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Abstract. In [9], the author considers a sequence of invertible maps Ti : S1 → S1 which

exchange the positions of adjacent intervals on the unit circle, and defines as An the image of

the set {0 ≤ x ≤ 1/2} under the action of Tn ◦ . . . ◦ T1,

An = (Tn ◦ . . . ◦ T1){x1 ≤ 1/2}.(1)

Then, if An is mixed up to scale h, it is proved that
n∑

i=1

(Tot.Var.(Ti − I) + Tot.Var.(T−1

i − I)) ≥ C log
1

h
.(2)

We prove that (2) holds for general quasi incompressible invertible BV maps on R, and that

this estimate implies that the map Tn ◦ . . . ◦T1 belongs to the Besov space B0,1,1, and its norm

is bounded by the sum of the total variation of T − I and T
−1 − I, as in (2).

1. Introduction. The existence of solutions for the transport equation

ut + a(t, x) · ∇u = 0, (t, x) ∈ R
+ × R,(3)

is an important topic of research. In the paper of DiPerna-Lions [13], the notion of

renormalized solution is introduced, for measurable vector fields a(t, x) with bounded

divergence. It is then proved that the solution to (3) are renormalized if the vector field

a(t, x) belongs to the Banach space L1((0, T );W 1,p) (with some bound on the exponential

growth of the trajectories). As a consequence there is a unique solution to (3) with

bounded initial data, which depends continuously in L1, and it is possible to define

a flow X : R × R
n → R

n for the discontinuous ODE

dX

dt
= a(t,X).
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Recently, in [1], Ambrosio extended the result to vector fields a which are only BV. To

have a panoramic view of the recent developments, see [4, 6, 7, 10, 12, 15].

A possible new direction of research of this space has been considered by Bressan [8, 9].

In the first paper [8], he showed the ill posedness of the n×n system of conservation laws

in 2 space dimensions

ut +

m∑

i=1

∂xi
(fi(|u|)u) = 0, u ∈ R

n,(4)

if |u| ∈ L∞. If we set ρ = |u|, θ = u/ρ, the system can be rewritten as

ρt +

m∑

i=1

∂xi
(fi(ρ)ρ) = 0,(5)

θt +
m∑

i=1

fi(ρ)∂xi
θ = θt + a(t, x) · ∇θ = 0.(6)

It is conjectured that if |u| is in BVloc and 1/C < |u| < C (by [14] this space is invariant

for the flow of (5)), then there exists a solution to the flow for the ODE

dX

dt
= a(t,X),

associated to the transport equation (6). This problem has been solved in [2, 3], using

the theory of renormalized solutions. In [11] it is shown that the flow generated by (6) is

not in the space BV.

A different approach to construct such a flow is given in [9]. The basic idea is to

consider on S1 a set A such that

c ≤
1

2h

∫ x+h

x−h

χA(y)dy ≤ (1 − c),(7)

where c is a fixed constant in (0, 1). The sets satisfying the above condition are said to be

mixed up to scale h, which means that in all segments of size 2h there is at least a subset

of A of total length greater than 2ch and lower than 2(1− c)h. Together with these sets,

the author consider the maps

Tx,a,b = I +





a, x− b < x ≤ x,

b, x < x ≤ x+ a,

0, otherwise.

(8)

The total variation of T − I is 2(a+ b). Equivalently, in the language of [9], we can say

that the cost of exchanging positions to two adjacent segments (x − b, x), (x, x + a) is

2(a+ b).

Bressan proves the following estimate: if after applying a finite number of maps

Txi,ai,bi
, we obtain that

(Txn,an,bn
◦ . . . ◦ Tx1,a1,b1)χA =

{
1, 0 ≤ x ≤ |A|,

0, otherwise,
(9)

then the total variation of the maps satisfies the lower bound
n∑

i=1

Tot.Var.(Txi,ai,bi
− I) =

n∑

i=1

2(ai + bi) ≥ O(1) log
1

h
.(10)
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The author considers a smooth vector field v(t, x), and its corresponding flux X(t, x),

dX

dt
= v(t,X), X(0, x) = x,(11)

satisfying the quasi incompressibility condition

1

C
≤ J(t, x) = det∇xX(t, x) ≤ C(12)

for some fixed C > 0. If one assumes that the flow mixes up to size h, i.e. the image of

the unit ball is mapped to a set A such that

c ≤
1

|B(0, h)|

∫

B(x,h)

χA(y)dy ≤ (1 − c),(13)

where |A| is the Lebesgue measure of the set A, then the conjecture is that the vector

field v satisfies ∫ T

0

Tot.Var.(v(t))dt ≥ O(1) log
1

h
.(14)

We can interpret the above conjecture as an estimate of L1 compactness of charac-

teristic functions under the action of the quasi incompressible vector fields. A different

approach is to find a Banach space B such that we can rewrite the estimate (10) in the

form

‖χTA‖B ≤ ‖χA‖B + κ(Tot.Var.(T− I) + Tot.Var.(T−1 − I)),(15)

for all maps T : R
n → R

n quasi incompressible and κ > 0. Moreover, for sets mixed up

to scale h, we have the estimate

‖χB‖B ≥ κ′ log
1

h
.(16)

In this paper we show for the one-dimensional case a space with the above charac-

teristics is the space B is the homogeneous Besov space Ḃ0,1,1, which is defined by the

norm

‖u‖Ḃ0,1,1 =

∫ 1

0

1

h
sup
|t|≤h

{ ∫

Rn

∣∣u(x+ t) − u(x)
∣∣dx

}
dh.(17)

For an introduction to Besov spaces see [16]. Here we only observe that we can define the

general Besov space Bs,p,q as

‖u‖Bs,p,q =

( ∫ 1

0

1

hsq

(
sup
|t|≤h

∫

Rn

|u(x+ t) − u(x)|pdx

)q/p
dh

h

)1/q

,(18)

so that we see in the case under consideration that s = 0, p = q = 1.

As a consequence, Bressan’s conjecture on mixing properties of vector fields can be

stated as follows: if X : R
+ × R

n → R
n is the flow of (11) satisfying (12), then

‖X(t) − I‖Ḃ0,1,1 ≤ C

∫ t

0

Tot.Var.(v(s))ds.(19)

The paper is organized as follows.
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In Section 2, we introduce some notations and definitions on the quasi incompressible

invertible BV maps. We then define a functional P(A) on measurable sets of the real line,

P(A) =

∫ 1

0

1

h

∫

R

∣∣∣∣χA(x) −
1

2h

∫ x+h

x−h

χA(y)dy

∣∣∣∣dx dh,(20)

and show that, under the assumption of quasi incompressibility, there is an equivalent

formulation where the maps are measure preserving.

In Section 3, we prove that P(A) satisfies (15), i.e.

P(TA) ≤ P(A) + κ(Tot.Var.(T− I) + Tot.Var.(T−1 − I)),(21)

and moreover for sets mixed up to scale h the estimate (16) holds. To be more precise,

the proof shows that in our one-dimensional setting,

P(TA) ≤ P(A) + O(1)(jump part of (T − I), (T−1 − I)).(22)

Thus only the jumps of T, T−1 increase the functional P. In a multidimensional setting,

this is clearly not the case.

In Section 4, we prove that the function P is equivalent to the Besov space Ḃ0,1,1

(17), and we list several equivalent norms. In particular a norm which shows that this

space is the dual space of a Banach space of Hölder like functions, and a norm which is

related to optimal transport and a degenerate free discontinuity problems.

In Section 5, we list some properties of the space B0,1,1. We prove that Ḃ0,1,1 can be

represented as a dual space, and that a coarea formula holds. Finally, using some ideas

from image reconstruction, we give another equivalent norm.

2. Quasi incompressible BV maps on R. We consider left continuous BV maps

T : R → R, with the following properties

1. T is invertible,

2. T − I, T−1 − I are of bounded variation.

For any function u : R → R, we define the advective transport Tu by

Tu(x) = u(T−1x).(23)

Here and in what follows I is the identity map, I(x) = x.

Similarly, for a given function ρ : R → R, the conservative transport T♯ρ is the push

forward of the measure ρdx,
∫ b

a

T♯ρdx =

∫

T−1(a,b)

ρdx.(24)

In the following we also assume that

3. T♯dx, T−1♯dx are absolutely continuous w.r.t. the Lebesgue measure.

This implies that the derivatives of T, T−1 do not have the Cantorian part and that

T♯ρ(x) =

∣∣∣∣
dT−1(x)

dx

∣∣∣∣ρ(T
−1(x)) =

∣∣∣∣
dT(T−1(x))

dx

∣∣∣∣
−1

ρ(T−1(x))(25)
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outside the countable jump set of T−1. If
∣∣∣∣
dT−1

dx

∣∣∣∣ = 1,(26)

then T is measure preserving. Clearly also T−1 is measure preserving.

Lemma 1. If T : R → R satisfies conditions 1), 2), 3) above, then by a change of variable

we can assume T to be measure preserving.

Proof. We can perform the following change of variable: if T is as above, define the

variable

z(y) = (T♯dx)(0, y) =

∫ y

0

(T♯1)ds,(27)

and the map T̃ by

T̃(x) = z(T(x)).(28)

It thus follows that

T̃♯ρ(x) =

∣∣∣∣
dT̃−1(x)

dx

∣∣∣∣ρ(T̃
−1(x))(29)

=

∣∣∣∣z
′(T(T̃−1(x)))

dT(T̃−1(x))

dx

∣∣∣∣
−1

ρ(T̃−1(x))

=

∣∣∣∣
(
dT(T̃−1(x))

dx

)−1
dT(T̃−1(x))

dx

∣∣∣∣
−1

ρ(T̃−1(x))

= ρ(T̃−1(x)).

Thus the map T̃ is measure preserving.

In the following we will study a sequence of maps T = {Ti}
∞
i=1. We say that the

sequence of maps {Ti}
∞
i=1 is quasi incompressible if the functions

ρi+1 = Ti♯ρi, ρ0 ≡ 1,(30)

satisfy the uniform bound

1

C1
≤ ρi ≤ C1, C1 ∈ [1,+∞),(31)

with C1 independent on i ∈ N.

We assume that the sequence T satisfies properties 1), 2), 3) and moreover that

4. the sequence T is quasi incompressible;

5. the total variation of Ti − I and T−1
i − I are summable:

∞∑

i=1

(Tot.Var.(Ti − I) + Tot.Var.(T−1
i − I)) = T V(T ) ≤ +∞.(32)

As in the proof of Lemma 1, by defining the sequence of variables yi and maps T̃i by

yi(x) =

∫ x

0

(Ti♯1)dx, T̃i(x) = yi((Ti)(x)),(33)
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it follows from (31) that y = yi ◦ yi−1 ◦ . . . ◦ y1(x) is an invertible map for all i,

1

C1
≤
dy

dx
≤ C1.

Moreover the maps T̃ = {T̃i}
∞
i=1 are measure preserving:

T̃i♯ρ(yi) = ρ(T̃−1
i yi).(34)

In this case, each map T̃i has only jumps and a continuous derivative equal to 0 or −2.

We consider now the following functional on characteristic functions on R: if µ is a

measure on R such that µ(a, b) 6= 0 for all a < b, then

P(A;µ) =

∫ 1

0

1

h

∫

R

∣∣∣∣χA(x) −
1

µ(x− h, x+ h)

∫ x+h

x−h

χA(y)dµ(y)

∣∣∣∣dµ(x) dh.(35)

For the sake of generality, we have defined the functional for a general measure µ, but is

the following we will use only P(A, dx). For brevity, we will write P(A, dx) = P(A),

P(A) =

∫ 1

0

1

h

∫

R

∣∣∣∣χA(x) −
1

2h

∫ x+h

x−h

χA(y)dy

∣∣∣∣dx dh.(36)

The BV perimeter of a set is denoted by P (A).

Consider now a function ρ ∈ L∞ with values in [1/C1, C1], and define

y(x) =

∫ x

0

ρdx.

We want to compare P(A) with

P ′(A) =

∫ 1

0

1

h

∫

R

∣∣∣∣∣χA(y−1(x)) −
1

2h

∫ x+h

x−h

χA(y−1(z))dz

∣∣∣∣∣ dx dh.

for a measurable set A. If we denote by I(x, h;A), I ′(x, h;A) the integrals

I(x, h;A) =
1

2h

∫ x+h

x−h

χA(z)dz,

I ′(x, h;A) =
1

2h

∫ x+h

x−h

χA(y−1(z))dz,

then it follows that, independently of A,

I ′(x, h;A) ≤ C1
1

2h

∫ y−1(x+h)

y−1(x−h)

χA(z)dz(37)

≤ C1
1

2h

∫ y−1(x)+C1h

y−1(x)−C1h

χA(z)dz ≤ C2
1I(y

−1(x), C1h;A).

We thus have the estimate

P ′(A) =

∫ 1

0

1

h

∫

R

∣∣∣χA(y−1(x)) −
1

2h

∫ x+h

x−h

χA(y−1(z))dz
∣∣∣dx dh(38)

≤ C1

{∫ 1

0

1

h

∫

R

∣∣∣∣χA(x) −
1

2h

∫ y(x)+h

y(x)−h

χA(y−1(z))dz

∣∣∣∣dx dh
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= C1

{∫ 1

0

1

h

( ∫

A

I ′(y(x), h; R \A)dx+

∫

R\A

I ′(y(x), h;A)dx

)
dh

}

≤ C3
1

{∫ 1

0

1

h

(∫

A

I(x,C1h; R \A)dx+

∫

R\A

I(x,C1h;A)dx

)
dh

}

= C3
1

∫ 1

0

1

h

∫

R

|χA(x) − I(x, h;A)|dx dh

+ C3
1

∫ C1

1

1

h

∫

R

|χA(y−1(x)) − I(y−1(x), h;A)|dx dh.

We prove the following lemma, which allows one to compare the integral
∫

R

∣∣∣∣χA(x) −
1

2h

∫ x+h

x−h

χA(y)dy

∣∣∣∣dx

for different values of h.

Lemma 2. We have
∫

R

∣∣∣∣
1

3h

∫ x+3h/2

x−3h/2

(χA(x) − χA(z))dz

∣∣∣∣dx(39)

≤
16

3

∫

R

∣∣∣∣
1

2h

∫ x+h

x−h

(χA(x) − χA(z))dz

∣∣∣∣dx.

Proof. We observe that

1

2
χ[−3/2,3/2](x) ≤ φ(x)

.
= 2χ[−1,1] ∗ χ[−1,1](x) =





x+ 2, x ∈ [−2, 0],

2 − x, x ∈ [0, 2],

0, otherwise,

so that, since χA(x) − χA(y) has a definite sign,
∣∣∣∣

1

3h

∫ x+3h/2

x−3h/2

(χA(x) − χA(z))dz

∣∣∣∣ ≤ 2

∣∣∣∣
1

3h

∫

R

φ((z − x)/h)(χA(x) − χA(z)))dz

∣∣∣∣

=
8

3

∣∣∣∣χA(x) −
1

2h

∫ x+h

x−h

χA(z)dz +
1

2h

∫ x+h

x−h

(
χA(y) −

1

2h

∫ y+h

y−h

χA(z)dz

)∣∣∣∣,

so that the conclusion follows by integrating in x.

By Lemma 2, it follows that for some constant C2, independent of A, we have
∫ C1

1

1

h

∫

R

|χA(y−1(x)) − I(y−1(x), h;A)|dx dh ≤ C2

∫ 1

0

1

h

∫

R

|χA(x) − I(x, h;A)|dx dh.

This clearly implies that the functionals P(A), P ′(A) are equivalent,

1

C3
P(A) ≤ P ′(A) ≤ C3P(A),(40)

where the constant C3 is independent on A.

We can use this result to deal with only divergence free maps. In fact, by the assump-

tion of quasi incompressibility, after the change of variable yi(x) the maps {T̃i}
∞
i=1 of (33)

are measure preserving, and their corresponding functionals Pi(A) are equivalent: there
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exists a constant C4 such that

1

C4
P(A) ≤ Pi(A) =

∫ 1

0

1

h

∫

R

∣∣∣∣∣χA(y−1
i (x)) −

1

2h

∫ x+h

x−h

χA(y−1
i (z))dz

∣∣∣∣∣ dx dh(41)

≤ C4P(A),

independently of A. Thus we have proved the following proposition:

Proposition 3. Consider the sequence of maps T = {Ti}
∞
i=1. Assume that each Ti

satisfies assumption 1), 2), 3), and that the sequence T is quasi incompressible. Let T̃ be

the sequence of maps defined by (33). Given a set A, let Ai, Ãi be the sets defined by

χAi
= TiχAi−1

, χÃi
= T̃iχÃi−1

, A0 = A.(42)

Then there is a constant C4 independent of A such that for all i

1

C4
P(Ai) ≤ P(Ãi) ≤ C4P(Ai).(43)

The constant C4 depends only on the quasi incompressibility constant of the sequence T .

3. Divergence free maps. By Proposition 3, to estimate the increase of P(A) under

the action of T = {Ti}
∞
i=1, it is sufficient to estimate P(A) under the action of T̃ = {T̃i}

given by (33). Moreover, Tot.Var.(T̃i − I) is of the same order of Tot.Var.(Ti − I) (their

ratio is of the order of the constant of quasi incompressibility). It is thus sufficient to

work with measure preserving maps, and to avoid cumbersome notation we will neglect

the tilde.

We now estimate the difference between P(A) and P(TA), where A is a measurable

set. We want to prove that this quantity is of the order of

Tot.Var.(T− I) + Tot.Var.(T−1 − I).

More precisely, we will show that this difference is controlled by the measure of the jump

part of T − I, T−1 − I (which is also the jump part of T, T−1). We remark again that

this is a particular feature of the one-dimensional case.

We can write, by the measure preserving property of T,

(44) P(TA) − P(A) =

∫ 1

0

1

h

∫

R

∣∣∣∣χTA(x) −
1

2h

∫ x+h

x−h

χTA(y)dy

∣∣∣∣dx dh

−

∫ 1

0

1

h

∫

R

∣∣∣∣χA(x) −
1

2h

∫ x+h

x−h

χA(y)dy

∣∣∣∣dx dh

=

∫ 1

0

1

h

∫

R

∣∣∣∣χA(x) −
1

2h

∫

T−1(Tx+(−h,h))

χA(y)dy

∣∣∣∣dx dh

−

∫ 1

0

1

h

∫

R

∣∣∣∣χA(x) −
1

2h

∫ x+h

x−h

χA(y)dy

∣∣∣∣dx dh

≤

∫ 1

0

1

h

∫

R

∣∣∣∣
1

2h

∫

T−1(Tx+(−h,h))

χA(y)dy −
1

2h

∫ x+h

x−h

χA(y)dy

∣∣∣∣dx dh

≤

∫ 1

0

1

2h2

∫

R

(2h−
∣∣T−1(Tx+ (−h, h)) ∩ (x+ (−h+ h))

∣∣)dx dh.
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It is thus sufficient to compute the length of the set T(x + (−h, h)) which is mapped

outside the segment Tx+ (−h, h).

Let a be the first point in (−h, h) not mapped by T in (−h, h), and assume for

simplicity that a > 0. By conservation of measure, it follows that T−1 maps a region of

length h − a of the segment (0,T(a−)) outside (0, a). Then T−1 has at least a jump of

size (h− a)/2.

If 2b is the total length of the set mapped outside, i.e.

2b = 2h− |T−1(Tx+ (−h, h)) ∩ (x+ (−h+ h))|,

then it follows that either T or T−1 has at least a jump of size (h − b/2)/2: in fact, in

the best case the point h− b/2 is mapped outside (−h, h).

We can now estimate the difference for each fixed x, h by

∆(x, h) = 2h− |T−1(Tx+ (−h, h)) ∩ (x+ (−h+ h))|(45)

≤ 2 min{h, greater jump of T,T−1 in x+ (−h, h)}.

This inequality tells us that the worst case is when two jumps of size h are located at

−h, h.

Consider a jump of size ℓ of T, and a segment x+ (−h, h). We say that the jump is

effective in x+ (−h, h) if the size of length mapped outside is less or equal to 2ℓ. In fact,

if ∆(x, h) is greater than this, then we know from (45) that there is a larger jump which

is effective. We thus have the following estimates:

1. if h ≤ 2ℓ, then it follows that the jump moves a segment of length at most h outside

Tx+ (−h, h) for all x at a distance h of the location of the jump;

2. if h > 2ℓ, then the jump is effective only when it is near the boundary of x+(−h, h),

at a distance of at most 2ℓ. In fact in the other cases there is a bigger jump which

we can take into account to estimate the length difference. It thus follows that it

can influence a region of length 4ℓ, and the length of the region moved outside is

of order ℓ, because we assume it is effective.

The same estimates hold for the jumps in T−1.

We thus have∫

R

|∆(x, h)|dx ≤ h2♯{jumps of T, T−1 of size ≥ h/2} +
∑

size≤h/2

|size of the jump|2

≤ h2♯{jumps of T, T−1} +
∑

size≤h/2

|size of the jump|2,

and we conclude that

|P(TA) − P(A)| ≤

∫ 1

0

1

2h2
(h2♯{jumps of T, T−1}

+
∑

size≤h/2

|size of the jump|2)dh

≤ C4

∑

jumps

( ∫ size

0

dh+ |size|2
∫ 1

size

dh

h2

)
≤ C5

∑

jumps

|size|

≤ C5(Tot.Var.(T− I) + Tot.Var.(T−1 − I)).



22 S. BIANCHINI

Tx

x

Fig. 1. The influence of a jump affects only a small set when h is large

This result proves the following theorem:

Theorem 4. Let T be a sequence of maps satisfying 1), 2), 3), 4), 5). Let Ai be the

sets defined by

χAi
= TiχAi−1

, A0 = A.

Then there exists a positive constant C5, independent of A such that

P(Ai) ≤ P(A) + C5T V(T ).(46)

3.1. Application to Bressan’s conjecture. The result stated in Theorem 4 is a generaliza-

tion to quasi incompressible BV maps on R of Bressan’s result on mixing properties of

the BV maps (8).

To show the logarithmic estimate, it is enough to compute P(A) for a set A mixed

up to scale h, i.e such that

1

2h

∫ x+h

x−h

χA(y)dy ∈ (c, 1 − c).(47)

With simple estimates, it follows that for all h ≥ h we have

1

2h

∫ x+h

x−h

χA(y)dy ∈ (c/2, 1 − c/2).(48)

Then we can estimate

P(A) ≥ |A|
c

2
log

1

h
.(49)

We thus conclude that

Tot.Var.(T− I) + Tot.Var.(T−1 − I) ≥ O(1) log
1

h
,(50)

which is the same estimate given by Bressan [9].

4. Definition of the Besov space B0,1,1 in R
n. In this section we show that the func-

tion P is equivalent to the homogeneous norm in the Besov space B0,1,1 for characteristic
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functions of measurable sets. This space is the space of measurable functions from R
n to

R with the norm

‖u‖B0,1,1 = ‖u‖L1 +

∫ 1

0

1

h
sup
|t|≤h

{∫

Rn

|u(x+ t) − u(x)|dx
}
dh.(51)

The homogeneous Besov space B0,1,1 is the space of measurable functions from R
n to R

with the norm

‖u‖Ḃ0,1,1 =

∫ 1

0

1

h
sup
|t|≤h

{∫

Rn

|u(x+ t) − u(x)|dx
}
dh.(52)

In the following for simplicity we use the notation

ut(x) = u(x+ t).(53)

Remark 5. Observe that since this space is based on L1, the definition of B0,1,1 in terms

of Littlewood-Paley decomposition

‖u‖ =
∞∑

i=1

‖φi ∗ u‖L1 , φi(x) = (2i)nφ(2ix),(54)

is not equivalent to (51). The function φ is the function used in the Fourier decomposition,

i.e. its Fourier transform φ̂ has the form

φ̂(ξ) = ψ(ξ/2) − ψ(ξ),

and ψ is a smooth function such that ψ = 1 on |ξ| ≤ 1/2, ψ = 0 for |ξ| ≥ 1.

We first enumerate some elementary properties of these spaces.

1. If ‖u‖Ḃ0,1,1 <∞ then u ∈ L1
loc.

2. If u ∈ BV, then u ∈ Ḃ0,1,1.

3. The space B0,1,1 is a Banach space with norm (51), compactly embedded into L1.

The first two statements are trivial. To prove the last assertion, we first observe that

if ω(h;u) is the modulus of continuity of u,

ω(h;u) = sup
|t|≤h

{∫

Rn

|u(x+ t) − u(x)|dx
}
,(55)

(or the concave modulus of continuity), then we can rewrite (52) as

‖u‖Ḃ0,1,1 =

∫ 1

0

ω(h;u)
dh

h
.(56)

The compactness of this space follows by standard results on compact sets in L1.

In the following proposition we give equivalent norms on the space Ḃ0,1,1, other than

(58).

Proposition 6. The norm (52) is equivalent to the following quantities:
∫ 1

0

ω(h, u)
dh

h
;(57)

1

|B(0, 1)|

∫

B(0,1)

1

|h|n

∫

Rn

|u(x+ h) − u(x)|dx dh;(58)
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∫ 1

0

sup

{∫
u(x)divψ(x)dx; |ψ(x)|, h|divψ(x)| ≤ 1

}
dh;(59)

|||u|||
.
=

∫ 1

0

min

{
Tot.Var.(v) +

‖u− v‖L1

h
, v ∈ BV

}
dh.(60)

The minimum in the above equation means that there is a vh ∈ BV such that the infimum

is assumed.

Moreover, if u is the characteristic function of a measurable set A, then the homoge-

neous Besov norm is equivalent to the functional P(A),

P(A) =

∫ 1

0

1

h

∫

Rn

∣∣∣∣χA(x) −
1

|B(0, h)|

∫

B(x,h)

χA(y)dy

∣∣∣∣dx dh.(61)

Proof. The first is just the definition. For the second one we have
∫

B(0,1)

1

|h|n

∫

Rn

|u(x+ h) − u(x)|dx dh

≤

∫

B(0,1)

1

|h|n
sup
|t|≤h

{ ∫

Rn

|u(x+ t) − u(x)|dx
}
dh

=

∫ 1

0

|∂B(0, 1)|

|h|
sup
|t|≤h

{ ∫

Rn

|u(x+ t) − u(x)|dx
}
d|h|.

Conversely, one can use the triangular estimate

‖ut − u‖L1 ≤
∑

i

‖uti − u‖L1 ,
∑

i

ti = t.(62)

For fixed t ∈ B(0, h), the set such that the above second equation holds has clearly

positive measure in {|t| ≤ h}, so that by integrating we have for some constant C > 0

independent of h

sup
|t|≤h

‖ut − u‖L1 ≤
C

hn

∫

|t|≤h

‖ut − u‖L1dt.

By integration by parts it follows
∫ 1

0

1

h
sup
|t|≤h

‖ut − u‖L1dh ≤

∫ 1

0

C

hn+1

∫

|t|≤h

‖ut − u‖L1dt dh

≤ C1

∫

|t|≤1

1

|t|n
‖ut − u‖L1dt.

To prove the equivalence of the norm (52) with (59), (60), we prove first that ‖u‖Ḃ0,1,1

is bounded by (59) by choosing

ψ(x) =

( ∫ x

0

(sgn(u(x) − u(x− h)) − sgn(u(x+ h) − u(x)))dx, 0, . . . , 0

)
,

and observing that clearly |ψ| ≤ 1.

Next we prove that (59) is equal to (60). We consider the representation of BV as

a dual space: let

X = {(φ1, . . . , φn) ∈ (C0(R
n,R))n}, Y = E,
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where the norm of X is the usual sup norm, and the set E is defined by

E =

{
(φ1, . . . , φn) ∈ (C0 ∩ C

1(Rn,R))n:
n∑

i=1

∂φi
∂xi

= 0

}
.(63)

Then it is known that
˙BV = (X/Y )∗,(64)

where ˙BV is the homogeneous BV space with the total variation as norm [5].

The argument is based on the min max principle

inf
ψ∈X/Y

{Θ(ψ) + Ξ(ψ)} = sup
v∈ ˙BV

{−Θ∗(v) − Ξ∗(−v)},(65)

where Θ, Ξ are convex functions and Θ∗, Ξ∗ their Legendre transforms, and there exists

a ψ ∈ X/Y such that Θ(ψ)+Ξ(ψ) <∞ and Θ is continuous in ψ. Moreover the supremum

in the right hand side is assumed.

We write the integrand (59) as the infimum of the sum of two convex functionals: for

ψ ∈ X/Y , we set

Θ(ψ) =

{
0, |ψ| ≤ 1,

+∞, otherwise,
(66)

Ξ(ψ, u) =

{∫
Rn udivψ, ψ ∈ C1, |divψ| ≤ 1/h,

+∞, otherwise.
(67)

It is easy to see that by choosing ψ = 0 the conditions needed by (65) are satisfied.

The Legendre transforms are computed easily: for v ∈ BV ,

Θ∗(v) = Tot.Var.(v),(68)

Ξ∗(−v) = sup

{∫

Rn

(u− v)divψ : |divψ| ≤ 1/h

}
=

1

h
‖u− v‖L1 .(69)

The last equality follows because we are not requiring any bound on the L∞ norm of ψ.

Thus by (65) we conclude that

|||u||| =

∫ 1

0

inf

{
Tot.Var.(v) +

1

h
‖u− v‖L1 , v ∈ BV

}
dh(70)

=

∫ 1

0

sup
{∫

udivψdx; |ψ|, h|divψ| ≤ 1
}
dh.

Moreover the infimum is attained, i.e. there is a vh ∈ BV depending on h such that

|||u||| =

∫ 1

0

Tot.Var.(vh) +
1

h
‖u− vh‖L1dh.(71)

We finally prove that (59) is bounded by (52). Choosing as a particular v the function

(χB(0,h)/h
n) ∗ u, we have

Tot.Var.((χB(0,h)/h
n) ∗ u) =

1

h

∫

Rn

∫

∂B(x,h)

|u(x+ y) − u(x)|dydx,

‖(χB(0,h)/h
n) ∗ u− u‖L1 =

∫

Rn

∫

B(0,h)

|u(x+ y) − u(x)|dydx,
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so that |||u||| ≥ ‖u‖Ḃ0,1,1 . This concludes the proof of the proposition for general func-

tions u.

For the case where u = χA, we need only observe that using (58) or its equivalent

formulation ∫ 1

0

dh

h

∫ ∫

|x−y|≤h

|u(x) − u(y)|

hn
dxdy,

we have

‖χA‖Ḃ0,1,1 =

∫ 1

0

dh

h

∫

A

(
χA(x) −

1

|B(0, h)|

∫

B(x,h)

χA(y)dy

)
dx

+

∫ 1

0

dh

h

∫

Rn\A

(
1

|B(0, h)|

∫

B(x,h)

χA(y)dy

)
dx = P(A).

This completes the proof.

In the following corollary, we show that to estimate the norm (60), one can choose

the function

ρh ∗ u =
1

hn

∫

Rn

ρ

(
x− y

h

)
u(y)dy,(72)

where ρ is a standard convolution kernel. This gives another equivalent norm.

Corollary 7. We have

1

3

∫ 1

0

Tot.Var.(ρh ∗ u) +
‖u− ρh ∗ u‖L1

h
dh ≤ |||u|||(73)

≤

∫ 1

0

Tot.Var.(ρh ∗ u) +
‖u− ρh ∗ u‖L1

h
dh.

Proof. The second part of the corollary is a consequence of the definition of |||u|||. For

the first part one has

Tot.Var.(ρh ∗ u) ≤ Tot.Var.(ρh ∗ v) + Tot.Var.(ρh ∗ (u− v))

≤ Tot.Var.(v) +
‖u− v‖L1

h
,

‖u− ρh ∗ u‖L1 ≤ ‖u− v‖L1 + ‖v − ρh ∗ v‖L1 + ‖ρh ∗ (u− v)‖L1

≤ 2‖u− v‖L1 + hTot.Var.(v).

As a final remark, we observe that the norm ||| · ||| resembles a free discontinuity

problem when u is the characteristic function of a measurable set: in fact, as we will see

later in Proposition 11, for any fixed scale h, we are trying to fit A with a smoother set

B, in such a way as to minimize the difference of area A∆B, and the cost is the perimeter

of B multiplied by h.

5. Some properties of B0,1,1. In this section we collect some basic property of the

Besov space B0,1,1. We show that, similarly to BV, B0,1,1 can be considered as the dual

space of a particular space of functions. Next we prove a coarea-type formula, and finally

a property for the minimization problem given by the equivalent norm (60).
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5.1. Ḃ0,1,1 as a dual space. The same approach used to see BV as a dual space can be

applied here. We first observe that we can rewrite (61) as

‖u‖Ḃ0,1,1 =

∫ 1

0

sup
{∫

Rn

u(x)divxψ(x)dx:ψ ∈ X, ‖ψ‖X ≤ 1
}
dh,(74)

where X is the space

X =
{
ψ(x) =

∫ 1

0

ψ(h, x)dh : ‖ψ‖X = sup
h∈(0,1]

{‖ψ(h)‖C0 + h‖divxψ(h)‖C0}
}
.(75)

Let E be defined as in (63), and let Y be the closure of E in X using the norm ‖·‖X . A

similar computation as the one done to show that BV is a dual space gives the following

proposition:

Proposition 8. The space Ḃ0,1,1 is the dual space of X/Y .

5.2. Coarea formula. Since B0,1,1 is based on L1, it is not surprising that we have a

coarea-type formula.

Proposition 9 (Coarea formula). The homogeneous Besov norm

‖u‖B0,1,1 =

∫

B(0,1)

‖uh − u‖L1

dh

|h|n
=

∫ ∫

|x−y|≤1

|u(x) − u(y)|

|x− y|n
dxdy,(76)

satisfies the equality

‖u‖Ḃ0,1,1 =

∫ +∞

−∞

‖χ{u ≥ ω}‖Ḃ0,1,1dω(77)

=

∫

R

{∫

B(0,1)

‖χ{uh ≥ ω} − χ{u ≥ ω}‖L1

dh

|h|n

}
dω.

The proof follows elementarily from the following lemma:

Lemma 10. We have for u ∈ L1

∫

Rn

|u(x+ t) − u(x)|dx(78)

=

∫

Rn

∫ +∞

−∞

|χ{(ω, x− t) : u(x) ≥ ω} − χ{(ω, x) : u(x) ≥ ω}|dωdx.

Proof. One can compute directly

u(x+ t) − u(x) =

∫ u(x+t)

u(x)

dω =

∫

R

(χ{ω ≤ u(x+ t)} − χ{ω ≤ u(x)})dω

=

∫

R

χ{(ω, x− t) : u(x) ≥ ω} − χ{(ω, x) : u(x) ≥ ω}dω,

so that the lemma follows.

At this point it is easy to prove the proposition. In fact, the homogeneous Besov norm

can be written as∫

B(0,1)

‖uh − u‖L1

dh

|h|n
=

∫

B(0,1)

∫

R

‖χ{uh ≥ ω} − χ{u ≥ ω}‖L1dω
dh

|h|n
(79)
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=

∫

R

{∫

B(0,1)

‖χ{uh ≥ ω} − χ{u ≥ ω}‖L1

dh

|h|n

}
dω

=

∫

R

‖χ{u ≥ ω}‖Ḃ0,1,1dω.

Note that by the equivalence of all the norms of Proposition 6, it follows that the

integral of the norm of the level sets of u are equivalent norms. However, also other

equivalent norms satisfy the coarea formula.

Proposition 11. The following equality holds:

(80)

∫ 1

0

inf

{
Tot.Var.(v) +

‖u− v‖L1

h
, v ∈ BV

}
dh

=

∫

R

∫ 1

0

inf

{
P (B) +

|{u ≥ ω}∆B|

h

}
dhdω,

where P (B) is the BV perimeter of the set B and A∆B = (A ∪B) \ (A ∩B).

As a corollary, remembering that in the proof of Proposition 6 we actually prove that

(59) is equal to (60), we get

Corollary 12. We have
∫ 1

0

sup
{∫

u(x)divψ(x)dx; |ψ(x)|, h|divψ(x)| ≤ 1
}
dh(81)

=

∫

R

{∫ 1

0

sup
{ ∫

χu≥ω(x)divψ(x)dx; |ψ(x)|, h|divψ(x)| ≤ 1
}
dh

}
dω.

The proof of Proposition 11 follows easily from the following lemma:

Lemma 13. For measurable sets A,

(82)

∫ 1

0

inf

{
Tot.Var.(v) +

‖χA − v‖L1

h
, v ∈ BV

}
dh =

∫ 1

0

inf

{
P (B) +

|A∆B|

h

}
dh,

with P (B) the perimeter of B.

Proof. Clearly it is enough to prove that

(83)

∫ 1

0

inf

{
P (B) +

|A∆B|

h

}
dh

≤

∫ 1

0

inf

{
Tot.Var.(v) +

‖χA − v‖L1

h
, v ∈ BV

}
dh+ ǫ

for all ǫ > 0. By coarea formula for BV functions, we have
∫ 1

0

Tot.Var.(v) +
‖χA − v‖L1

h
dh =

∫ 1

0

{∫ 1

0

P ({v ≥ ω}) +
|A∆{v ≥ ω}|

h
dω

}
dh.

Let v be such that

Tot.Var.(v) +
‖χA − v‖L1

h
≤ inf

{
Tot.Var.(v) +

‖χA − v‖L1

h
, v ∈ BV

}
+
ǫ

2
,

and ω be such that
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P ({v ≥ ω}) +
|A∆{v ≥ ω}|

h
≤ inf
ω∈[0,1]

{
P ({v ≥ ω}) +

|A∆{v ≥ ω}|

h

}
+
ǫ

2
.

Then the set {v ≥ ω} satisfies (83).

5.3. A property of (60). In the norm (60), let v(h) be the minimum of the problem

inf

{
Tot.Var.(v) +

‖u− v‖L1

h
, v ∈ ḂV

}
,

considered for h > 0. The existence of this minimum follows from the compactness of ḂV

in L1
loc.

For u fixed, we define the two functions a(h;u), b(h;u) : (0,∞) → R
+ by

a(h;u) = Tot.Var.(v(h)), b(h;u) = ‖u− v(h)‖L1 .(84)

We have the following proposition:

Proposition 14. For all bounded sets A, a(h;χA), −b(h;χA) are decreasing functions

of h and moreover we have ∫ +∞

0

a(h;χA)dh = |A|.(85)

Proof. For simplicity, we will write a(h), b(h) instead of a(h;χA), b(h;χA). Since

a(h) +
b(h)

h
≤ a(h+ ǫ) +

b(h+ ǫ)

h
,

a(h) +
b(h)

h+ ǫ
≥ a(h+ ǫ) +

b(h+ ǫ)

h+ ǫ
,

we have that
1

h
(b(h) − b(h+ ǫ)) ≤ a(h+ ǫ) − a(h) ≤

1

h+ ǫ
(b(h) − b(h+ ǫ)).

It follows that b(h) is an increasing function of h, and that a(h) is decreasing. In particular

they are BV functions and by taking their weak derivatives we have

da(h)

dh
+

1

h

db(h)

dh
= 0.(86)

Noting that b(0) = 0, and a(+∞) = 0, b(+∞) = |A|, we obtain the formula which gives

a as a function of b:

a(h) =

∫ +∞

h

1

s

db

ds
ds = −

b(h)

h
+

∫ +∞

h

b(s)

s2
ds.(87)

The result follows by integration in h, noting that as h→ ∞ we have v(h) → 0.

Using the coarea formula, we then deduce

Corollary 15. We have ∫ +∞

0

a(h;u)dh = ‖u‖L1 .(88)

Finally, by means of (87), we obtain that the norm (60) becomes

|||χA||| =

∫ 1

0

b(h;χA)

h
dh+

∫ +∞

1

b(h;χA)

h2
dh.(89)

We thus have
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Corollary 16. For sets contained in the ball B(0, 1), an equivalent norm of Ḃ0,1,1 is

given by

‖u‖Ḃ0,1,1 =

∫ 1

0

b(h;χA)

h
dh(90)

where b(h;χA) is defined in (84).

5.4. Application to Bressan’s mixing problem. To end this section, we state the following

theorem:

Theorem 17. Let T be a sequence of invertible maps Ti, and assume T be quasi in-

compressible. Then for all n ∈ N the composed map

Sn
.
= Tn ◦ . . . ◦ T1(91)

is in Ḃ0,1,1 and its norm is bounded by

‖Sn‖Ḃ0,1,1 ≤ C6

n∑

i=1

(Tot.Var.(Ti − I) + Tot.Var.(T−1
i − I)),(92)

with C a constant depending only on the coefficient of quasi incompressibility.

The proof follows from Theorem 4, Proposition 6 and coarea formula (77).
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