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Abstra
t. The aim of this paper is to investigate, as pre
isely as possible, a boundary valueproblem involving a third order ordinary di�erential equation. Its solutions are the similaritysolutions of a problem arising in the study of the phenomenon of high frequen
y ex
itation ofliquid metal systems in an antisymmetri
 magneti
 �eld within the framework of boundary layerapproximation.1. Introdu
tion. In this paper we study the third order nonlinear autonomous di�er-ential equation

f ′′′ +
m + 1

2
ff ′′ − mf ′2 = 0 (1)on [0,∞), with the boundary 
onditions

f(0) = a, (2)
f ′(0) = −1, (3)

f ′(∞) = 0, (4)where m ∈ R, a ∈ R and f ′(∞) := limt→∞ f ′(t).2000 Mathemati
s Subje
t Classi�
ation: 34B15, 34C11, 76D10.Key words and phrases: third order di�erential equations, boundary value problems, planedynami
al systems, blowing up 
oordinates.The se
ond author thanks the Department of Mathemati
s of the Te
hnion for supportinghis resear
h through a Postdo
toral Fellowship.The paper is in �nal form and no version of it will be published elsewhere.
[41]



42 B. BRIGHI AND J.-D. HOERNELThis boundary value problem appears in the paper of H. K. Mo�att [31℄ and is relatedto the behavior of a liquid metal in an antisymmetri
 �eld, in the framework of boundarylayer approximation.The study of similarity solutions for free 
onve
tion in a �uid saturated porous mediumnear a semi-in�nite verti
al �at plate on whi
h the heat is pres
ribed or high frequen
yex
itation of liquid metal systems in a symmetri
 magneti
 �eld, both in the frameworkof boundary layer approximation, leads to the same third order ordinary di�erentialequation (1) subje
ted to the boundary 
onditions f(0) = a, f ′(0) = 1 and f ′(∞) = 0.This problem also appears when studying boundary layer �ows adja
ent to stret
hingwalls. One 
an �nd expli
it solutions of this problem for some parti
ular values of min [5℄, [6℄, [9℄, [21℄, [26℄, [28℄, [30℄ and [33℄. For mathemati
al results about existen
e,nonexisten
e, uniqueness, nonuniqueness and asymptoti
 behavior, see [3℄, [5℄, [6℄ and [28℄for a = 0, and [9℄, [13℄, [16℄, [23℄ and [24℄ for the general 
ase. Numeri
al investigations
an be found in [3℄, [7℄, [17℄, [19℄, [28℄, [30℄ and [36℄. For the high frequen
y ex
itation ofliquid metal systems in a symmetri
 magneti
 �eld, see [31℄.When studying similarity solutions for free 
onve
tion in a �uid saturated porousmedium near a semi-in�nite verti
al �at plate on whi
h the heat �ux is pres
ribed againin the framework of boundary layer approximation, we obtain this time the equation
f ′′′ + (m + 2)ff ′′ − (2m + 1)f ′2 = 0 whi
h di�ers from (1) only by its 
oe�
ients, withthe boundary 
onditions f(0) = a, f ′′(0) = −1 and f ′(∞) = 0. Numeri
al results 
anbe found in [18℄ and the mathemati
al study of existen
e, uniqueness and qualitativeproperties of the solutions of this problem is made in [11℄.For a survey of the previously des
ribed problems, see [12℄.One parti
ular 
ase of all these equations is the Blasius equation f ′′′ + ff ′′ = 0introdu
ed in [8℄. The Blasius equation is obtained by setting m = 0 and doing someproper res
aling in (1). The 
orresponding problem with the boundary 
onditions f(0) =

a, f ′(0) = b ≥ 0 and f ′(∞) = λ admits an unique solution for λ ≥ 0, and no solution for
λ < 0. This well known 
ase is studied, for example, in [4℄, [20℄ and [27℄. On the otherhand, with the boundary 
onditions (2)�(4), the situation is 
ompletely di�erent. In fa
t,one 
an show that for a =

√
3, the Blasius problem

{

f ′′′ + ff ′′ = 0,

f(0) = a, f ′(0) = −1, f ′(∞) = 0admits in�nitely many solutions, and for every n ∈ N, there are values of a su
h that thisproblem has exa
tly n solutions. See [10℄ for the proofs of these results. In the remainderof the paper we will only 
onsider m 6= 0.The study of similarity solutions for mixed 
onve
tion in a �uid saturated porousmedium near a semi-in�nite verti
al �at plate on whi
h the heat is pres
ribed, leads tothe equation f ′′′+(m+1)ff ′′+2m(1−f ′)f ′ = 0 with the boundary 
onditions f(0) = a,
f ′(0) = b and f ′(∞) = 1. Results about it 
an be found in [2℄, [14℄, [25℄ and [32℄.The Falkner-Skan equation f ′′′ + ff ′′ + m(1 − f ′2) = 0 is in the same family ofproblems. See, for example, [20℄, [22℄, [27℄, [29℄, [35℄, [37℄ and [38℄ for results aboutit.



SIMILARITY SOLUTIONS FOR HIGH FREQUENCY EXCITATION OF LIQUID METAL 43New results about the more general equation f ′′′+ff ′′+g(f ′) = 0 with the boundary
onditions f(0) = a, f ′(0) = b and f ′(∞) = c for some given fun
tion g 
an be found in[15℄, see also [34℄.For some new results about the full model of free 
onve
tion in a plane and bounded�uid saturated porous medium, see [1℄.2. Preliminary results. First of all, let us noti
e that for every τ > 0, the fun
tion
t 7→ 6

t+τ
is a solution of the equation (1) for any value of m, and thus for a =

√
6, thefun
tion f(t) = 6

t+
√

6
is a solution of the problem (1)�(4).Now, we remark that, if f veri�es (1), then

(f ′′e
m+1

2
F )′ = mf ′2e

m+1

2
F (5)with F any anti-derivative of f.Lemma 1. Let f be a non
onstant solution of the equation (1) on some interval I. Forall t0 in I we have that

• if m < 0, then f ′′(t0) ≤ 0 ⇒ f ′′(t) < 0 for t > t0,

• if m > 0, then f ′′(t0) ≥ 0 ⇒ f ′′(t) > 0 for t > t0.Proof. Immediate using (5) and the fa
t that f ′ and f ′′ 
annot vanish at the same pointwithout being identi
ally equal to zero.Proposition 1. Let m < 0. If f is a solution of the problem (1)�(4) then f ′′(0) > 0,and
• either f is 
onvex and de
reasing on [0,∞),
• or there exists t0 with f ′′(t0) = 0 and f ′(t0) ≥ 0 su
h that f is 
onvex and �rstde
reasing then in
reasing on [0, t0), and 
on
ave and in
reasing on [t0,∞). More-over, f is negative at in�nity for m ≤ −1, and positive at in�nity for −1 ≤ m < 0

(and in parti
ular this implies that su
h solutions 
annot exist for m = −1).Proof. Suppose that f ′′(0) ≤ 0, then, using Lemma 1, we have f ′′ < 0 and f ′ is de
reasing.This is a 
ontradi
tion with f ′(0) = −1 and f ′(∞) = 0. Hen
e f ′′(0) > 0.If f ′′ never vanishes, then f is 
onvex and f ′ is in
reasing. Sin
e f ′(0) = −1 and
f ′(∞) = 0 we get −1 ≤ f ′ < 0.If there exists a t0 su
h that f ′′ > 0 on [0, t0) and f ′′(t0) = 0 then, by Lemma 1 wehave f ′′ < 0 on (t0,∞). Hen
e f ′ is de
reasing on (t0,∞) and sin
e f ′(∞) = 0, we shouldhave f ′ > 0 on [t0,∞) and f is in
reasing on [t0,∞).For −1 ≤ m < 0, if f is negative at in�nity, there exists t1 su
h that f < 0, f ′ > 0and f ′′ < 0 on (t1,∞). Therefore

f ′′′ = mf ′2 − m + 1

2
ff ′′ < −m + 1

2
ff ′′ ≤ 0on (t1,∞). This implies that f ′ is 
on
ave on (t1,∞), a 
ontradi
tion with the fa
ts that

f ′ > 0 on (t1,∞) and f ′(∞) = 0. For m ≤ −1, the same argument shows that f isnegative at in�nity.



44 B. BRIGHI AND J.-D. HOERNELRemark 1. In [24℄ (Theorem 2.1), it is proved that if −1 < m < 0, then any solution
f of (1)�(3) su
h that f ′′(0) < 0 exists only on [0, T ) with 0 < T < ∞ and that
limt→T f(t) = −∞.Proposition 2. Let m > 0. If a ≤ 0, there are no solutions of the problem (1)�(4). If
a > 0, and if f is a solution of (1)�(4) then f is positive, de
reasing and moreover

• if f ′′(0) ≥ 0, then f is 
onvex,
• if f ′′(0) < 0, then there exists t0 > 0 su
h that f is 
on
ave on [0, t0] and 
onvexon (t0,∞).Proof. Let f be a solution of (1)�(4). First, let us suppose that f ′′(0) ≥ 0. By Lemma 1we have that f ′′ > 0 everywhere. Hen
e f is 
onvex and f ′ is in
reasing. Sin
e f ′(0) = −1and f ′(∞) = 0, we get −1 ≤ f ′ ≤ 0 and f is de
reasing on [0,∞).Now, let us suppose that f ′′(0) < 0. If f ′′ < 0 on [0,∞), then f ′ is de
reasing andas f ′(0) = −1 we 
annot have f ′(∞) = 0. Thus there exists t0 > 0 su
h that f ′′ < 0 on

[0, t0) and f ′′(t0) = 0. Then, f ′ is de
reasing on [0, t0] and we have f ′(t0) ≤ f ′ ≤ −1 on
[0, t0]. Moreover, by Lemma 1 we get f ′′ > 0 on (t0,∞), and f ′ is in
reasing on (t0,∞).As f ′(t0) ≤ −1 we get f ′(t0) ≤ f ′ < 0 on [t0,∞), therefore f is de
reasing on [0,∞).As m > 0, if f < 0 at in�nity, then

f ′′′ = −m + 1

2
ff ′′ + mf ′2 ≥ mf ′2 ≥ 0and f ′ is 
onvex at in�nity. But as f ′ < 0 and f ′(∞) = 0 this 
annot be the 
ase. Hen
e,

f > 0 at in�nity, and sin
e f is de
reasing, we get f > 0 on [0,∞). This, in parti
ular,implies that a > 0, and the proof is 
omplete.
3. Useful tools. In this part, we �rst give some identities and properties of solutions of
(1), and next introdu
e blowing up 
oordinates asso
iated to (1) and related to the fa
tthat if f is a solution of (1), then it is also the 
ase for the fun
tion t 7→ κf(κt).Let f be a solution of (1) on some interval [α, β]. Integrating the equation (1) between
α and β leads to

f ′′(β) − f ′′(α) +
m + 1

2
f(β)f ′(β) − m + 1

2
f(α)f ′(α) =

3m + 1

2

∫ β

α

f ′2(t)dt. (6)Multiplying the equation (1) by f and integrating between α and β, we obtain
f(β)f ′′(β) − f(α)f ′′(α) − 1

2
f ′2(β) +

1

2
f ′2(α) +

m + 1

2
f2(β)f ′(β)

− m + 1

2
f2(α)f ′(α) = (2m + 1)

∫ β

α

f(t)f ′2(t)dt. (7)Multiplying the equation (1) by f ′′ and integrating between α and β, we get
1

2
f ′′2(β) − 1

2
f ′′2(α) − m

3
f ′3(β) +

m

3
f ′3(α) = −m + 1

2

∫ β

α

f(t)f ′′2(t)dt. (8)Proposition 3. Let m ∈ R. If f is a solution of the problem (1)�(4) then we have
lim

t→∞
f ′′(t) = 0 (9)



SIMILARITY SOLUTIONS FOR HIGH FREQUENCY EXCITATION OF LIQUID METAL 45and, if m 6= −1, there exists a sequen
e tn → ∞ su
h that
lim

n→∞
f ′′′(tn) = lim

n→∞
f(tn)f ′′(tn) = 0. (10)Proof. Sin
e f ′(∞) = 0, there exists an in
reasing sequen
e sn su
h that sn → ∞ and

f ′′(sn) → 0 as n → ∞. But, using (7), we see that f ′′2 has a limit at in�nity and hen
e
(9) holds. In addition, 
hoosing tn su
h that f ′′′(tn) = f ′′(n + 1) − f ′′(n), and using (1)we get (10).To study solutions of the problem (1)�(4) with 
onstant sign, we will now introdu
ean auxiliary dynami
al system, as it was previously done in [11℄ and [16℄.Consider now a right maximal interval I = [0, T ) on whi
h f does not vanish. For all
t in I, set

s =

∫ t

0

f(ξ)dξ, u(s) =
f ′(t)

f2(t)
, v(s) =

f ′′(t)

f3(t)
(11)to obtain the system

{

u̇ = P (u, v) := v − 2u2,

v̇ = Qm(u, v) := −m+1
2 v + mu2 − 3uv

(12)in whi
h the dot denotes the di�erentiation with respe
t to s. Let us noti
e that if f isnegative on I then s de
reases as t grows.The singular points of (12) are O = (0, 0) and A = (− 1
6 , 1

18 ). The iso
lini
 
urves
P (u, v) = 0 and Qm(u, v) = 0 are given by v = 2u2 and v = Ψm(u) where

Ψm(u) =
mu2

3u + m+1
2

.The point A is an unstable node for m ≤ 4−2
√

6
3 , an unstable fo
us if 4−2

√
6

3 < m < 4
3 ,a stable fo
us if 4

3 < m < 4+2
√

6
3 and a stable node if m ≥ 4+2

√
6

3 .For m 6= −1, the singular point O is a saddle-node of multipli
ity 2. It admits a 
entermanifoldW0 that is tangent to the subspa
e L0 = Sp{(1, 0)} and a stable (resp. unstable)manifoldW if m > −1 (resp m < −1) that is tangent to the subspa
e L = Sp{(1,−m+1
2 )}.In the neighborhood of O, the manifold W takes pla
e below L when m < −1 or m > − 1

3and above L when −1 < m < − 1
3 . In the neighborhood of O, the 
enter manifold W0takes pla
e above L0 when m < −1 or m > 0, and below L0 when −1 < m < 0.We will not spe
ify the behavior of the manifolds W and W0 for m = −1, be
ause wewill not use the 
oordinates u and v in this 
ase.In order to des
ribe the phase portrait of the ve
tor �eld in the neighborhood of thesaddle-node O we will assume that the paraboli
 se
tor is delimited by the separatri
es

S0 and S1 whi
h are tangent to L, and the hyperboli
 se
tors are delimited, one by theseparatrix S0 and the separatrix S2, whi
h is tangent to L0, and the other one by theseparatri
es S1 and S2. With these notations, we have that
W = S1 ∪ {O} ∪ S0 and W0 = S2 ∪ {O} ∪ C3where C3 is some phase 
urve.We will use the supers
ript + for ω-separatri
es and − for α-separatri
es to obtainthe behaviors des
ribed in �gure 1.
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m < −1 −1 < m < −1/3

−1/3 < m < 0 m > 0Fig. 1To study the global behavior of the separatri
es, 
onsider any 
onne
ted pie
e ofa phase 
urve C of the plane dynami
al system (12) lying in the region P (u, v) < 0(resp. P (u, v) > 0); then C 
an be 
hara
terized by v = Vm(u) (resp. v = Wm(u)) with
u belonging to some interval, and where Vm (resp. Wm) is a solution of the di�erentialequation

dv

du
= Fm(u, v) :=

Qm(u, v)

P (u, v)
=

−m+1
2 v + mu2 − 3uv

v − 2u2
. (13)To dedu
e results about the original problem (1)�(4), most of the time, we will 
onsiderthe initial value problem

(Pm,a,b)















f ′′′ + m+1
2 ff ′′ − mf ′2 = 0,

f(0) = a,

f ′(0) = −1,

f ′′(0) = bwith a 6= 0, and look at the traje
tory Ca,b of the plane dynami
al system (12) de�nedby (11) for
u(0) = − 1

a2
and v(0) =

b

a3
,and the study of this traje
tory allows us to obtain properties of f .



SIMILARITY SOLUTIONS FOR HIGH FREQUENCY EXCITATION OF LIQUID METAL 474. Main results4.1. The 
ase m < −1Theorem 1. Let m < −1. For every a ∈ R, the problem (1)�(4) has a unique 
onvexsolution. Moreover, this solution is bounded, and if limt→∞ f(t) = ℓ, then
−
√

a2 − 4

m + 1
< ℓ < a.Proof. For f : [0,∞) → R de�ne f̃ : [0,∞) → R by

f̃(s) = −
√

−m + 1

2
f

(

√

− 2

m + 1
s

)

.Easily, one sees that f is a 
onvex solution of (1)�(4) if and only if f̃ is a 
on
ave solutionof the problem






f̃ ′′′ + f̃ f̃ ′′ − 2m
m+1 f̃ ′2 = 0,

f̃(0) = −a
√

−m+1
2 , f̃ ′(0) = 1, f̃ ′(∞) = 0

(14)and, from [15℄ (Theorem 1 and Proposition 1), we know that the problem (14) admitsexa
tly one 
on
ave solution, that this solution is bounded, and that if ℓ̃ is the limit of f̃at in�nity, then −a
√

−m+1
2 < ℓ̃ <

√

−m+1
2 a2 + 2. The proof is 
omplete.Remark 2. For m < −1, the uniqueness of the 
onvex solution 
an be easily obtainedby a dire
t way. In fa
t, if (1)�(4) has a pair of distin
t 
onvex solutions f1, f2 andif f ′′

1 (0) > f ′′
2 (0), the fun
tion g = f1 − f2 satis�es g(0) = 0, g′(0) = g′(∞) = 0 and

g′′(0) > 0. It follows that g′ has a positive maximum at some point s > 0 su
h that
g′(t) > 0 for 0 < t < s, but then g(s) > 0 and we get

g′′′(s) = f ′′′
1 (s) − f ′′′

2 (s) = −m + 1

2
f ′′
1 (s)g(s) + m(f ′

1(s) + f ′
2(s))g

′(s) > 0,whi
h is a 
ontradi
tion.Remark 3. For m < −1 and a ≤ 0, if f is a 
onvex-
on
ave solution of the problem
(1)�(4), then

f ′′(0) > max

{

m + 1

2
a,

√

−2m

3

}

.Indeed, if t1 is the point su
h that f ′(t1) = 0, we have f ′′(t1) > 0 and writing equality
(6) with α = 0 and β = t1, we get f ′′(0) > m+1

2 a. Now, writing equality (8) with α = 0and β = ∞ and taking into a

ount the fa
t that f < 0 on (0,∞) (see Proposition 1),we obtain that f ′′(0) >
√

−2m
3 .Lemma 2. Let m < −1. As s grows, the separatrix S−

0 leaves the singular point O to theright tangentially to L and interse
ts su

essively the iso
lines Qm(u, v) = 0, P (u, v) = 0,the u-axis and the v-axis and remains de
reasing and under L.As s grows, the separatrix S−
1 leaves the singular point O to the left tangentially to Land remains de
reasing and under L. (See �gure 2.)
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Fig. 2. m < −1Proof. The behavior of S−
0 is established in [16℄ for u ≥ 0. To 
on
lude, it is su�
ient toremark that we have
dv

du
−
(

−m + 1

2

)

= −u(3v + u)

v − 2u2
> 0for u, v < 0. Hen
e the straight line L is a barrier for the ve
tor �eld in the region

{u < 0} ∩ {v < 0}.Theorem 2. Let m < −1. For every a < 0, the problem (1)�(4) admits a unique 
onvex-
on
ave solution su
h that limt→∞ f(t) = ℓ < 0 and in�nitely many 
onvex-
on
ave solu-tions su
h that limt→∞ f(t) = 0. Moreover, all these solutions are negative and bounded.Proof. For a < 0, let us denote by f the solution of the initial value problem (Pm,a,b) andlook at the 
orresponding traje
tories Ca,b of the plane system (12) de�ned by (11). Fromthe phase portrait of (12) des
ribed in Lemma 2 (Fig 2) we have that ea
h fun
tion f
orresponding to a traje
tory that did not start from a point that is between the separatix
S−

1 and the separatrix S−
0 for u negative 
annot be a solution of the problem (1)�(4),be
ause it vanishes (the traje
tory goes to in�nity) or be
omes 
on
ave and de
reasing(the traje
tory goes through the domain {u < 0} ∩ {v > 0}). We also have that thestraight line de�ned by u = − 1

a2 with a < 0 interse
ts the separatrix S−
0 at the point

(− 1
a2 , v−) and the separatrix S−

1 at the point (− 1
a2 , v+).Consequently, for b = v−a3, f is a solution of the problem (1)�(4) su
h that f(t) →

ℓ < 0 as t → ∞, and for b ∈ (v+a3, v−a3), f is a solution of the problem (1)�(4) su
hthat f(t) → 0 as t → ∞. The details about the limits 
an be found in [16℄.Remark 4. Let us noti
e that the separatrix S−
1 (
orresponding to b = v+a3) gives, for

a < 0, the 
onvex solution obtained in Theorem 1.4.2. The 
ase m = −1. Here the equation (1) redu
es to f ′′′ = −f ′2. Now, if f is asolution of the problem (1)�(4) then using the equality (8) with α = 0 and β = ∞, andPropositions 1 and 3, we obtain that f ′′(0) =
√

2
3 . Hen
e the problem (1)�(4) has atmost one solution.



SIMILARITY SOLUTIONS FOR HIGH FREQUENCY EXCITATION OF LIQUID METAL 49On the other hand, if f is the solution of the problem (P
−1,a,

√
2
3

) on its right maximalinterval of existen
e [0, T ) we get, using (8) with α = 0 and β = t < T ,
1

2
f ′′2(t) +

1

3
f ′3(t) = 0implying that f ′ < 0 on [0, T ). Therefore, we obtain

∀t ∈ [0, T ),
−f ′′(t)

(−f ′(t))
3
2

= −
√

2

3
.Integrating and using the fa
t that f ′(0) = −1, we arrive at

∀t ∈ [0, T ),
1

(−f ′(t))
1
2

=
t√
6

+ 1and f ′(t) = − 6
(t+

√
6)2

. Integrating again, we �nally dedu
e that, for m = −1, the problem
(1)�(4) has exa
tly one solution given by

f(t) = a −
√

6 +
6

t +
√

6
.4.3. The 
ase −1 < m < 0Theorem 3. For −1 < m < 0 and for every a ∈ R, the problem (1)�(4) admits a 
onvexsolution.Proof. Let b ≥ 0 and fb be the solution of the initial value problem (Pm,a,b). Denote by

[0, Tb) its right maximal interval of existen
e. Let us remark �rst that fb exists as long aswe have f ′′
b > 0 and f ′

b < 0. Sin
e f ′′
b and f ′

b 
annot vanish at the same point, it followsthat there are only three possibilities:(a) f ′′
b be
omes negative from a point su
h that f ′

b < 0,(b) f ′
b be
omes positive from a point su
h that f ′′

b > 0,(
) we always have f ′
b < 0 and f ′′

b > 0.As f ′
0(0) = −1 < 0, f ′′

0 (0) = 0 and f ′′′
0 (0) = m < 0, we have that f0 is of type (a), andby 
ontinuity it must be so for fb with b > 0 small enough.On the other hand, as long as f ′′
b (t) ≥ 0 and f ′

b(t) ≤ 0, we have f ′
b(t) ≥ −1 and

fb(t) ≥ −t + a. Therefore (6) leads to
f ′′

b (t) = b − m + 1

2
(fb(t)f

′
b(t) + a) +

3m + 1

2

∫ t

0

f ′2
b (s)ds

≥ b − m + 1

2
(t + |a| + a) +

3m + 1

2

∫ t

0

f ′2
b (s)ds

≥ b − m + 1

2
(|a| + a) + Cmtwhere Cm = m if −1 < m ≤ −1

3 , and Cm = −m+1
2 if −1

3 ≤ m < 0. Integrating, weobtain
0 ≥ f ′

b(t) ≥ −1 +

(

b − m + 1

2
(|a| + a)

)

t + Cm

t2

2
:= Pb(t).For b large enough, the equation Pb(t) = 0 has two positive roots t0 < t1, and therefore,for su
h a and b, we have that f ′

b(t0) = 0 and f ′′
b (t) > 0 for t ≤ t0, and fb is of type (b).



50 B. BRIGHI AND J.-D. HOERNELDe�ning A = {b > 0 ; fb is of type (a)} and B = {b > 0 ; fb is of type (b)} we havethat A 6= ∅, B 6= ∅ and A ∩ B = ∅. Both A and B are open sets, so there exists a b∗ > 0su
h that the 
orresponding solution f∗ of (Pm,a,b∗) is of type (
) and is de�ned on thewhole interval [0,∞). For this solution we have that f ′
∗ < 0 and f ′′

∗ > 0 whi
h impliesthat f ′
∗ → l ≤ 0 as t → ∞. If l < 0 then f∗(t) ∼ lt as t → ∞ and using (6) we easilyobtain f ′′

∗ (t) ∼ ml2t as t → ∞, whi
h 
ontradi
ts the fa
t that f ′′
∗ > 0. Then l = 0 and

f∗ is a 
onvex solution of (1)�(4). This 
ompletes the proof.We get the uniqueness of a 
onvex solution for −1 < m < − 1
3 , only. To this end, wewill need the following Lemma.Lemma 3. Let −1 < m < − 1

3 . If f is solution of the problem (1)�(4), then we have
f(t)f ′(t) → 0 as t → ∞ and

f ′′(0) =
m + 1

2
a − 3m + 1

2

∫ ∞

0

f ′2(s)ds. (15)Proof. If f is bounded, then 
learly f(t)f ′(t) → 0 as t → ∞, and (15) follows immediatelyfrom (9) and the equality (6) written with α = 0 and β = ∞.If f is unbounded, then, as t → ∞, either f in
reases to ∞ or de
reases to −∞, andin both 
ases we have f(t)f ′(t) > 0 for t large enough. Now, using the equality (6) with
α = 0 and β = t > 0, for large t, we get

0 < −3m + 1

2

∫ t

0

f ′2(s)ds ≤ f ′′(0) − f ′′(t) − m + 1

2
a. (16)Thus (9) implies that the integral in the relation (16) has a limit as t → ∞. Coming ba
kto (6), we get that f(t)f ′(t) → l ≥ 0 as t → ∞. If l > 0, then f2(t) ∼ 2lt as t → ∞, andhen
e

f ′2(t) ∼ l2

f2(t)
∼ l

2t
as t → ∞whi
h 
ontradi
ts the fa
t that the integral of f ′2 over [0,∞) is �nite. Therefore l = 0,and using again (6) we obtain (15).Proposition 4. For −1 < m < − 1

3 and a ∈ R, the problem (1)�(4) admits at most one
onvex solution.Proof. Let us suppose that f is a 
onvex solution of (1)�(4). By Proposition 1, su
ha solution is de
reasing, and we 
an de�ne the fun
tion w = w(y) by
∀t ≥ 0, w(f(t)) = f ′(t).If ℓ ∈ [−∞, a) is the limit of f(t) as t → ∞, then w is de�ned on (ℓ, a], is negative andwe have

f ′′(t) = w(f(t))w′(f(t)),

f ′′′(t) = w(f(t))w′2(f(t)) + w2(f(t))w′′(f(t)).Then, (1) leads to
∀y ∈ (ℓ, a], w′′ = − 1

w

(

w′ +
m + 1

2
y

)

w′ + m (17)



SIMILARITY SOLUTIONS FOR HIGH FREQUENCY EXCITATION OF LIQUID METAL 51and we have
w(ℓ) := lim

y→ℓ
w(y) = lim

t→∞
f ′(t) = 0, w(a) = w(f(0)) = f ′(0) = −1.Let us now suppose that there are two 
onvex solutions f1 and f2 of the problem (1)�(4)and let ℓi ∈ [−∞, a) be the limit of fi at in�nity for i = 1, 2. We obtain two solutions ofequation (17), w1 and w2 de�ned respe
tively on (ℓ1, a] and (ℓ2, a] su
h that

w1(ℓ1) = w2(ℓ2) = 0 and w1(a) = w2(a) = −1.We will suppose now that ℓ2 ≤ ℓ1 and prove that w2 ≤ w1 on (ℓ1, a]. If there exists a point
y in (ℓ1, a] su
h that w1(y) < w2(y), then as w1(ℓ1)−w2(ℓ1) ≥ 0 and w1(a)−w2(a) = 0,the fun
tion w1 − w2 admits a negative minimum at some point x in (ℓ1, a). For thispoint x we have that w1(x) < w2(x), w′

1(x) = w′
2(x) and w′′

1 (x) ≥ w′′
2 (x). We also have

w′′
1 (x) − w′′

2 (x) =

(

1

w2(x)
− 1

w1(x)

)(

w′
1(x) +

m + 1

2
x

)

w′
1(x) (18)and

(

w′
1(x) +

m + 1

2
x

)

w′
1(x) =

(

f ′′
1 (s) +

m + 1

2
f1(s)f

′
1(s)

)

f ′′
1 (s)

f ′2
1 (s)

(19)with s su
h that x = f1(s). Thanks to Lemma 3, we 
an write (6) with α = s and β = ∞to get
f ′′
1 (s) +

m + 1

2
f1(s)f

′
1(s) = −3m + 1

2

∫ ∞

s

f ′2
1 (t)dt > 0.Using this inequality and the fa
t that f ′′

1 (s) > 0, we dedu
e from (18) and (19) that
w′′

1 (x) < w′′
2 (x) and obtain a 
ontradi
tion. Therefore we have w2 ≤ w1 on (ℓ1, a] and

∫ ∞

0

f ′2
2 (t)dt =

∫ a

ℓ2

(−w2(y))dy ≥
∫ a

ℓ1

(−w2(y))dy ≥
∫ a

ℓ1

(−w1(y))dy =

∫ ∞

0

f ′2
1 (t)dt.From Lemma 3 we have

f ′′
i (0) =

m + 1

2
a − 3m + 1

2

∫ ∞

0

f ′2
i (t)dtand thus f ′′

1 (0) ≤ f ′′
2 (0). If f ′′

1 (0) < f ′′
2 (0) then w1(a)w′

1(a) < w2(a)w′
2(a) and, as w1(a) =

w2(a) = −1, this leads to w′
1(a) > w′

2(a) that is a 
ontradi
tion with the fa
t that w1 ≥ w2on (ℓ1, a]. Hen
e f ′′
1 (0) = f ′′

2 (0) and f1 = f2.Proposition 5. Let −1 < m ≤ −1
2 . If a ≤ 0, then the problem (1)�(4) has no 
onvex-
on
ave solution.Proof. Let us suppose that f is a 
onvex-
on
ave solution of (1)�(4). By Proposition 1we have that f > 0 at in�nity, and thus there exists τ > 0 su
h that f(τ ) = 0 and

f ′(τ ) > 0. Using (7) written with α = τ and β = tn where (tn) is the sequen
e de�ned inProposition 3, we get
0 ≥ lim

n→∞
(2m + 1)

∫ tn

τ

f ′2(t)f(t)dt

= lim
n→∞

(

1

2
f ′2(τ ) +

m + 1

2
f ′(tn)f2(tn)

)

≥ 1

2
f ′2(τ ) > 0and a 
ontradi
tion.



52 B. BRIGHI AND J.-D. HOERNELRemark 5. For m = − 1
3 , let f be the solution of (Pm,a,b) on its right maximal intervalof existen
e [0, T ). Integrating twi
e leads to the Ri

ati equation

f ′ +
1

6
f ′2 =

(

b − a

3

)

t − 1 +
a2

6
. (20)Choosing b = a

3 , equation (20) has expli
it parti
ular solutions, and 
an be solved. Wethen obtain that
f(t) =

√

a2 − 6 · (a +
√

a2 − 6)e
t

6

√
a2−6 + (a −

√
a2 − 6)e−

t

6

√
a2−6

(a +
√

a2 − 6)e
t

6

√
a2−6 − (a −

√
a2 − 6)e−

t

6

√
a2−6

(21)when a2 > 6,
f(t) =

√

6 − a2 · cotan

(

t

6

√

6 − a2 + arccotan
a√

6 − a2

)

when a2 < 6 and
f(t) =

6

t + a
(22)when a2 = 6. It is then easy to see that T is �nite if a <

√
6, that T = ∞ if a ≥

√
6, andthat, in this latter 
ase, the fun
tion f given by (21) for a >

√
6 and by (22) for a =

√
6is a solution of (1)�(4).In the remainder of this se
tion we will 
on
entrate our e�orts on the 
ase m > 0. Inthis 
ase, we know from Proposition 2 that we must have a > 0 and that the solutions ofthe problem (1)�(4) 
annot vanish, this allows us to 
onsider the dynami
al system (12).We will 
onsider su

essively the 
ases 0 < m < 1, m = 1 and m > 1, but before let usremark that we 
an improve slightly the result of Proposition 2. A
tually, if m > 0 then,for a ≤ 2√

m+1
, the problem (1)�(4) has no solutions. Indeed, if f is a solution of (1)�(4),then f is bounded and if we write (6) with α = t and β = ∞, we get

−f ′′(t) − m + 1

2
f(t)f ′(t) =

3m + 1

2

∫ ∞

t

f ′2(s)ds > 0.Integrating we obtain
−f ′(t) − 1 − m + 1

4
(f2(t) − a2) > 0and by taking the limit as t → ∞, we get −1− m+1

4 (ℓ2 − a2) > 0, where ℓ is the limit of
f at in�nity. This gives a > 2√

m+1
, and also 0 ≤ ℓ <

√

a2 − 4
m+1 .4.4. The 
ase 0 < m < 1Theorem 4. Let 0 < m < 1, then there exists 0 < a∗

1 < a∗
2 su
h that the problem (1)�(4)admits no solutions for 0 < a < a∗

1, a unique solution for a = a∗
1, multiple solutions for

a∗
1 < a < a∗

2, two solutions for a = a∗
2 and a unique solution for a∗

2 < a. Moreover, allthese solutions are 
onvex, de
reasing and positive.Proof. In this 
ase, the point A is an unstable fo
us. The separatrix S+
1 leaves the point

A or a limit 
y
le surrounding A that stays in the domain {u < 0} ∩ {v > 0}, turning
lo
kwise and meets the iso
lini
 
urve P (u, v) = 0 for its last time, then the iso
lini

urve Qm(u, v) = 0 and goes to the point O (Fig 3). For the proof, refer to [16℄.
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Fig. 3. 0 < m < 1For a > 0, we denote by f the solution of the initial value problem (Pm,a,b) and lookat the 
orresponding traje
tories Ca,b of the plane system (12) de�ned by (11).Let us now 
onsider the straight line u = − 1
a2 for a > 0 and let u∗

1 (i.e. a∗
1 =

√

− 1
u∗

1

) bethe abs
issa of the point at whi
h the separatrix S+
1 
rosses the iso
lini
 
urve P (u, v) = 0for its last time and u∗

2 (i.e. a∗
2 =

√

− 1
u∗

2

) be the abs
issa of the point at whi
h theseparatrix S+
1 
rosses the iso
lini
 
urve P (u, v) = 0 for its penultimate time.Looking at the phase portrait of (12) we see immediatly that if u < u∗

1, then f is not asolution of the problem (1)�(4) be
ause the 
orresponding traje
tories 
rosses the v-axis(meaning that f be
omes in
reasing) or going to in�nity (meaning that f vanishes).Moreover, for the same purpose, the fun
tion f 
orresponding to parts of the separa-trix S+
1 , to parts of the limit 
y
les surrounding A or to parts of the traje
tories insidethe limit 
y
les, is a 
onvex solution of (1)�(4), be
ause u and v remain positive.Consequently, for u = u∗

1 there is only one solution, for u∗
1 < u < u∗

2 there aremultiple solutions, for u = u∗
2 there are two solutions, and for u∗

2 < u < 0 there is onlyone solution.4.5. The 
ase m = 1. The equation (1) is
f ′′′ + ff ′′ − f ′2 = 0.If we set f = g + k with k ∈ R, then f is a solution of (1)�(4) if and only if g satis�es
g′′′ + kg′′ = g′2 − gg′′ (23)and g(0) = a − k, g′(0) = −1, g′(∞) = 0. Looking for fun
tions g su
h that both handsides of (23) vanish, we get that, for a ≥ 2, the fun
tions f1, f2 : [0,∞) → R given by

fi(t) = ki +
1

ki

e−kit for i = 1, 2with k1 = 1
2 (a −

√
a2 − 4) and k2 = 1

2 (a +
√

a2 − 4) are 
onvex solutions of (1)�(4).
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ase m > 1Theorem 5. Let m > 1. Then there exists 0 < a∗
1 < a∗

2 su
h that the problem (1)�(4)admits no solutions for 0 < a < a∗
1, a unique solution for a = a∗

1 that is 
onvex andsu
h that limt→∞ f(t) = ℓ > 0, two 
onvex solutions that veri�es limt→∞ f(t) = ℓ > 0and in�nitely many 
onvex solutions su
h that limt→∞ f(t) = 0 for a∗
1 < a ≤ a∗

2, one
on
ave-
onvex solutions and one 
onvex solution su
h that limt→∞ f(t) = ℓ > 0 andin�nitely many 
on
ave-
onvex or 
onvex solutions with limt→∞ f(t) = 0 for a∗
2 < a. Allthese solutions are de
reasing and positive.Proof. Let us re
all that the point A is an unstable fo
us for 1 < m < 4

3 , a stable fo
usfor 4
3 < m ≤ 4+2

√
6

3 and a stable node for m ≥ 4+2
√

6
3 . Moreover, for 1 < m < 4

3 , as A isunstable there exists at least one 
y
le surrounding it. The behavior of the separatri
es
S+

1 and S−
2 is established in [16℄ and des
ribed in �gure 4.

Fig. 4. m > 1For a > 0, let us denote again by f the solution of the initial value problem (Pm,a,b)and look at the 
orresponding traje
tories Ca,b of the plane system (12) de�ned by (11).Consider now the straight line u = − 1
a2 for a > 0 and let u∗

1 (i.e. a∗
1 =

√

− 1
u∗

1

) be theabs
issa of the point at whi
h the separatrix S+
1 
rosses the iso
lini
 
urve P (u, v) = 0and u∗

2 (i.e. a∗
2 =

√

− 1
u∗

2

) be the abs
issa of the point at whi
h the separatrix S+
1 
rossesthe u-axis.Let D be the bounded domain delimited by the v-axis and the part of the separatrix

S+
1 in
luded in {u < 0}.The phase portrait of (12) gives us immediately that every traje
tory that starts froma point with negative abs
issa and outside ofD 
rosses the v-axis (meaning that f be
omesin
reasing) or is going to in�nity (meaning that f vanishes). Then, the 
orrespondingfun
tion f is not a solution of the problem (1)�(4).As shown in [16℄, using the Poin
aré-Bendixson Theorem, every traje
tory that entersin D must have the point O, the point A or a limit 
y
le surrounding A that is not 
rossingthe u-axis for ω-limit set. This means that every fun
tion f that 
orresponds to a phase
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urve that starts from a point in D̄ is a 
onvex solution of (1)�(4), be
ause u and v remainpositive. This leads to the following behavior.For u < u∗
1, there is no solution of (1)�(4).For u = u∗
1, there is a unique solution of (1)�(4) that is given by a part of the separatrix

S+
1 . This solution is 
onvex, de
reasing and su
h that f(t) → ℓ > 0 as t → ∞.For u∗

1 < u ≤ u∗
2, there are two solutions given by parts of the separatrix S+

1 that are
onvex and su
h that f(t) → ℓ > 0 as t → ∞, and in�nitely many 
onvex solutions givenby the traje
tories starting from a point in D with an abs
issa equal to − 1
a2 and su
hthat f(t) → 0 as t → ∞.For u∗

2 < u < 0, there is one 
on
ave-
onvex solution and one 
onvex solution givenby parts of the separatrix S+
1 that both verify f(t) → ℓ > 0 as t → ∞, and in�nitelymany 
on
ave-
onvex or 
onvex solutions su
h that f(t) → 0 as t → ∞ 
orresponding tothe traje
tories starting from a point in D with an abs
issa equal to − 1

a2 .For the proofs of the limits as t goes to in�nity, refer to [16℄.5. Con
lusion. In this paper we have studied a boundary value problem involving athird order ordinary di�erential equation. The solutions of this problem are similaritysolutions of problems related to the phenomenon of high frequen
y ex
itation of liquidmetal systems in an antisymmetri
 magneti
 �eld, within the framework of boundarylayer approximation.This study 
an be 
ompared to the one made in [16℄ whi
h 
onsider the same equationbut where the solutions are supposed to start in
reasing from 0 instead of de
reasing.We have established several results in both 
ases m < 0 and m > 0. Nevertheless,some interesting open questions still remain:
• for m < −1 and a ≥ 0, are there 
onvex-
on
ave solutions?
• for −1

3 < m < 0 and a ∈ R, is the 
onvex solution unique?
• for −1 < m ≤ −1

2 and a > 0, are there 
onvex-
on
ave solutions?
• for −1

2 < m < 0 and a ∈ R, are there 
onvex-
on
ave solutions?A
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