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Abstract. The aim of this paper is to investigate, as precisely as possible, a boundary value
problem involving a third order ordinary differential equation. Its solutions are the similarity
solutions of a problem arising in the study of the phenomenon of high frequency excitation of
liquid metal systems in an antisymmetric magnetic field within the framework of boundary layer
approximation.

1. Introduction. In this paper we study the third order nonlinear autonomous differ-

tial ti
ential equation mt 1

f/// + 5 ff// _ mf12 — 0 (1)

on [0, 00), with the boundary conditions
f(0) =a, (2)
f(0) = -1, (3)

>

f’(OO):O, ( )

where m € R, a € R and f/(00) := limy_,00 f/(2).
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This boundary value problem appears in the paper of H. K. Moffatt [31] and is related
to the behavior of a liquid metal in an antisymmetric field, in the framework of boundary
layer approximation.

The study of similarity solutions for free convection in a fluid saturated porous medium
near a semi-infinite vertical flat plate on which the heat is prescribed or high frequency
excitation of liquid metal systems in a symmetric magnetic field, both in the framework
of boundary layer approximation, leads to the same third order ordinary differential
equation (1) subjected to the boundary conditions f(0) = a, f/(0) = 1 and f’'(c0) = 0.
This problem also appears when studying boundary layer flows adjacent to stretching
walls. One can find explicit solutions of this problem for some particular values of m
in [5], [6], [9], [21], [26], [28], [30] and [33]. For mathematical results about existence,
nonexistence, uniqueness, nonuniqueness and asymptotic behavior, see [3], [5], [6] and 28]
for a = 0, and [9], [13], [16], [23] and [24] for the general case. Numerical investigations
can be found in [3], [7], [17], [19], [28], [30] and [36]. For the high frequency excitation of
liquid metal systems in a symmetric magnetic field, see [31].

When studying similarity solutions for free convection in a fluid saturated porous
medium near a semi-infinite vertical flat plate on which the heat flux is prescribed again
in the framework of boundary layer approximation, we obtain this time the equation
"4+ (m+2)ff” — (2m + 1) 2 = 0 which differs from (1) only by its coefficients, with
the boundary conditions f(0) = a, f”(0) = —1 and f’(c0) = 0. Numerical results can
be found in [18] and the mathematical study of existence, uniqueness and qualitative
properties of the solutions of this problem is made in [11].

For a survey of the previously described problems, see [12].

One particular case of all these equations is the Blasius equation [ + ff” = 0
introduced in [8]. The Blasius equation is obtained by setting m = 0 and doing some
proper rescaling in (1). The corresponding problem with the boundary conditions f(0) =
a, f'(0) =b>0and f'(oc0) = A admits an unique solution for A > 0, and no solution for
A < 0. This well known case is studied, for example, in [4], [20] and [27]. On the other
hand, with the boundary conditions (2) (4), the situation is completely different. In fact,
one can show that for @ = v/3, the Blasius problem

{f///+ff// -0,
f(0) =a, f'(0)=—1, f'(cc)=0

admits infinitely many solutions, and for every n € N, there are values of a such that this
problem has exactly n solutions. See [10] for the proofs of these results. In the remainder
of the paper we will only consider m # 0.

The study of similarity solutions for mixed convection in a fluid saturated porous
medium near a semi-infinite vertical flat plate on which the heat is prescribed, leads to
the equation f"”' 4+ (m+1)ff”"+2m(1— f')f’ = 0 with the boundary conditions f(0) = a,
f/(0) =b and f'(c0) = 1. Results about it can be found in [2], [14], [25] and [32].

The Falkner-Skan equation f”' + ff"” + m(1 — f?) = 0 is in the same family of
problems. See, for example, [20], [22], [27], [29], [35], [37] and [38] for results about
it.
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New results about the more general equation f"'+ f f” 4+ g(f’) = 0 with the boundary
conditions f(0) = a, f(0) = b and f'(c0) = ¢ for some given function g can be found in
[15], see also [34].

For some new results about the full model of free convection in a plane and bounded
fluid saturated porous medium, see [1].

2. Preliminary results. First of all, let us notice that for every 7 > 0, the function

t — -8 is a solution of the equation (1) for any value of m, and thus for a = V6, the

t+7
function f(t) = t-:/é is a solution of the problem (1)—(4).

Now, we remark that, if f verifies (1), then

(f”em;lF)l:mflze%F (5)

with F' any anti-derivative of f.

LEMMA 1. Let f be a nonconstant solution of the equation (1) on some interval I. For
all tg in I we have that

e if m <0, then f"(tg) < 0= f"(t) <0 fort > to,
e if m >0, then f"(tg) > 0= f"(t) > 0 fort > to.

Proof. Immediate using (5) and the fact that f’ and f” cannot vanish at the same point
without being identically equal to zero. m

PROPOSITION 1. Let m < 0. If f is a solution of the problem (1)—(4) then f”(0) > 0,
and

o cither [ is conver and decreasing on [0, 00),

o or there exists to with f"(t9) = 0 and f'(tg) > 0 such that f is convex and first
decreasing then increasing on [0,ty), and concave and increasing on [tg, o0). More-
over, f is negative at infinity for m < —1, and positive at infinity for —1 <m <0
(and in particular this implies that such solutions cannot exist for m = —1).

Proof. Suppose that f”(0) < 0, then, using Lemma 1, we have f” < 0 and f’ is decreasing.
This is a contradiction with f/(0) = —1 and f’(c0) = 0. Hence f”(0) > 0.

If f” never vanishes, then f is convex and f’ is increasing. Since f/(0) = —1 and
f'(c0) =0 we get —1 < f/ < 0.

If there exists a to such that f” > 0 on [0,%9) and f”(t9p) = 0 then, by Lemma 1 we
have f”/ < 0 on (tg, o). Hence f' is decreasing on (tp, 00) and since f’(o0) = 0, we should
have f' > 0 on [tg,c0) and f is increasing on [tg, 00).

For —1 < m < 0, if f is negative at infinity, there exists ¢; such that f < 0, f' > 0
and f” < 0 on (t;,00). Therefore

m+1

1
f//l:mfIQ_ 5 ff//<_m; ff”SO

on (t1,00). This implies that f’ is concave on (¢1,00), a contradiction with the facts that
f' > 0 on (t1,00) and f/(c0) = 0. For m < —1, the same argument shows that f is
negative at infinity. m
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REMARK 1. In [24] (Theorem 2.1), it is proved that if —1 < m < 0, then any solution
f of (1) (3) such that f”(0) < 0 exists only on [0,7) with 0 < T < oo and that
lirnt_,T f(t) = —0Q.
PROPOSITION 2. Let m > 0. If a < 0, there are no solutions of the problem (1)—(4). If
a >0, and if f is a solution of (1)—(4) then f is positive, decreasing and moreover

o if f(0) >0, then f is convex,

o if f(0) < 0, then there exists tg > 0 such that [ is concave on [0,tg] and convex

on (tg,00).
Proof. Let f be a solution of (1)—(4). First, let us suppose that f”/(0) > 0. By Lemma 1
we have that f” > 0 everywhere. Hence f is convex and f’ is increasing. Since f/(0) = —1

and f'(c0) =0, we get —1 < f <0 and f is decreasing on [0, c0).

Now, let us suppose that f”(0) < 0. If f”/ < 0 on [0,00), then f’ is decreasing and
as f'(0) = —1 we cannot have f’(co) = 0. Thus there exists tg > 0 such that f” < 0 on
[0,t0) and f”(to) = 0. Then, f’ is decreasing on [0, ] and we have f'(ty) < f' < —1 on
[0, to]. Moreover, by Lemma 1 we get f” > 0 on (tp,00), and f’ is increasing on (g, 00).
As f'(tg) < —1 we get f'(to) < f' < 0 on [tg,0), therefore f is decreasing on [0, o).

Asm >0, if f <0 at infinity, then

f/// _ m +

and f’ is convex at infinity. But as f’ < 0 and f’(o0) = 0 this cannot be the case. Hence,
f > 0 at infinity, and since f is decreasing, we get f > 0 on [0,00). This, in particular,

ff/l+mf/2 >mf/2 >0

implies that a > 0, and the proof is complete. m

3. Useful tools. In this part, we first give some identities and properties of solutions of
(1), and next introduce blowing up coordinates associated to (1) and related to the fact
that if f is a solution of (1), then it is also the case for the function t — kf(kt).

Let f be a solution of (1) on some interval [«, 5]. Integrating the equation (1) between
a and 3 leads to

1 1 _3m+1 (7
£(0) = 17(@) + "L FOFB) - T @) f @) = T [ ©
Multiplying the equation (1) by f and integrating between o and 3, we obtain
1 m + 1

SFB) + 3 £70) + T PO ()

FB)F(B) = fle)f (@) = 5

m 16
ML P )5 () = (2m+ 1) / FO) (0. (7)

Multiplying the equation (1) by f” and integrating between « and 3, we get

]' 1 ]' 1 m /. /. m+]‘ //
L) - 2@ @ 4 e = - [ s Q

PROPOSITION 3. Let m € R. If f is a solution of the problem (1)-(4) then we have

Jim £ (2) =0 ©)
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and, if m # —1, there exists a sequence t, — oo such that

lim f"(t,) = lim f(t,)f"(t,) = 0. (10)
Proof. Since f'(o0) = 0, there exists an increasing sequence s, such that s, — oo and
f"(sn) — 0 as n — oco. But, using (7), we see that f”? has a limit at infinity and hence
(9) holds. In addition, choosing t,, such that f"/(¢t,) = f”’(n+ 1) — f”(n), and using (1)
we get (10). m

To study solutions of the problem (1) (4) with constant sign, we will now introduce
an auxiliary dynamical system, as it was previously done in [11] and [16].

Consider now a right maximal interval I = [0,7) on which f does not vanish. For all
tin I, set
f'(t)

0
R0}

()

5= / F©)dE,  uls) =
0

to obtain the system

v(s) (11)

{a:P(u,v) =0 — 22, 12)

b= Qm(u,v) = -2

in which the dot denotes the differentiation with respect to s. Let us notice that if f is

v+ mu? — 3uw

negative on I then s decreases as ¢ grows.

mu2

Wm(u) = 3t
2

The point A is an unstable node for m < #7 an unstable focus if 4_3—‘/6 <m < %,

% and a stable node if m > %.

a stable focus if % <m<

For m # —1, the singular point O is a saddle-node of multiplicity 2. It admits a center
manifold W, that is tangent to the subspace Ly = Sp{(1,0)} and a stable (resp. unstable)
manifold Wif m > —1 (resp m < —1) that is tangent to the subspace L = Sp{(1, —mTH)}
In the neighborhood of O, the manifold W takes place below L when m < —1 or m > —%
and above L when —1 < m < —%. In the neighborhood of O, the center manifold W,
takes place above Ly when m < —1 or m > 0, and below Ly when —1 < m < 0.

We will not specify the behavior of the manifolds W and W, for m = —1, because we
will not use the coordinates u and v in this case.

In order to describe the phase portrait of the vector field in the neighborhood of the
saddle-node O we will assume that the parabolic sector is delimited by the separatrices
Sy and S; which are tangent to L, and the hyperbolic sectors are delimited, one by the
separatrix Sy and the separatrix Sy, which is tangent to Ly, and the other one by the
separatrices S and S;. With these notations, we have that

W251U{O}USO and W():SQU{O}U03

where C'5 is some phase curve.
We will use the superscript + for w-separatrices and — for a-separatrices to obtain
the behaviors described in figure 1.
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Fig. 1

To study the global behavior of the separatrices, consider any connected piece of
a phase curve C of the plane dynamical system (12) lying in the region P(u,v) < 0
(resp. P(u,v) > 0); then C' can be characterized by v = V;,,(u) (resp. v = W,,,(u)) with
u belonging to some interval, and where V;,, (resp. W,;,) is a solution of the differential
equation

dv ~ Qm(u,v) — by + mu? — 3w

7 Foo(u,v) = Plo) ~ — : (13)

To deduce results about the original problem (1)—(4), most of the time, we will consider

the initial value problem

f/// + mT-Hff// _mf/z =0

f(0) =a,

f/(O) = _17

[0y =0

with @ # 0, and look at the trajectory C,p of the plane dynamical system (12) defined
by (11) for

(Pm,a,b)

1 b

u(0) = 3 and v(0) = et

and the study of this trajectory allows us to obtain properties of f.
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4. Main results

4.1. The case m < —1

THEOREM 1. Let m < —1. For every a € R, the problem (1) (4) has a unique convex
solution. Moreover, this solution is bounded, and if lim;_. f(t) = ¢, then

4
—1/a? — </l<a.
m+1

Proof. For f:[0,00) — R define f : [0,00) — R by

\/_m—ﬂf< m+1 >

Easily, one sees that f is a convex solution of (1)—(4) if and only if f is a concave solution

of the problem
f/// + ff// m+1f/2
L -, e -

and, from [15] (Theorem 1 and Proposition 1), we know that the problem (14) admits
exactly one concave solution, that this solution is bounded, and that if ¢ is the limit of f

at infinity, then —a,/ —mT'H <l< 1/—"‘7'*'1&2 + 2. The proof is complete. m

REMARK 2. For m < —1, the uniqueness of the convex solution can be easily obtained

(14)

by a direct way. In fact, if (1)—(4) has a pair of distinct convex solutions fi, fo and
if f7'(0) > f¥(0), the function g = f; — f, satisfies g(0) = 0, ¢’(0) = ¢’(c0) = 0 and
g"”(0) > 0. It follows that ¢’ has a positive maximum at some point s > 0 such that
g'(t) >0 for 0 <t < s, but then g(s) > 0 and we get
m+1
9" (s) = f1"(s) = f2'(s) = === [ (s)9(s) + m(f1(s) + fa(s))g'(s) > 0,

which is a contradiction.

REMARK 3. For m < —1 and a < 0, if f is a convex-concave solution of the problem
(1)—(4), then

f"(0)>max{m+1 Qm}.

a,\ ——
2 3
Indeed, if ¢; is the point such that f’(¢t;) = 0, we have f”(¢;) > 0 and writing equality
(6) with o« = 0 and 8 = t1, we get f(0) > m+1a Now, writing equality (8) with o =0
and 0 = oo and taking into account the fact that f <0 on (0,00) (see Proposition 1),

we obtain that f”(0) > |/ =2".

LEMMA 2. Let m < —1. As s grows, the separatriz S, leaves the singular point O to the
right tangentially to L and intersects successively the isoclines Qm (u,v) =0, P(u,v) =0,
the u-azxis and the v-azxis and remains decreasing and under L.

As s grows, the separatriz S| leaves the singular point O to the left tangentially to L
and remains decreasing and under L. (See figure 2.)
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\

u=-1/a?

v=2u?

<

Sy Sy /

Fig. 2. m < -1
Proof. The behavior of S is established in [16] for u > 0. To conclude, it is sufficient to

remark that we have
dv m+1 u(3v + u)
— | —— = >0
v — 2u?

for u,v < 0. Hence the straight line L is a barrier for the vector field in the region
{u<0}nN{v<0}. m

THEOREM 2. Let m < —1. For every a < 0, the problem (1)—(4) admits a unique convez-
concave solution such that limy_, o, f(t) = £ < 0 and infinitely many convez-concave solu-
tions such that lim;_,o f(t) = 0. Moreover, all these solutions are negative and bounded.

Proof. For a < 0, let us denote by f the solution of the initial value problem (P, 4) and
look at the corresponding trajectories Cy ; of the plane system (12) defined by (11). From
the phase portrait of (12) described in Lemma 2 (Fig 2) we have that each function f
corresponding to a trajectory that did not start from a point that is between the separatix
S and the separatrix S; for u negative cannot be a solution of the problem (1)-(4),
because it vanishes (the trajectory goes to infinity) or becomes concave and decreasing
(the trajectory goes through the domain {u < 0} N {v > 0}). We also have that the
straight line defined by u = —a% with @ < 0 intersects the separatrix S; at the point
(—a—127v,) and the separatrix S; at the point (—a—127v+).

Consequently, for b = v_a?, f is a solution of the problem (1)—(4) such that f(t) —
¢ <0ast— oo, and for b € (via® v_a®), f is a solution of the problem (1)-(4) such
that f(¢t) — 0 as t — co. The details about the limits can be found in [16]. m

REMARK 4. Let us notice that the separatrix S; (corresponding to b = v a?®) gives, for
a < 0, the convex solution obtained in Theorem 1.

4.2. The case m = —1. Here the equation (1) reduces to f”/ = —f"2. Now, if f is a
solution of the problem (1) (4) then using the equality (8) with & = 0 and 8 = oo, and

Propositions 1 and 3, we obtain that f”(0) = \/g Hence the problem (1)—(4) has at
most one solution.
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On the other hand, if f is the solution of the problem (73_1 " \/g) on its right maximal
@\ 3
interval of existence [0,T) we get, using (8) with a =0 and =1t < T,

S0 + 500 = 0

2

implying that f’ < 0 on [0,T). Therefore, we obtain
__fl t 2
vt € [0,7), —ii%:— .
(=f'(1))2 3
Integrating and using the fact that f'(0) = —1, we arrive at

1 t
vtel[0,T), — =

—+1
(—f'1)> V6
and f'(t) = —ﬁ. Integrating again, we finally deduce that, for m = —1, the problem
(1) (4) has exactly one solution given by
=a—V6+——r
1) = t+J_
4.3. The case —1 <m <0

THEOREM 3. For —1 < m < 0 and for every a € R, the problem (1)—(4) admits a convex
solution.

Proof. Let b > 0 and f;, be the solution of the initial value problem (P,, 45). Denote by
[0,T3) its right maximal interval of existence. Let us remark first that f;, exists as long as
we have f’ > 0 and f] < 0. Since f;’ and f] cannot vanish at the same point, it follows
that there are only three possibilities:

(a) f{ becomes negative from a point such that f; <0,

(b) f{ becomes positive from a point such that f;’ > 0

(c) we always have f] <0 and f}
As fi(0) = =1 <0, f{/(0) = 0 and f§’(0) = m < 0, we have that fy is of type (a), and
by continuity it must be so for f; with b > 0 small enough.

On the other hand, as long as f{'(t) > 0 and f;(¢) < 0, we have f/(t) > —1 and
fo(t) > —t + a. Therefore (6) leads to

m+1 3m+1 K
Y0 = b= T O s0 @)+ T
1 3 1
Zb—m; (t-+ lal +a) + 2F /f
2b—m+(m+@+0t
where Cp, = mif -1 < m < f%, and C,, = 7mT+l if —% < m < 0. Integrating, we
obtain )
+1 t
0> fi(t) > -1+ (b—m2 (|a+a)>t+0m§ = Py(t).

0 has two positive roots ¢y < t1, and therefore,

For b large enough, the equation Py(t) =
= 0and f{/(t) > 0 for t < ty, and fj is of type (b).

for such a and b, we have that f;(to)
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Defining A = {b > 0; f, is of type (a)} and B = {b > 0; f; is of type (b)} we have
that A # 0, B# () and AN B = . Both A and B are open sets, so there exists a b* > 0
such that the corresponding solution f. of (P, q+) is of type (c) and is defined on the
whole interval [0, 00). For this solution we have that f, < 0 and f! > 0 which implies
that fi -1 <0ast — oo. If ] <0 then f.(t) ~ It as t — oo and using (6) we easily
obtain f”(t) ~ ml?t as t — oo, which contradicts the fact that f” > 0. Then [ = 0 and
f« 1s a convex solution of (1)—(4). This completes the proof. m

1

We get the uniqueness of a convex solution for —1 < m < —3, only. To this end, we

will need the following Lemma.

LEMMA 3. Let —1 < m < —%. If f is solution of the problem (1)~(4), then we have
F@®f(t) —0ast— oo and

o=t | " 2 (s)ds. (15)
0

2 2
Proof. If f is bounded, then clearly f(¢)f'(t) — 0 ast — oo, and (15) follows immediately
from (9) and the equality (6) written with & = 0 and 8 = oo.
If f is unbounded, then, as t — oo, either f increases to co or decreases to —oo, and
in both cases we have f(t)f’(t) > 0 for ¢ large enough. Now, using the equality (6) with
a=0and g =t>0, for large t, we get

= / 2(s)ds < f7(0) — (1) — L

0<— a. (16)

2 2
Thus (9) implies that the integral in the relation (16) has a limit as ¢ — co. Coming back
to (6), we get that f(t)f'(t) — 1> 0ast— oo. If I > 0, then f2(t) ~ 2It as t — oo, and

hence
l2

, l
PO~ p ~ 3

which contradicts the fact that the integral of f’2 over [0,00) is finite. Therefore [ = 0,
and using again (6) we obtain (15). m

as t — o0

PROPOSITION 4. For —1 < m < —% and a € R, the problem (1)—(4) admits at most one
convex solution.

Proof. Let us suppose that f is a convex solution of (1) (4). By Proposition 1, such
a solution is decreasing, and we can define the function w = w(y) by

Vi =0, w(f(t) = f()
If £ € [—00,a) is the limit of f(t) as ¢ — oo, then w is defined on (¥, a], is negative and
we have

f(t) =
() =
Then, (1) leads to

1
Vy € (4a], w"=-— (w’ + %y) w' +m (17)
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and we have
w(t) = limw(y) = lim £/(6)= 0, w(a) = w(f0)) = 1'(0) = 1.

Let us now suppose that there are two convex solutions f; and fo of the problem (1)—(4)
and let £; € [—00,a) be the limit of f; at infinity for ¢ = 1,2. We obtain two solutions of
equation (17), wy and wy defined respectively on (¢1,a] and ({2, a] such that
U)l(él) = U)Q(ég) =0 and ’LUl(CL) = '(UQ(CL) = —1.

We will suppose now that ¢5 < ¢; and prove that we < w; on (¢1, a]. If there exists a point
y in (41, a] such that wi(y) < wa(y), then as wq(¢1) —wa(¢1) > 0 and w(a) — we(a) =0,
the function w; — wy admits a negative minimum at some point z in (¢1,a). For this
point & we have that wy (z) < wa(x), w}(z) = ws(x) and wf(x) > wh (x). We also have

wtle) = uglo) = (s = o ) (w0 + 5 ) uito) (1)

(w0 + 2 e ) wto) = (1160 + " m0s0) S )

with s such that = f1(s). Thanks to Lemma 3, we can write (6) with & = s and 8 = o0

Vo) + "L ) s) = - 3’”“/ R ()t > 0,

Using this inequality and the fact that f{'(s) > 0, we deduce from (18) and (19) that
wy (r) < wh(z) and obtain a contradiction. Therefore we have wy < wy on (¢1,a] and

/ /ZZ(w2(y))d92/:(w2(y))dy2/:(wl(y))dy/0 FR(H)dt

From Lemma 3 we have

0

and

to get

2
and thus f1'(0) < f4(0). If f{(0) < f5(0) then w;(a)w](a) < we(a)wh(a) and, as wy(a) =
wa(a) = —1, this leads to w] (a) > w}(a) that is a contradiction with the fact that wy > ws

on (¢1,a]. Hence f1/(0) = f4/(0) and f1 = fo. m

PROPOSITION 5. Let —1 < m < —1. If a < 0, then the problem (1) (4) has no convex-
concave solution.

Proof. Let us suppose that f is a convex-concave solution of (1)-(4). By Proposition 1
we have that f > 0 at infinity, and thus there exists 7 > 0 such that f(7) = 0 and
f'(7) > 0. Using (7) written with « = 7 and 8 = t,, where (¢,) is the sequence defined in
Proposition 3, we get

n— o0

0> lim (2m + 1)/% P2 f(t)dt

~ lim (%f (1) + " () (tn)) > L) >0

n—oo

and a contradiction. m
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REMARK 5. For m = —%., let f be the solution of (P, q5) on its right maximal interval
of existence [0,T). Integrating twice leads to the Riccati equation
a2

1
/ 12
—f“=1(b— —) t—1+ — 20
pegtt=(-5) 1 G &
Choosing b = £, equation (20) has explicit particular solutions, and can be solved. We
then obtain that

N .(a+\/a2—6)e
6 (a+vVa?—6)e

§Va2=6 4 (g — /a2 —6)e Va0 01
(Ve g )

when a? > 6,
ft)=+v6—a?- cotan( V6 — a? + arccotan

when a? < 6 and

=

6
1) = t+a
when a? = 6. It is then easy to see that T is finite if @ < /6, that T = oo if @ > v/6, and
that, in this latter case, the function f given by (21) for a > /6 and by (22) for a = V6
is a solution of (1)—(4).

(22)

In the remainder of this section we will concentrate our efforts on the case m > 0. In
this case, we know from Proposition 2 that we must have ¢ > 0 and that the solutions of
the problem (1)—(4) cannot vanish, this allows us to consider the dynamical system (12).
We will consider successively the cases 0 < m < 1, m =1 and m > 1, but before let us
remark that we can improve slightly the result of Proposition 2. Actually, if m > 0 then,
for a < W the problem (1) (4) has no solutions. Indeed, if f is a solution of (1) (4),
then f is bounded and if we write (6) with o =¢ and 8 = oo, we get

1= " 00 = 2 [ s o

Integrating we obtain

) —1- " 20— a?) > 0
and by taking the limit as ¢ — oo, we get —1— ™1 (¢2 — a?) > 0, where / is the limit of

f at infinity. This gives a > \/—, and also 0 < ¢ < 4/a? — miﬂ.
4.4. The case 0 <m < 1

THEOREM 4. Let 0 < m < 1, then there exists 0 < aj < a3 such that the problem (1)—(4)
admits no solutions for 0 < a < aj, a unique solution for a = aj, multiple solutions for
a] < a < a3, two solutions for a = a5 and a unique solution for a5 < a. Moreover, all
these solutions are convezx, decreasing and positive.

Proof. In this case, the point A is an unstable focus. The separatrix Sf‘ leaves the point
A or a limit cycle surrounding A that stays in the domain {u < 0} N {v > 0}, turning
clockwise and meets the isoclinic curve P(u,v) = 0 for its last time, then the isoclinic
curve @, (u,v) =0 and goes to the point O (Fig 3). For the proof, refer to [16].
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v=2u?

'u=-1/a?

Fig. 3.0 <m < 1

For a > 0, we denote by f the solution of the initial value problem (P, ) and look
at the corresponding trajectories C,; of the plane system (12) defined by (11).

Let us now consider the straight line u = —% for a > 0 and let u (i.e. aj = ,/—-=) be
1
the abscissa of the point at which the separatrix Sf‘ crosses the isoclinic curve P(u,v) =0

for its last time and u} (i.e. af = 1/_1%*) be the abscissa of the point at which the
2

separatrix S; crosses the isoclinic curve P(u,v) = 0 for its penultimate time.

Looking at the phase portrait of (12) we see immediatly that if « < u7, then f is not a
solution of the problem (1) (4) because the corresponding trajectories crosses the v-axis
(meaning that f becomes increasing) or going to infinity (meaning that f vanishes).

Moreover, for the same purpose, the function f corresponding to parts of the separa-
trix Sfr, to parts of the limit cycles surrounding A or to parts of the trajectories inside
the limit cycles, is a convex solution of (1)—(4), because u and v remain positive.

Consequently, for v = u] there is only one solution, for u] < uw < u3 there are
multiple solutions, for © = u3 there are two solutions, and for u3 < u < 0 there is only
one solution. m

4.5. The case m = 1. The equation (1) is
f/// + ff// _ f/2 = 0.

If we set f = g+ k with k£ € R, then f is a solution of (1)—(4) if and only if g satisfies
g/// 4 kg" — 42 _ gg// (23)

and g(0) = a —k, ¢'(0) = —1, ¢’(00) = 0. Looking for functions g such that both hand
sides of (23) vanish, we get that, for @ > 2, the functions f1, f2 : [0,00) — R given by

1
fi(t) = ki + Ee_kit for i=1,2

K2

with k1 = (a — vVa® —4) and ks = 3(a + Va? — 4) are convex solutions of (1)—(4).
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4.6. The case m > 1

THEOREM 5. Let m > 1. Then there exists 0 < aj < a¥ such that the problem (1)—(4)
admits no solutions for 0 < a < aj, a unique solution for a = a] that is conver and
such that lim;_,o f(t) = ¢ > 0, two convex solutions that verifies lim; .o f(t) = ¢ > 0
and infinitely many convex solutions such that limy_,o f(t) = 0 for a7 < a < a}, one
concave-convex solutions and one convex solution such that lim; .o f(t) = ¢ > 0 and
infinitely many concave-convex or convex solutions with lim; o f(t) =0 for a5 < a. All
these solutions are decreasing and positive.

Proof. Let us recall that the point A is an unstable focus for 1 < m < %, a stable focus
for % <m < % and a stable node for m > %‘/6. Moreover, for 1 < m < %, as A is
unstable there exists at least one cycle surrounding it. The behavior of the separatrices

S and S, is established in [16] and described in figure 4.

v

v=2u? (

uy”

u=-1/a2

S Syt

Fig. 4. m > 1

For a > 0, let us denote again by f the solution of the initial value problem (P, 45)
and look at the corresponding trajectories Cy ; of the plane system (12) defined by (11).

Consider now the straight line u = —2; for a > 0 and let u} (i.e. a} = \/—-1) be the

1
uj
abscissa of the point at which the separatrix Sf crosses the isoclinic curve P(u,v) =0
and uj (i.e. a3 =, /—u—l*) be the abscissa of the point at which the separatrix Sf‘ crosses
2

the u-axis.

Let D be the bounded domain delimited by the v-axis and the part of the separatrix
Si included in {u < 0}.

The phase portrait of (12) gives us immediately that every trajectory that starts from
a point with negative abscissa and outside of D crosses the v-axis (meaning that f becomes
increasing) or is going to infinity (meaning that f vanishes). Then, the corresponding
function f is not a solution of the problem (1)—(4).

As shown in [16], using the Poincaré-Bendixson Theorem, every trajectory that enters
in D must have the point O, the point A or a limit cycle surrounding A that is not crossing
the u-axis for w-limit set. This means that every function f that corresponds to a phase
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curve that starts from a point in D is a convex solution of (1) (4), because u and v remain
positive. This leads to the following behavior.

For u < u}, there is no solution of (1)—(4).

For u = uj, there is a unique solution of (1)—(4) that is given by a part of the separatrix
Sf. This solution is convex, decreasing and such that f(t) — ¢ > 0 as t — co.

For uj < u < w3, there are two solutions given by parts of the separatrix Sf' that are
convex and such that f(¢) — £ > 0 as t — 0o, and infinitely many convex solutions given
by the trajectories starting from a point in D with an abscissa equal to —a% and such
that f(t) — 0 as t — oc.

For u3 < u < 0, there is one concave-convex solution and one convex solution given
by parts of the separatrix Sf‘ that both verify f(t) — ¢ > 0 as t — o0, and infinitely
many concave-convex or convex solutions such that f(t) — 0 as ¢t — oo corresponding to
the trajectories starting from a point in D with an abscissa equal to —%.

For the proofs of the limits as ¢ goes to infinity, refer to [16]. m

5. Conclusion. In this paper we have studied a boundary value problem involving a
third order ordinary differential equation. The solutions of this problem are similarity
solutions of problems related to the phenomenon of high frequency excitation of liquid
metal systems in an antisymmetric magnetic field, within the framework of boundary
layer approximation.

This study can be compared to the one made in [16] which consider the same equation
but where the solutions are supposed to start increasing from 0 instead of decreasing.

We have established several results in both cases m < 0 and m > 0. Nevertheless,
some interesting open questions still remain:

e for m < —1 and a > 0, are there convex-concave solutions?

e for —% <m < 0 and a € R, is the convex solution unique?

o for -1 <m< —% and a > 0, are there convex-concave solutions?
e for —% <m < 0 and a € R, are there convex-concave solutions?
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