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Abstract. We present short direct proofs of two known properties of complete flat manifolds.
They say that the diffeomorphism classes of m-dimensional complete flat manifolds form a finite
set Scr(m) and that each element of Scr(m) is represented by a manifold with finite holonomy
group.

1. Introduction. The aim of this paper is to give short direct proofs of two fundamental
properties of complete flat manifolds (Theorems 1 and 2). A complete flat manifold (cf-
manifold) M can be treated as the orbit space R™/T" of a properly discontinuous and
free action of a discrete group I' on a Euclidean space. The holonomy homomorphism ¢
of M carries each element v of the deck group I' onto the linear part of v (cf. [2, p. 51],
[11, ch. 3, Lemma 3.4.4]). The group ®(T") is the holonomy group of M. We prove the
following.

THEOREM 1. Every complete flat manifold is diffeomorphic to a complete flat manifold
with finite holonomy group.

THEOREM 2. The set Scr(m) of diffeomorphism classes of complete m-dimensional flat
manifolds is finite.

Theorem 1 was derived in [10] from related general results. The whole proof presented
in [10] is long and difficult. The reader interested in flat manifolds would like to know a
shorter one, valid in this particular case. Our proof is more algebraic than that given in
[10]. The main step of it consists of showing that an appropriate finite extension of the
holonomy group a cf-manifold is a semidirect product of a torsion free abelian group and
a finite group (Lemma 2). Theorem 2 has been proved in [10], [8], and [9]. It seems that
our elementary proof of it is simpler than the earlier known ones.
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Theorem 2 cannot be extended to the affine case because the set of affine equivalence
classes of noncompact complete flat m-manifolds is uncountable ([6, Theorem 1.3] see
also [11, ch. 3, Theorem 3.5.1]). This shows that there is a big difference between the
theory of closed flat manifolds and the more general theory of complete flat manifolds.
The first one can be treated as the theory of Bieberbach groups and the second one
uses real representations of these groups (see Section 2 and [6, Theorem 1.2]). For the
description of Scp(m) for m < 4 we refer to [11] and [7].

Throughout this paper the following notation will be used. Given a complete flat
manifold M, the symbols I' and & mean the same as above. By X we denote the closed
totally geodesic submanifold X of M homotopy equivalent to M and by ®¢; the vertical
holonomy homomorphism of M (see Section 2 for the definition). The symbols m, n, and
s stand for dim M, dim X, and m — n, respectively. If G is a subgroup of a Lie group Gy,
then G is the closure of G in G and Gy is the identity component of G. The subgroup
of G generated by a subset S of G will be denoted by (S).

2. Semidirect products and holonomy groups. The starting point of the proof of
Theorem 1 is the description of a complete flat manifold M as the total space of a flat
vector bundle over a closed flat manifold. It is known that M contains a closed totally
geodesic submanifold X homotopy equivalent to M (|11, Section 3.2]). Let T" be the deck
group of M and let ®x be the holonomy homomorphism X. Write M as R™/T" and
X as R™/T. The linear isometry ®(vy) can be written as ®x(y) x @y (7), where ®x ()
is an orthogonal transformation of R™ and ®y(y) € O(s) (see the proof of Theorem
3.3.3 in [11]). The group ®x(T') is always finite and it is isomorphic to the factor group
of T' by its maximal abelian subgroup (see e.g. [11, ch. 3, § 3.2, § 3.4]). In order to
describe the holonomy group of M it is necessary to describe its vertical part @y (I"). Let
IT: R® — X = R"/T be the projection and let p : I' — GL(s,R) be a representation of T".
Consider the diagonal action v(z,u) = (v, p(y)u) of T' on R™ x R* and the orbit space
M]Ip] = (R™ xR?®)/T". The projection of R x R* onto R™ determines a map p : M[p] — X.
The triple I[p] = (M][p], X,p) is a vector bundle associated to the principal bundle II
with typical fiber R®. The arguments given in the proof of Theorem 3.3.3 in [11] show
that

LEMMA 1. The manifold M is affinely diffeomorphic to M[oy].

The aim of this section is to prove the following.

LEMMA 2. There is a subgroup G of ®y(I") such that:

a) ¢y () is a finite index subgroup of G,
b) G is a semidirect product of a torsion free abelian subgroup A of ®y(T'), and a finite
group H.

Proof. Denote ®r;(T") by G* and G*oNG* by B. Let I',,,, be the maximal abelian subgroup
of T. Since @y (I'yy,,) is a finite index subgroup of @y (T), dim G*g = dim @y (T'yna), SO
that G*¢ = Oy (Ipa), and G*, is a torus T covered by a vector space T. For notational
convenience the group operations in 7' will be written additively. If p is the order of the
torsion subgroup of B and B, = pB, then B, is a torsion free normal subgroup of G*. Let
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P:T — T be the projection, H* = G*/B,, and r = |H*|. Fix a free system of generators
bi,...,b;in B, and b; € P’l(bj). Take representatives hq, . . .~,hT of the left cosets of B,
in G*. Fort e R, ke N, and i € {1,...,{} consider b; ; = P(tb;), and b;(k) = b, 1. Let

B(k) = (by(K), ..., bi(k)) and G(k) = (B(k), h1,....h,).

1.
'k

It is easily seen that B(k) is a free abelian group and kb;(k) = b;.
Let g € G* and I, : © — gzg~'. Since B, is a normal subgroup of G*, there are
¢cij € Z such that I,(b;) = Z;:l ¢i;jbj. In order to prove the equality

l
(*) Ip(big) = cijbja,
=1

assume that k is relatively prime to r. We have
1
Iy(bi(k)) = dijb;(k) + h(i)
j=1

for d;; € Z and h(i) € {hi,...,h,}. Since

l l
kh(i) = Ty(kbi(k)) — k> dijbs(k) = > (cij — dij)b; € B,
=1

Jj= Jj=1
and (k,r) = 1 it is clear that h(i) € B,. Hence

l
L(big) =D cibie
j=1

for a € Z. Now (x) follows from the fact that the set {{ : a € Z, (k,r) = 1} is dense in R.
Let H(K) = G()/B(), Bloc) = Uiy B, Gloc) = UL, G(RY, and H(oo) =
G(o0)/B(00). Clearly B(co) = Q!. Consider the exact sequence

(%) 0 — B(0) — G(o0) — H(o0) — 1.

By [1, ch. 3, Corollary 10.2], H*(H (o), B(oc)) = 0 and this implies that there is a split
o : H(0) = G(0).

Every coset of G(k!) modulo B(k!) can be written as h;B(k!) for some j € {1,...,1} so
that there is an epimorphism of H(k!) onto H((k+ 1)!) and consequently H (k!) = H(o0)
for k sufficiently big. Fix a positive integer ko such that o(H) C G(k!) and H(k!) = H(o0)
for k > ko. Setting A = B(ko!), G = G(ko!), and H = H(ko!), we complete the proof of
Lemma 2. »

3. Reductions of the holonomy groups of complete flat manifolds. Using the
results of Section 2, we complete the proof of Theorem 1.

Proof of Theorem 1. Let A, G, and H be as in Lemma 2 and let T = A, T, P, and o be
as in the proof of Lemma 2. Take a basis aq, ..., a; of the free abelian group A, t € [0, 1],
a; € P~ (a;), and aj; = P(ta;) € T. The formula fi(a;) = ajs,j = 1,...,1, defines a
homomorphism f; : A — T.
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Let g€ Gand I, : T > — grg~' € T. Fix t € [0,1]. As in the proof of Lemma 2,
the group operations in T" will be written additively. Consider ¢;; € Z such that I,(a;) =
22:1 cija;. The arguments given in the proof of Lemma 2 show that

l
Ip(ais) =Y cijage.
=1

Hence
Iyo fi = fioly.
An element = of G can be uniquely written as o(h)a, where h € H and a € A. Consider
the map
Fi:G>o(h)a— o(h)fi(a) € G.
Since Gy is abelian and f;(o(h)ac(h)~!) = o(h) fi(a)a(h)™!
homomorphism.

Let i : &y (I") — G be the inclusion and ®y; = Fy_; 0 i o ®y. The bundles II[®y o] =
ITI[®y] and II[®y 1] are isomorphic (compare [3]) so that M is diffeomorphic to the total
space M; of II[®y1]. Since @y 1(I') = H, the holonomy group of M is finite. This finishes
the proof of Theorem 1. m

, it is easy to see that F} is a

EXAMPLE 1. Let 8 be any irrational multiple of 7 and let
f5:R®> (2,y,2) — (vcos B — ysin B, zsin B + ycos 3, —z) € R3.

Consider the homomorphism p : m1(S) — O(3) carrying a generator of m1(S') onto
fs and My = M[p]. Then ®y = p and Oy (), N @y (T) = (f3), but the arising exact
sequence 1 — (f3) — (fs) — Zz — 1 is not split.

4. Diffeomorphism classes of cf-manifolds and flat bundles. Theorem 2 will be
derived from the following (cf. [8, Corollary 7.1.5] and [9, Proposition 9]).

LEMMA 3. If X is a closed flat manifold, then the number of isomorphism classes of
s-dimensional riemannian flat bundles over X is finite.

Proof. The proof of Lemma 3 consists of two steps. In the first we show that there is
a finite covering Uy, ...,U; of X such that any riemannian flat bundle over X admits
transition functions constant on each intersection U; N U;. To achieve this goal, take
0 € (0, % diam (X)), smaller than the injectivity radius of X, and a J-net x1,...,z;. Let
U; be the open geodesic ball of radius 0 with center in z;. Clearly Uézl U; = X. Let 7,
denote the parallel translation along a curve ¢ in E(£). By the flatness of £, 7. depends
only on the homotopy class of ¢ in the set of paths keeping the endpoints fixed. Fix
shortest geodesic segments ¢;, ¢ > 1, joining x; to x; and a basis vy,...,vs of E(§).,.
Consider vy (z;) = 7¢,(vy), © € U;, the unique shortest geodesic ¢, joining z; to x and

oi(x) = 71 (vi(24)).-
The local sections J,i determine local trivializations
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carrying Y ;_, axoi(x) onto (2, p_; axoy(z;)). Let g;; = gj_lgi be the transition func-
tions associated with our local trivializations and let h¢ be the holonomy homomorphism
of &, induced by the flat metric on &. Clearly g;;(o}(z)) = O'i(l') and he(y) = 7, for
Y E m (X)

In order to show that g;; can be written as h¢(7;;) note that
or (@) = 7. (vk(x;)) = 7,5 (1, (Vi)
The product of paths (c.)~1, 0;1, ¢j, and ¢J is a loop d,. If v;; is the homotopy class
of d,, then ) , , ,
01 (2) = 74, (01 (2)) = 7y, (01.(2)) = he(7i5) (04 (2)),
as claimed.
Using our covering, it is easy to finish the proof. Let

A={(i,5)e{l,....}*: U;NU; # 0}
and let W be the set of all maps ¢ : A — O(s) such that the function carrying nonempty
intersections U; N U; onto (3, §) is a cocycle. By the above, each riemannian flat bundle
over X admits a cocycle belonging to W. The limit of cocycles is a cocycle so that W is a

closed subset of the compact set Map (A, O(s)) and thus W has finitely many connected
components. m

Proof of Theorem 2. By the third Bieberbach theorem (see [2, ch. 2, Theorem 5.5],
[11, ch. 3, Theorem 3.3.2]), the set of diffeomorphism classes of closed flat k-manifolds
(k < m) is finite and thus it suffices to prove that the set of diffeomorphism classes of
cf-m-manifolds, homotopy equivalent to a fixed closed flat manifold X, is finite. This
follows immediately from Lemma 3. m

REMARK 1. The conclusion of Lemma 3 does not hold for arbitrary manifolds and flat
bundles. To see this take a closed orientable surface X, of genus g greater than 1. By
[4, Corollary, p. 215], [5, Appendix C|, X, is the base space of a 2-dimensional orientable
flat vector bundle £ whose Euler class e(£) belongs to H*(X,,R) — {0}. Given a posi-
tive integer k let ¥ be the tensor product of k copies of &, treated as a complex line
bundle. Since e(¢F) = ¢ (&%) = ke(€), there are infinitely many isomorphism classes of
2-dimensional flat vector bundles over X,,.

COROLLARY 1. There is a constant C(m) such that every m-dimensional cf~manifold
M is diffeomorphic to a cf-manifold M; whose holonomy group has order not greater

than C'(m).

For an estimate of C'(m) we refer to [10, Corollary 6.5]. Wilking’s paper contains a
direct proof of Corollary 1. It is obvious that Corollary 1 implies Theorems 1 and 2.
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