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Abstra
t. This note 
ontains some remarks on the paper of Y. Naito 
on
erning the paraboli
system of 
hemotaxis and published in this volume.1. Introdu
tion. The aim of this note is to 
omment on some results of Y	uki Naito in[6℄ and (with 
oauthors) in [7℄. The author proves that if the total mass 0 ≤ M̂ =

∫
R2 uis small enough, then solutions of the paraboli
 system of 
hemotaxis

∂u

∂t
= ∇ · (∇u− u∇v), x ∈ R

2, t > 0,(1)
τ
∂v

∂t
= ∆v + u, x ∈ R

2, t > 0,(2)with τ = 1, 
f. (1.1) in [6℄, behave asymptoti
ally like self-similar solutions of that system.Here, we 
onsider a more general system with the parameter τ > 0 as in [7℄.The 
ase of the paraboli
-ellipti
 system with τ = 0 has been 
onsidered in [4℄ and[3℄. The authors of [4℄ proved asymptoti
ally self-similar behavior of solutions of (1)�(2)using entropy methods. We studied in [3℄ radially symmetri
 solutions of that system andproved that for ea
h 0 ≤ M̂ < 8π (so in the whole range of the existen
e of self-similarsolutions), the asymptoti
s of those solutions is determined by the unique self-similarsolution m
M̂


orresponding to the mass M̂ :
lim

t→∞
‖M(·, t) −m

M̂
(t)‖L∞ = 0.Here the 
umulated density M = M(s, t) is de�ned by M(s, t) =

∫
B(0,

√
s)
u(x, t) dx, andsatis�es the paraboli
 equation(3) Mt = 4 sMss +

1

π
M Ms,2000 Mathemati
s Subje
t Classi�
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34 P. BILERsupplemented with the boundary and initial 
onditions(4) M(0, t) = 0, M(∞, t) ≡ lim
s→∞

M(s, t) = M̂,(5) M(s, 0) = M0(s),the fun
tion M0 being a nonde
reasing 
ontinuous fun
tion on (0,∞). The self-similarsolution m = m(s/t) satis�es the equation(6) 4m′′(y) +m′(y) +
1

πy
m(y)m′(y) = 0, m(0) = 0, m(∞) = M̂,where y = s/t, ′ = d/dy. It was proved in [1℄, [3℄ that given 0 ≤ M̂ < 8π self-similarsolutions de�ned in (6) exist, have the �nite derivative at y = 0: m′(0) < ∞, and theyare unique: m = m

M̂
. For M̂ > 8π there are no solutions of (6) nor even global in timesolutions of (3)�(5).For the paraboli
 system (1)�(2) the determination of the optimal range of M̂ leadingto the existen
e of self-similar solutions for a given τ and their uniqueness with a given

M̂ seem to be an open problem. They are determined by the equation
Φ′′ +

1

4
Φ′ +

1

2y
Φ′e−τy/4

(∫ y

0

eτz/4Φ′(z) dz

)
= 0,(7)

Φ(0) = 0, Φ(∞) =
M̂

2π
.The best published results in this dire
tion are in [7℄, where preliminary estimates from[2℄ for τ = 1 are greatly improved. In parti
ular, the authors of [7℄ proved that

• if 0 < τ ≤ 1/2, then solutions of (7) exist exa
tly for M̂ ∈ [0, 8π),
• • if τ ∈ (1/2, 1] then M̂ < 4π3/3,
• • • if τ > 1 then M̂ < τ24π3/3.The solutions of (7) are smooth as a 
onsequen
e of an analysis of the self-similarsolutions of the original system (1)�(2) without radial symmetry assumptions. In fa
t,ea
h self-similar solution of (1)�(2) is radial, [7, Th. 3℄. A di�erent 
onstru
tion of self-similar solutions of (1)�(2) was in [2℄.Here we prove in a dire
t way that Φ′(0) <∞ for solutions of (7); dire
t means here:not using the 
orresponden
e between the densities (u, v) in (1)�(2) and the 
umulateddensities (ϕ, ψ) in (8) below. Moreover, we simplify the arguments leading to • (Lemma2.4), and improve • • • (Lemma 2.5).The results in [6, Th. 3℄ are proved using perturbation arguments via the 
ontra
tionmapping theorem. This permitted the author to obtain uniqueness of su�
iently smallself-similar solutions. The problem of the uniqueness of self-similar solutions is mentionedin [6, Remark 1 (i)℄. Su
h a property would permit one to prove a stronger version ofTheorem 3 in [6℄, i.e. the asymptoti
s of any global in time solution u is des
ribed bythat of the unique self-similar solution 
orresponding to the same mass M̂ as that for u,see remarks after Proposition 2.6 below.We believe that this property holds for (7) but this 
onje
ture is far from being obvioussin
e for some nonlinear paraboli
 equations there are multiple self-similar solutions, see



A NOTE ON THE PAPER OF Y. NAITO 35e.g. [5℄. Moreover, it was shown in [7, Th. 2℄ that self-similar solutions form a one-parameter family, and their L1 norms tend to 8π as the parameter goes to ∞. Thus, theuniqueness does not hold if there is a self-similar solution for M̂ > 8π.2. Properties of self-similar pro�les. Pro
eeding similarly to [7℄ or [3℄ we obtain thesystem for the 
umulated densities
ϕ(s, t) =

1

2π

∫

B(0,
√

s)

u(x, t) dx, ψ(s, t) =
1

2π

∫

B(0,
√

s)

v(x, t) dx,equivalent for su�
iently smooth solutions to the original system (1)�(2)(8) ϕt = 4 s ϕss − 2ϕs(sψss),

τψt = 4 s ψss + ϕ,with the boundary 
onditions
ϕ(0, t) = ψ(0, t) = 0, ϕ(∞, t) =

M̂

2π
.This is, of 
ourse, a 
ounterpart of (3) for the paraboli
-ellipti
 system of 
hemotaxis.A self-similar solution (u, v) of (1)�(2) satisfying the s
aling property λ2u(λx, λ2t) ≡

u(x, t), v(λx, λ2t) ≡ v(x, t) for ea
h λ > 0 
orresponds to the fun
tions ϕ(s, t) = Φ(s/t)and ψ(s, t) = tΨ(s/t) solving the system
Φ′′ +

1

4
Φ′ − 2Φ′Ψ′′ = 0,(9)

4 yΨ′′ + τ yΨ′ − τΨ + Φ = 0,(10)where y = s/t. Here, the boundary 
onditions be
ome
Φ(0) = Ψ(0) = 0, Φ(∞) =

M̂

2π
.Putting S(y) = Φ(y) − τΨ(y) + τ yΨ′(y) = −4 yΨ′′(y) in (9)�(10) we obtain a simplerequation for Φ, the 
ounterpart of (6) for m in the 
ase τ = 0

Φ′′ +
1

4
Φ′ +

1

2y
Φ′S = 0,(11)

S′ +
τ

4
S = Φ′,(12)

Φ(0) = 0, Φ(∞) =
M̂

2π
, S(0) = 0.To justify the boundary 
ondition for S observe that Φ′(y), Ψ′(y) > 0 for ea
h y > 0 leadsto lim infy→0 S(y) ≥ 0, and thus, by (12), S(y) > 0 for ea
h y > 0. Sin
e by the de�nition(10) S(y) = −4 yΨ′′(y), Ψ is 
on
ave, so that 0 < Ψ′(y) ≤ Ψ(y)

y , and limy→0 yΨ′(y) = 0follows. Similarly, the 
on
avity of Φ and the relation(13) lim
y→0

yΦ′(y) = 0are obtained from (11) (a more pre
ise argument repeats the lines of the proof of Lemma4.1 in [3℄).



36 P. BILERThe above system (11)�(12) 
an be put either in the form of a �rst order di�erentialequation for Φ′ (
f. (7)) with the integral term(14) S(y) = e−τy/4

∫ y

0

eτz/4Φ′(z) dz,or a se
ond order ordinary di�erential equation for S(15) S′′ +
τ + 1

4
S′ +

τ

16
S +

1

2y

(
SS′ +

τ

4
S2

)
= 0.Lemma 2.1. The pro�le Φ satisfying (11) is in
reasing, 
on
ave, belongs to the spa
e

C∞((0,∞)) ∩ C1([0,∞)) and satis�es(16) M̂

2π
(1 − e−y/4) ≤ Φ(y) ≤ min

(
4Φ′(0)(1 − e−y/4),

M̂

2π

)

for every y ∈ (0,∞).Proof. First note that S(y) > 0 for ea
h y > 0. Otherwise for y1 = inf{y > 0 : S(y) = 0}we would have S′(y1) ≤ 0 
ontradi
ting (12). Re
all that Φ′′(y) < 0 be
ause Φ′(y) > 0and S(y) > 0. Sin
e Φ′ − S′ = τ
4S > 0, S(y) ≤ Φ(y), the fun
tion S is also stri
tlyin
reasing and 
on
ave on a small interval (0, y0) (but not on the whole positive half-line

(0,∞)). Therefore,
Φ(y∗)

y∗
≥
S(y∗)

y∗
≥
S(y)

y
≥ S′(y) > 0for all 0 < y∗ < y ≤ y0. Now, (11) implies the inequality 4Φ′′ + Φ′ + 2Φ′ S(y∗)

y∗

≥ 0. Afterintegration on (y∗, y)(17) 4Φ′(y) + Φ(y)

(
1 + 2

S(y∗)

y∗

)
≥ 4Φ′(y∗) + Φ(y∗)

(
1 + 2

S(y∗)

y∗

)
.Next, 
onsider the fun
tion w(y) = Φ(y) − 4 yΦ′(y), w(0) = 0 by (13). Sin
e w′(y) =

Φ′(y)(−3 + y + 2S(y)), it is 
lear that w′(y) < 0 for all y ∈ (0, yc) with some yc > 0 and
w′(y) > 0 for large y. Thus we have

S(y∗)

y∗
≤

Φ(y∗)

y∗
≤ 4Φ′(y∗) for each y∗ ∈ (0, yc).As a 
onsequen
e of (17) we obtain(18) 4Φ′(y) + Φ(y)(1 + 8Φ′(y∗)) ≥ 4Φ′(y∗)or 4Φ′(y) + Φ(y) ≥ 4Φ′(y∗)(1 − 2Φ(y)). Take y > 0 small enough su
h that Φ(y) < 1

2 .Sin
e Φ′(y) − S′(y) = τ
4S(y) = o(1) as y → 0, passing to the limit y∗ → 0 in (18) we get

limy→0 Φ′(y) = limy→0 S
′(y) ∈ (0,∞).Evidently, it follows from (11) that Φ is a supersolution to the linear problem
−4η′′ − η′ = 0, η(0) = 0, η(∞) =

M̂

2π
,and the 
omparison prin
iple ensures that Φ(y) ≥ Φ(∞)(1 − e−y/4). On the other hand,the inequality 4Φ′′ + Φ′ ≤ 0 implies(19) Φ′(y) ≤ Φ′(0)e−y/4,



A NOTE ON THE PAPER OF Y. NAITO 37so in parti
ular Φ′(y) → 0 as y → ∞. Therefore, the inequality Φ(y) ≤ 4Φ′(0)(1− e−y/4)is satis�ed.A more pre
ise asymptoti
 formula for Φ′ 
an be obtained from (11) written as
0 =

Φ′′(y)

Φ′(y)
+

1

4
+
S(y)

2y

=
d

dy

(
log(Φ′(y)) +

y

4
+

∫ y

1

S(z)

2z
dz

)
;note that Φ′(y) > 0 for y > 0. Integrating this on (1, y) we obtain

log(Φ′(y)) +
y

4
=

1

4
+ log(Φ′(1)) −

∫ y

1

S(z)

2z
dz → const as y → ∞.Hen
e limy→∞ Φ′(y)ey/4 = ℓ ∈ (0,∞), and (16) follows immediately.It is 
lear from (11)�(12) and (15) that the uniqueness problem for Φ and that for Swith the pres
ribed value of(20) M̂

2π
= Φ(∞) =

τ

4

∫ ∞

0

S(z) dzare equivalent. We re
all from [3, Lemma 4.1℄ the idea of proving su
h a uniquenessproperty. First, the uniqueness of solutions of the Cau
hy problem asso
iated with (15)(or (11)) is established. Next, if Φ′
1(0) < Φ′

2(0), then Φ1(y) < Φ2(y) for ea
h y > 0.Finally, limy→∞ Φ1(y) < limy→∞ Φ2(y) should be proved. Unfortunately, we are not ableto show the last two properties.Despite some singularities of the 
oe�
ients, the uniqueness for the Cau
hy problem(15) with a given S′(0) ∈ (0,∞) holds; we re
all here [3, (50)℄ where this was the �rststep in the proof in the 
hain (50)�(55) [3℄.Lemma 2.2. Let S1, S2 be two solutions of (15), S1(0) = S2(0). If S′
1(0) = S′

2(0) ∈

(0,∞), then S1(y) = S2(y) for ea
h y > 0.The following result, see [3, (53)℄, is the key point in proving Lemma 2.2.If n ∈ C1([0, Y0)) satis�es the linear se
ond order di�erential equation(21) n′′(y) + a(y)n′(y) + b(y)n(y) = 0 , y ∈ (0, Y0),with a(y) ≥ 0, b ∈ C1((0, Y0)) su
h that b(y) ≥ 0, b′(y) ≤ 0, b(y) = O(y−2) as y → 0, and
n(0) = n′(0) = 0, then(22) n(y) = 0 for y ∈ (0, Y0).Indeed, we multiply (21) by n′ and integrate over (0, Y ), 0 < Y < Y0, to obtain

1

2
(n′)2(Y ) +

∫ Y

0

a(z)(n′(z))2 dz +
1

2
b(Y )n2(Y ) −

1

2

∫ Y

0

b′(z)n2(z) dz = 0,the boundary terms at y = 0 vanishing thanks to the assumptions on b and n. Sin
e both
a and −b′ are nonnegative, we 
on
lude that n′(Y ) = 0 for ea
h Y ∈ (0, Y0), when
e (22).



38 P. BILERNow, putting n = S2 − S1, it follows from (15) that n satis�es n(0) = n′(0) = 0 and
n′′(y) + a(y)n′(y) + b(y)n(y) = 0 with

a(y) =
τ + 1

4
+

(S2 + S1)(y)

4y
and b(y) =

τ

16
+

(S2 + S1)
′(y)

4y
+
τ

4

(S2 + S1)(y)

2y
.Owing to the regularity properties of S1 and S2 already established, a and b ful�ll therequirements needed to apply the previous result (in parti
ular, b is a sum of produ
ts oftwo stri
tly de
reasing fun
tions in the neighborhood of y = 0 sin
e S1, S2 are 
on
avethere), when
e the 
on
lusion.Lemma 2.3. For any τ > 0 and ea
h solution (Φ, S) of (11) we have S(y) < 4.Proof. The 
ase τ ∈ (0, 1] has already been 
onsidered in [7, Prop. 6.1℄. The idea was touse the se
ond equation in (11) represented as in (14). Then the �rst equation in (11)was multiplied by exp(τy/4) to get(23) (eτy/4Φ′(y))′ +

1 − τ

4
eτy/4Φ′(y) +

1

2y
eτy/4Φ′(y)

(
e−τy/4

∫ y

0

eτz/4Φ′(z) dz

)
= 0,and dropping the se
ond term on the left hand side (whi
h is positive for τ ≤ 1) weobtain

W ′′(y) +
1

2y
W ′(y)e−τy/4W (y) ≤ 0for the auxiliary fun
tion W (y) = eτy/4S(y), whi
h yields(24) S(y) ≤
τy

eτy/4 − 1
< 4, 0 < τ ≤ 1,
f. [7, (6.8)℄.If τ > 1, we take into a

ount the se
ond term in (23), and rewrite the equation forW

W ′′(y) +
1 − τ

4
W ′(y) +

1

2y
W ′(y)e−τy/4W (y) = 0as

yW ′′(y) +
1 − τ

4
yW ′(y) +

1

4
(W 2(y))′e−τy/4 = 0.Then we integrate the equation and divide by W 2 to obtain

yW ′ −W

W 2
+

1 − τ

4

y

W
−

1

W 2

1 − τ

4

∫ y

0

W (z) dz+
1

4
e−τy/4+

1

W 2

τ

16

∫ y

0

W 2(z)e−τz/4 dz = 0.Dropping the third and the �fth (nonnegative!) terms on the left hand side we arrive at
1

4
e−τy/4 ≤

(
y

W (y)

)′

+
τ − 1

4

(
y

W (y)

)
.Finally, 
onsidering the quantity R(y) = exp

(
τ−1
4 y

)
y

W (y) , we obtain 1
4e

−y/4 ≤ R′(y),and thus
W (y) ≤

yeτy/4

(1 + 1/Φ′(0))ey/4 − 1
<

yeτy/4

ey/4 − 1from whi
h(25) S(y) ≤
y

ey/4 − 1
< 4, τ > 1,readily follows.



A NOTE ON THE PAPER OF Y. NAITO 39Lemma 2.4. If τ ∈ [0, 1/2], then M̂
2π < 4.Proof. Consider the fun
tion L(y) = (Φ(y) − 2)2 + 4 yΦ′(y) reminis
ent of that in theproof in [1, Prop. 3 (i)℄. L satis�es the relation

L′(y) = 2Φ′(y)

(
Φ(y) − S(y) −

y

2

)

so that
(
M̂

2π

)2

− 4
M̂

2π
= L(∞) − L(0) =

∫ ∞

0

(
Φ(y) −

M̂

2π

)′

(2Φ(y) − 2S(y) − y) dy

= −

∫ ∞

0

(
M̂

2π
− Φ(y)

)(
1 −

τ

2
S(y)

)
dy.Now, for τ ≤ 1/2 the integrand in the last term is stri
tly positive sin
e Φ(y) < M̂

2π and
S(y) < 4 by Lemma 2.3, so that Φ(∞) = M̂

2π < 4 follows.Lemma 2.5. If τ ∈ (1/2, 1] then M̂
2π < 2

3π
2. If τ > 1 then M̂

2π < min(τ 2
3π

2, 4(τ + 1)).Proof. Sin
e (20) holds, (24) yields the relation
M̂

2π
= Φ(∞) < 4

∫ ∞

0

z

ez − 1
dz =

2

3
π2for 1/2 ≤ τ ≤ 1.On the other hand, (25) leads to

M̂

2π
= Φ(∞) <

τ

4

∫ ∞

0

y

ey/4 − 1
dy = τ

2

3
π2for τ > 1, whi
h improves the estimate M̂

2π < τ2 2
3π

2 in [7, Prop. 6.1℄.Rewrite the �rst equation in (11) in the form(26) (4 yΦ′(y))′ − 4Φ′(y) + yΦ′(y) + 2Φ′(y)S(y) = 0.Integrating the last term in (26) over (0,∞) we obtain using (11)
∫ ∞

0

Φ′S =
4

τ

∫ ∞

0

Φ′(Φ′ − S′) = −
4

τ

∫ ∞

0

Φ′′(Φ − S)

=
4

τ

∫ ∞

0

(
1

4
Φ′ +

1

2y
Φ′S

)
(Φ − S)

=
1

2τ
Φ2

∣∣∣∣
∞

0

−
1

τ

∫ ∞

0

Φ′S +
2

τ

∫ ∞

0

1

y
Φ′S(Φ − S).Sin
e Φ′(y) > 0, Φ(y) − S(y) = τ

4

∫ y

0
S(z) dz, we arrive at

2

∫ ∞

0

Φ′S ≥

(
1 +

1

τ

)−1
1

τ

(
M̂

2π

)2

= (τ + 1)−1

(
M̂

2π

)2

(this was done integrating (26) over (0,∞) and using (19)). Hen
e we have −4( M̂
2π ) +

(τ + 1)−1( M̂
2π )2 ≤ 0, that is: M̂

2π ≤ 4(τ + 1) whi
h is a better bound than M̂
2π < τ2 2

3π
2 for

τ > 4( 2
3π

2 − 4)−1 ≈ 1.5505 . . . .



40 P. BILERUsing essentially the same type of argument as in [3, Proposition 4.2℄ we may obtainthe following result for radially symmetri
 solutions of the system (1)�(2):Proposition 2.6. Let (ϕ, ψ) be a solution to the problem (8). Then there exists a self-similar solution ϕ∞(s, t) = Φ∞(s/t) with Φ∞ satisfying (11) su
h that
lim

t→∞
‖ϕ(t) − ϕ∞(t)‖L∞ = 0.In fa
t, ϕ∞(s, t) = supλ>0 ϕ(λs, λt).Note that if we had the uniqueness of self-similar solutions of (11), the 
on
lusionmight be strengthened to:For the self-similar solution Φ

M̂

orresponding to the mass M̂ ,

lim
t→∞

‖ϕ(t) − Φ
M̂

(t)‖L∞ = 0.A
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