
GEOMETRY AND TOPOLOGY OF MANIFOLDS

BANACH CENTER PUBLICATIONS, VOLUME 76

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2007

HOLONOMY GROUPS OF COMPLETE FLAT MANIFOLDSMICHA� SADOWSKIInstitute of Mathemati
s, University of Gda«skWita Stwosza 57, 80-952 Gda«sk, PolandE-mail: msa�delta.math.univ.gda.pl
Abstra
t. We present short dire
t proofs of two known properties of 
omplete �at manifolds.They say that the di�eomorphism 
lasses of m-dimensional 
omplete �at manifolds form a �niteset SCF (m) and that ea
h element of SCF (m) is represented by a manifold with �nite holonomygroup.1. Introdu
tion. The aim of this paper is to give short dire
t proofs of two fundamentalproperties of 
omplete �at manifolds (Theorems 1 and 2). A 
omplete �at manifold (
f-manifold) M 
an be treated as the orbit spa
e Rm/Γ of a properly dis
ontinuous andfree a
tion of a dis
rete group Γ on a Eu
lidean spa
e. The holonomy homomorphism Φof M 
arries ea
h element γ of the de
k group Γ onto the linear part of γ (
f. [2, p. 51℄,[11, 
h. 3, Lemma 3.4.4℄). The group Φ(Γ) is the holonomy group of M . We prove thefollowing.Theorem 1. Every 
omplete �at manifold is di�eomorphi
 to a 
omplete �at manifoldwith �nite holonomy group.Theorem 2. The set SCF (m) of di�eomorphism 
lasses of 
omplete m-dimensional �atmanifolds is �nite.Theorem 1 was derived in [10℄ from related general results. The whole proof presentedin [10℄ is long and di�
ult. The reader interested in �at manifolds would like to know ashorter one, valid in this parti
ular 
ase. Our proof is more algebrai
 than that given in[10℄. The main step of it 
onsists of showing that an appropriate �nite extension of theholonomy group a 
f-manifold is a semidire
t produ
t of a torsion free abelian group anda �nite group (Lemma 2). Theorem 2 has been proved in [10℄, [8℄, and [9℄. It seems thatour elementary proof of it is simpler than the earlier known ones.2000 Mathemati
s Subje
t Classi�
ation: Primary 53C25; Se
ondary 57R22, 20C99.Key words and phrases: 
omplete �at manifold, holonomy group, �at bundle, di�eomorphism,representation of a Bieberba
h group.The paper is in �nal form and no version of it will be published elsewhere.[527℄ 
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528 M. SADOWSKITheorem 2 
annot be extended to the a�ne 
ase be
ause the set of a�ne equivalen
e
lasses of non
ompa
t 
omplete �at m-manifolds is un
ountable ([6, Theorem 1.3℄ seealso [11, 
h. 3, Theorem 3.5.1℄). This shows that there is a big di�eren
e between thetheory of 
losed �at manifolds and the more general theory of 
omplete �at manifolds.The �rst one 
an be treated as the theory of Bieberba
h groups and the se
ond oneuses real representations of these groups (see Se
tion 2 and [6, Theorem 1.2℄). For thedes
ription of SCF (m) for m ≤ 4 we refer to [11℄ and [7℄.Throughout this paper the following notation will be used. Given a 
omplete �atmanifold M , the symbols Γ and Φ mean the same as above. By X we denote the 
losedtotally geodesi
 submanifold X of M homotopy equivalent to M and by ΦU the verti
alholonomy homomorphism of M (see Se
tion 2 for the de�nition). The symbols m, n, and
s stand for dimM , dimX, and m−n, respe
tively. If G is a subgroup of a Lie group G1,then G is the 
losure of G in G1 and G0 is the identity 
omponent of G. The subgroupof G generated by a subset S of G will be denoted by 〈S〉.2. Semidire
t produ
ts and holonomy groups. The starting point of the proof ofTheorem 1 is the des
ription of a 
omplete �at manifold M as the total spa
e of a �atve
tor bundle over a 
losed �at manifold. It is known that M 
ontains a 
losed totallygeodesi
 submanifold X homotopy equivalent to M ([11, Se
tion 3.2℄). Let Γ be the de
kgroup of M and let ΦX be the holonomy homomorphism X. Write M as Rm/Γ and
X as Rn/Γ. The linear isometry Φ(γ) 
an be written as ΦX(γ) × ΦU (γ), where ΦX(γ)is an orthogonal transformation of Rn and ΦU (γ) ∈ O(s) (see the proof of Theorem3.3.3 in [11℄). The group ΦX(Γ) is always �nite and it is isomorphi
 to the fa
tor groupof Γ by its maximal abelian subgroup (see e.g. [11, 
h. 3, � 3.2, � 3.4℄). In order todes
ribe the holonomy group of M it is ne
essary to des
ribe its verti
al part ΦU (Γ). Let
Π : Rn → X = Rn/Γ be the proje
tion and let ρ : Γ → GL(s,R) be a representation of Γ.Consider the diagonal a
tion γ(x, u) = (γx, ρ(γ)u) of Γ on Rn × Rs and the orbit spa
e
M [ρ] = (Rn×Rs)/Γ. The proje
tion of Rn×Rs onto Rn determines a map p : M [ρ] → X.The triple Π[ρ] = (M [ρ], X, p) is a ve
tor bundle asso
iated to the prin
ipal bundle Πwith typi
al �ber Rs. The arguments given in the proof of Theorem 3.3.3 in [11℄ showthatLemma 1. The manifold M is a�nely di�eomorphi
 to M [φU ].The aim of this se
tion is to prove the following.Lemma 2. There is a subgroup G of ΦU (Γ) su
h that:a) ΦU (Γ) is a �nite index subgroup of G,b) G is a semidire
t produ
t of a torsion free abelian subgroup A of ΦU (Γ)

0
and a �nitegroup H.Proof. Denote ΦU (Γ) byG∗ andG∗

0∩G
∗ by B. Let Γma be the maximal abelian subgroupof Γ. Sin
e ΦU (Γma) is a �nite index subgroup of ΦU (Γ), dimG∗

0 = dimΦU (Γma)
0
sothat G∗

0 = ΦU (Γma)
0
and G∗

0 is a torus T 
overed by a ve
tor spa
e T̃ . For notational
onvenien
e the group operations in T will be written additively. If ρ is the order of thetorsion subgroup of B and Bρ = ρB, then Bρ is a torsion free normal subgroup of G∗. Let
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P : T̃ → T be the proje
tion, H∗ = G∗/Bρ, and r = |H∗|. Fix a free system of generators
b1, . . . , bl in Bρ and b̃j ∈ P−1(bj). Take representatives h1, . . . , hr of the left 
osets of Bρin G∗. For t ∈ R, k ∈ N, and i ∈ {1, . . . , l} 
onsider bi,t = P(t̃bi), and bi(k) = bi, 1

k
. Let

B(k) = 〈b1(k), . . . , bl(k)〉 and G(k) = 〈B(k), h1, . . . , hr〉.It is easily seen that B(k) is a free abelian group and kbi(k) = bi.Let g ∈ G∗ and Ig : x → gxg−1. Sin
e Bρ is a normal subgroup of G∗, there are
cij ∈ Z su
h that Ig(bi) =

∑l
j=1

cijbj . In order to prove the equality
(∗) Ig(bi,t) =

l∑

j=1

cijbj,t,assume that k is relatively prime to r. We have
Ig(bi(k)) =

l∑

j=1

dijbj(k) + h(i)for dij ∈ Z and h(i) ∈ {h1, . . . , hr}. Sin
e
kh(i) = Ig(kbi(k)) − k

l∑

j=1

dijbj(k) =

l∑

j=1

(cij − dij)bj ∈ Bρand (k, r) = 1 it is 
lear that h(i) ∈ Bρ. Hen
e
Ig(bi, a

k
) =

l∑

j=1

cijbj, a
kfor a ∈ Z. Now (∗) follows from the fa
t that the set {a
k

: a ∈ Z, (k, r) = 1} is dense in R.Let H(k) = G(k)/B(k), B(∞) =
⋃∞

k=1
B(k!), G(∞) =

⋃∞
k=1

G(k!), and H(∞) =

G(∞)/B(∞). Clearly B(∞) ∼= Ql. Consider the exa
t sequen
e
(∗∗) 0 → B(∞) → G(∞) → H(∞) → 1.By [1, 
h. 3, Corollary 10.2℄, H∗(H(∞), B(∞)) = 0 and this implies that there is a split
σ : H(∞) → G(∞).Every 
oset of G(k!) modulo B(k!) 
an be written as hjB(k!) for some j ∈ {1, . . . , l} sothat there is an epimorphism of H(k!) onto H((k+1)!) and 
onsequently H(k!) ∼= H(∞)for k su�
iently big. Fix a positive integer k0 su
h that σ(H) ⊂ G(k!) and H(k!) ∼= H(∞)for k ≥ k0. Setting A = B(k0!), G = G(k0!), and H = H(k0!), we 
omplete the proof ofLemma 2.3. Redu
tions of the holonomy groups of 
omplete �at manifolds. Using theresults of Se
tion 2, we 
omplete the proof of Theorem 1.Proof of Theorem 1. Let A, G, and H be as in Lemma 2 and let T = A, T̃ , P, and σ beas in the proof of Lemma 2. Take a basis a1, . . . , al of the free abelian group A, t ∈ [0, 1],

ãj ∈ P−1(aj), and aj,t = P(tãj) ∈ T. The formula ft(aj) = aj,t, j = 1, . . . , l, de�nes ahomomorphism ft : A→ T.



530 M. SADOWSKILet g ∈ G and Ig : T ∋ x → gxg−1 ∈ T. Fix t ∈ [0, 1]. As in the proof of Lemma 2,the group operations in T will be written additively. Consider cij ∈ Z su
h that Ig(ai) =∑l
j=1

cijaj . The arguments given in the proof of Lemma 2 show that
Ig(ai,t) =

l∑

j=1

cijaj,t.Hen
e
Ig ◦ ft = ft ◦ Ig.An element x of G 
an be uniquely written as σ(h)a, where h ∈ H and a ∈ A. Considerthe map

Ft : G ∋ σ(h)a→ σ(h)ft(a) ∈ G.Sin
e G0 is abelian and ft(σ(h)aσ(h)−1) = σ(h)ft(a)σ(h)−1, it is easy to see that Ft is ahomomorphism.Let i : ΦU (Γ) → G be the in
lusion and ΦU,t = F1−t ◦ i ◦ ΦU . The bundles Π[ΦU,0] =

Π[ΦU ] and Π[ΦU,1] are isomorphi
 (
ompare [3℄) so that M is di�eomorphi
 to the totalspa
eM1 of Π[ΦU,1]. Sin
e ΦU,1(Γ) ∼= H, the holonomy group ofM1 is �nite. This �nishesthe proof of Theorem 1.Example 1. Let β be any irrational multiple of π and let
fβ : R3 ∋ (x, y, z) → (x cosβ − y sinβ, x sinβ + y cosβ,−z) ∈ R3.Consider the homomorphism ρ : π1(S

1) → O(3) 
arrying a generator of π1(S
1) onto

fβ and Mβ = M [ρ]. Then ΦU = ρ and ΦU (Γ)
0
∩ ΦU (Γ) = 〈f2

β〉, but the arising exa
tsequen
e 1 → 〈f2

β〉 → 〈fβ〉 → Z2 → 1 is not split.4. Di�eomorphism 
lasses of 
f-manifolds and �at bundles. Theorem 2 will bederived from the following (
f. [8, Corollary 7.1.5℄ and [9, Proposition 9℄).Lemma 3. If X is a 
losed �at manifold, then the number of isomorphism 
lasses of
s-dimensional riemannian �at bundles over X is �nite.Proof. The proof of Lemma 3 
onsists of two steps. In the �rst we show that there isa �nite 
overing U1, . . . , Ul of X su
h that any riemannian �at bundle over X admitstransition fun
tions 
onstant on ea
h interse
tion Ui ∩ Uj . To a
hieve this goal, take
δ ∈ (0, 1

2
diam (X)), smaller than the inje
tivity radius of X, and a δ-net x1, . . . , xl. Let

Uj be the open geodesi
 ball of radius δ with 
enter in xj . Clearly ⋃l
j=1

Uj = X. Let τcdenote the parallel translation along a 
urve c in E(ξ). By the �atness of ξ, τc dependsonly on the homotopy 
lass of c in the set of paths keeping the endpoints �xed. Fixshortest geodesi
 segments ci, i > 1, joining x1 to xi and a basis v1, . . . , vs of E(ξ)x1
.Consider vk(xi) = τci

(vk), x ∈ Ui, the unique shortest geodesi
 cix joining xi to x and
σi

k(x) = τci
x
(vk(xi)).The lo
al se
tions σi

k determine lo
al trivializations
gi : E(ξ)|Ui

→ Ui × E(ξ)xi
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arrying ∑s

k=1
akσ

i
k(x) onto (x,

∑s

k=1
akσ

i
k(xi)). Let gij = g−1

j gi be the transition fun
-tions asso
iated with our lo
al trivializations and let hξ be the holonomy homomorphismof ξ, indu
ed by the �at metri
 on ξ. Clearly gij(σ
i
k(x)) = σj

k(x) and hξ(γ) = τγ for
γ ∈ π1(X).In order to show that gij 
an be written as hξ(γij) note that

σj
k(x) = τ

c
j
x
(vk(xj)) = τ

c
j
x
(τcj

(vk)).The produ
t of paths (cix)−1, c−1

i , cj , and cjx is a loop dx. If γij is the homotopy 
lassof dx, then
σj

k(x) = τdx
(σi

k(x)) = τγij
(σi

k(x)) = hξ(γij)(σ
i
k(x)),as 
laimed.Using our 
overing, it is easy to �nish the proof. Let

A = {(i, j) ∈ {1, . . . , l}2 : Ui ∩ Uj 6= ∅}and let W be the set of all maps ψ : A→ O(s) su
h that the fun
tion 
arrying nonemptyinterse
tions Ui ∩Uj onto ψ(i, j) is a 
o
y
le. By the above, ea
h riemannian �at bundleover X admits a 
o
y
le belonging to W. The limit of 
o
y
les is a 
o
y
le so that W is a
losed subset of the 
ompa
t set Map (A,O(s)) and thus W has �nitely many 
onne
ted
omponents.Proof of Theorem 2. By the third Bieberba
h theorem (see [2, 
h. 2, Theorem 5.5℄,[11, 
h. 3, Theorem 3.3.2℄), the set of di�eomorphism 
lasses of 
losed �at k-manifolds(k ≤ m) is �nite and thus it su�
es to prove that the set of di�eomorphism 
lasses of
f-m-manifolds, homotopy equivalent to a �xed 
losed �at manifold X, is �nite. Thisfollows immediately from Lemma 3.Remark 1. The 
on
lusion of Lemma 3 does not hold for arbitrary manifolds and �atbundles. To see this take a 
losed orientable surfa
e Xg of genus g greater than 1. By[4, Corollary, p. 215℄, [5, Appendix C℄, Xg is the base spa
e of a 2-dimensional orientable�at ve
tor bundle ξ whose Euler 
lass e(ξ) belongs to H2(Xg,R) − {0}. Given a posi-tive integer k let ξk be the tensor produ
t of k 
opies of ξ, treated as a 
omplex linebundle. Sin
e e(ξk) = c1(ξ
k) = ke(ξ), there are in�nitely many isomorphism 
lasses of2-dimensional �at ve
tor bundles over Xg.Corollary 1. There is a 
onstant C(m) su
h that every m-dimensional 
f-manifold

M is di�eomorphi
 to a 
f-manifold M1 whose holonomy group has order not greaterthan C(m).For an estimate of C(m) we refer to [10, Corollary 6.5℄. Wilking's paper 
ontains adire
t proof of Corollary 1. It is obvious that Corollary 1 implies Theorems 1 and 2.
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