some § = E(g) on TM. Then M(Oyy) is
a totally geodesic submanifold of the Kdhlerian manifold (Tb(M, @, J,9)), where the al-
most Hermitian structure (J,g) is the deformation of the structure (J,g). So, any smooth
real manifold of dimension n can be embedded into a Kdihlerian manifold of dimension
2n as a totally geodesic submanifold.

3. Deformations of structures on a neighborhood of a curve and geometric
antigravitation

19. Let (M, g) be a Riemannian smooth n-dimensional manifold and v : p = p(s),0 <
s < s1, be a smooth curve isometrically embedded in M. We can consider a balloon
neighborhood Bl(~,¢) consisting of the tubular neighborhood T'b(7, ) and two geodesic
semiballs Bs(p(0);¢), Bs(p(s1);¢) attached to Th(y,e) at the ends. For any point = €
Tb(v,¢), there exist 0 < s < s; and 0 < ¢ < g(p(s)) such that x = exp,,)(t{), where
I ¢1l=1,g9(¢v) =0, and v = p(s). For every point z € Bs(p(0);¢) (or € Bs(p(s1);¢))
we have @ = expy, (1€), | € = 1, € € Ty, M, po = p(0) (or @ = exp, (t). || € = 1,
£eT, M, p1 =p(s1)). We can choose local coordinates (z1, Z2,...,zy,) on Bi(vy,¢€) such
that %b = v,. We denote X; = %u, i1=1,2,...,n.

2%, Let K be a tensor field of type (r,s) from the algebra of all smooth tensor fields on
M and on Bl(v,¢e) we have
K,= ) Krii@Xa.® 00X, 90X - X
TR TR
where { X1, ..., X"} is the dual basis of T M.
A tensor field K is defined on M as follows:
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K.= Y KieoXa, © - 0X, oXie--oX
B1yeeesbryJ1yeees]s
b) x € Bl(v; §)\Bl(v; 3), = = expp(té),p = p(sp),
% 1, 2sp €
K.= > K (P (? (2t 5))) Xi,
Tlyeensry J1yeeesds

® - ®X;, XI'®- @ X
¢) € Bl(v,e)\Bl(v, 5), = exp, (), p = p(sp),

Ko=) K (exp, (2t - 9)€) X,
Dl yeeey by J1eeesds
®- X, ®X£1 ®...®X£s;
d) z € M\BI(~,¢),
K, =K,.
REMARK. The obtained tensor field K is continuous but is not smooth on the boundaries

of the balloon neighborhoods, K is smooth at other points of M.

PROBLEM. Can we get a good deformation K of K such that K is smooth and K = K
on some balloon neighborhood of v, K = K on M\BI(v,¢)?

3. Let ®(X,Y) = g(PX,Y) be a pseudo-Riemannian metric on M, P? =1, X, Y €
x(M). Using the construction presented in 2° we can obtain the deformations g of
g and P of P on BI(v,¢), i.e. a new pseudo-Riemannian metric ® where ®(X,Y) =
3(PX,Y), P2 =1.

THEOREM 7. Let V be the canonical connection of ® on Bl(vy; 7). Then v is geodesic

with respect to V and the curvature tensor field (gravitation) R vanishes on Bl(v; ).

Proof. For any x € Bl(v; §) we have
Gz = Zgjk(pO)Xajc. ®Xalc€a pﬂc = Zfli(pO)Xiw ®Xi
ik il
and the functions g;,(po), f/(po) are constant on Bl(v; §). The formula of the canonical
connection V of ® is similar to (1.1)

20, (Vx,X;, X)) = X;, ®(X;, X)) + X;, ®(X;, X)) — X, ®(X;, X;)
+0x([X;, X;], X)) + ®x([X, Xi], X;) + P (X, [ Xy, X;])
= X,,9(PX;,X;) + X;,5(PX;, X;) — X1, 9(PX;, X;) = 0.
So we obtain that Vx,X; = 0 and it follows that R = 0 on Bl(v; $). From Vx, X1 =0

we get that v is a geodesic segment. m

REMARK. We can also consider almost Hermitian manifolds and Riemannian G-struct-
ures, see [3] for details.
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