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Abstract. In [2] we proved two kinds of mechanisms of preventing the blow up in a quasilin-

ear non-uniformly parabolic Keller-Segel systems. One of them was a priori boundedness from

below of the Lyapunov functional. In fact, we were able to present a condition under which the

Lyapunov functional is bounded from below and a solution exists globally. In the present pa-

per we prove that whenever the Lyapunov functional is bounded from below the solution exists

globally.

1. Introduction and preliminaries. In what follows we investigate the non-uniformly

parabolic boundary value problem

∂u

∂t
= ∇·[α(u)∇u − uβ(u)∇v] in U × (0, T ),(1)

∂v

∂t
= Dv∆v − v + u in U × (0, T ),(2)

∇u · ~n = 0, ∇v · ~n = 0 on ∂U × (0, T ),(3)

u(x, 0) = u0(x), v(x, 0) = v0(x) in U,(4)

where U is a domain of R
n with a sufficiently smooth boundary. By ~n we denote the

outer normal vector.

The problem is studied under the following hypotheses:

T: (i) There exists ε > 0 such that β ∈ C2(−ε,∞) is a positive bounded function and

Dv appearing in (2) is a positive constant.
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(ii) There exists ε > 0 such that α ∈ C2(−ε,∞) is a positive bounded function.

(iii) The function α converges to 0 when its arguments tend to ∞.

Because of T(iii) we say that (1)–(4) is non-uniformly parabolic.

In [2] we showed two mechanisms of preventing the blow-up. In particular, we proved

the following result [2, Theorem 2]. Assume n = 2, 3, and there exist M > 0 and N > 0

such that

(5)
β(u)

α(u)
≤ M,

(6)
uβ(u)

α(u)
≤ Nuγ ,

where γ < 1
2 if n = 2 and γ < 0 if n = 3. Then there exists a unique global-in-time

classical solution to (1)–(4) provided u0, v0 ∈ W 1,p(U), p > n.

One can notice that for u > 1 the assumption (6) covers (5). Moreover, the proof of [2,

Theorem 2] can be easily modified in order to prove the theorem assuming only (6) holds

for u > 1. We were not paying our attention to this because of the biological motivation

to our considerations. We wanted to find the conditions on α and β under which the

densities of cells in the so-called Hillen–Painter models do not explode in finite time. In

[5] the authors introduced, basing on biased random walks, the models of chemosensitive

movement that take into account the volume filling effect. The tool to do it was the

assumption that the probability q that a cell attains the position (x, t) depends on the

density of cells at this position, which reflects the finite size of cells. Such an approach

results in (1)–(4) with α and β given in the following way:

(7) α(u) = q(u) − uq′(u) and β(u) = q(u).

One may obtain two kinds of situation, there is a threshold value u0 at which q = 0

or not. In the second situation one might arrive at T(iii) and non-uniformly parabolic

system must be considered. But notice that even in this case (5) holds with M = 1 if

we assume that q is a nonincreasing function of the density of cells. That is why we did

not try to justify our theorems considering conditions on α and β only for u > 1. In the

following paper we still do not do it, but once again we leave it to the reader to see that

our considerations are true assuming only (6) for u > 1 instead of (5), (6).

Notation. The norm in the space Lp(U), 1 ≤ p ≤ ∞, is denoted by ‖·‖p. The same

notation is used for vector valued functions u ∈ Lp(U : R
n). Classical Sobolev spaces will

be denoted by W 1,p(U) for 1 ≤ p ≤ ∞.

In this paper we prove a stronger version of [2, Theorem 2]. We assume only γ < 2
n
.

Before starting the discussion about the connections of our result and the boundedness

from below of the Lyapunov functional for (1)–(4), let us mention that for α = β = 1 we

arrive at the so-called minimal version of Keller-Segel system [8]. It was the first model

proposed as a mathematical description of chemosensitive movement. But in this system

blow-ups could occur (see [7], [4]). In order to avoid this property, the Hillen-Painter

models were introduced in [5].
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Let us turn our attention to the Lyapunov functional for the system (1)–(4). We define

the function

Φ(s) :=

∫ s

0

∫ σ

1

α(τ )

τβ(τ )
dτ dσ, s > 0.

Then it turns out by [2, Lemma 2.1] that

L(u, v) :=

∫

U

Φ(u) +
Dv

2

∫

U

|∇v|
2

+
1

2

∫

U

v2 −

∫

U

uv

satisfies

(8)
d

dt
L ≤ 0.

By [6, Lemma 5.2] we have

Lemma 1.1. If (6) holds with γ < 2
n
, n ≥ 2 then there exists a constant C such that

L ≥ C

for every (u, v) ∈ (W 1,∞(U))2. Moreover, if there exists M such that

uβ(u)

α(u)
≥ Muγ

for γ > 2
n

(n = 2, 3) then for any fixed λ > 0 there exists ε0 > 0 and families

(uε)ε∈(0,ε0) ⊂ W 1,∞ and (vε)ε∈(0,ε0) ⊂ W 1,∞ such that uε > 0 and vε > 0 in U ,
∫

U

uε = λ and

∫

U

vε → 0 as ε → 0,

but
L(uε, vε) → −∞, ε → 0.

Let us also point out [6, Remark after Lemma 5.1] that from the boundedness from

below of the Lyapunov functional (see Lemma 1.1) we are able to infer a priori bounds

on u. Indeed, we have

Lemma 1.2. Assume (6) holds with γ < 2
n
. Then there exists N > 0 such that

(9) sup
t∈[0,T ]

‖u(·, t)‖2−γ < N.

We shall need the following theorem that enables us to handle the non-uniformly

parabolic equation [3, Theorem 2.2]. This theorem was also proved in [1] with the use of

completely different methods.

Theorem 0. Let 0 < T < ∞, ∇v ∈ L∞(U × (0, T )), (5) and T. Assume that u is

a L2-weak solution to
∂u

∂t
= ∇·[α(u)∇u − uβ(u)∇v] in U × (0, T ),(10)

∇u · ~n = 0, ∇v · ~n = 0 on ∂U × (0, T ),(11)

u(x, 0) = u0(x) in U,(12)

corresponding to u0 ∈ L∞(U). Then

sup
[0,Tmax)∩[0,T ]

‖u(·, t)‖
∞

< ∞,

where Tmax is the maximal existence interval of the solution.
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We emphasize that Theorem 0 says only that

u ∈ L∞

loc((0,∞), L∞(U)).

We cannot infer the uniform in time boundedness of a solution from this property.

The following lemma will be also of importance in the further part of the paper [2,

Lemma 2.3].

Lemma 1.3. Let v be the solution to (2), T < ∞.

(i) For q = nδ
n−δ

, δ ≥ 1 and some positive constant C we have

sup
t∈(0,T ]

‖∇v(·, t)‖q ≤ C sup
t∈(0,T ]

‖u(·, t)‖δ .

(ii) Moreover, if supt∈(0,T ] ‖u(·, t)‖p < ∞, p > n, then

sup
t∈(0,T ]

‖∇v(·, t)‖
∞

< ∞.

2. Main result. By C we denote generic constants whose value may vary from line to

line. Let us prove the following

Theorem 2.1. We consider the case n = 2, 3. Assume (5), (6) for γ < 2
n

and T. Then

there exists a unique classical nonnegative global-in-time solution to (1)–(4) corresponding

to nonnegative initial data u0, v0 ∈ W 1,p(U), p > n.

Let us first prove a lemma which will be crucial in the proof of Theorem 2.1. This

lemma is a generalization of the one presented in [6, Lemma 4.4] to the case of quasilinear

non-uniformly parabolic system. In fact, it uses only (1) to derive from given estimates

of u and v, a better one on u.

Lemma 2.2. Suppose for given v such that

(13) sup
[0,T ]

‖∇v(·, t)‖q0
≤ C,

u is the solution to (1) under no-flux boundary condition. Assume also

(14) sup
[0,T ]

‖u(·, t)‖γ0
≤ C.

Moreover suppose

(15)

(

n

q0
− 1

)

γ0 < n(1 − γ).

Then for any γ1 > max{γ0, 2 − 2γ} which fulfills

(16)

(

n

q0
− 1

)

γ1 < (n − 2)(1 − γ)

sup
[0,T ]

‖u(·, t)‖γ1
≤ C.

Proof of Lemma 2.2. From the proof of [6, Lemma 4.4] we infer that in order to prove

Lemma 2.2 it is enough to show the analogous inequality to [6, (35)]. To this end we use
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the ideas that appeared in [3], [1], and introduce the nonlinear convex functional φp(u)

satisfying both φp(0) = 0 and φ′

p(0) = 0 by

(17) p(p − 1)ηp−2 = φ′′

p(η)α(η).

for every η > 0 and p > 1. Notice that

(18)

∫

Ω

ηpdx ≤ C

∫

Ω

φp(η)dx.

The inequality can be easily derived integrating twice (17).

We test (1) by φ′

γ1
(u) and with the use of (17), (6) and the Young inequality we obtain

(19)
1

γ1

d

dt

∫

U

φγ1
(u)dx + C

∫

U

∣

∣

∣
∇u

γ1
2

∣

∣

∣

2

dx ≤ C

∫

U

u2γ+γ1−2 |∇v|2 dx.

Thus, writing w in the place of u
γ1
2 , integrating (19) in time and then applying (18) to

the left-hand side and Hölder’s inequality to the right-hand side we arrive at

1

γ1

∫

U

w(T )2 dx −
1

γ1

∫

U

w(0)2 dx +

∫ T

0

∫

U

|∇w|
2

dx dt

≤ C

∫ T

0

(
∫

U

|∇v|
q0 dx

)
2

q0
(

∫

U

w
2q0(2γ+γ1−2)

(q0−2)γ1 dx

)

q0−2
q0

dt.

In view of (13) the right-hand side of the last inequality can be estimated by

C

∫ T

0

‖w(·, t)‖
2(2γ+γ1−2)

γ1
2q0(2γ+γ1−2)

(q0−2)γ1

dt.

Thus, the desired inequality, analogous to [6, (35)], is proved.

Proof of Theorem 2.1. By [2, Theorem 2.1] we have the classical unique solution that is

global provided ‖u‖
∞

is finite on finite time intervals. We see that by Theorem 0 we only

need to estimate sup(0,T ] ‖∇v(·, t)‖
∞

for every finite T . But by Lemma 1.3 (ii) this is

implied by (14) with γ0 > n for every finite T .

By Lemma 1.2 we see that (9) holds. Then for dimension n = 2 thanks to Lemma 1.3

(i) we estimate (13) holds for q0 > 2. Thus by Lemma 2.2, since

(20)

(

n

q0
− 1

)

< 0,

which implies (16) for arbitrary finite γ1, one concludes that (14) holds for γ0 > 2.

For dimension n = 3 much more sophisticated bootstrapping must be used. Fortu-

nately, we can use the one introduced in [6, the proof of Lemma 4.5]. For the details we

refer the reader to [6], here we only give the sketch of the method.

We introduce the sequence defined recursively by

ak =
(n − 2)(1 − γ)

n − 2ak−1
ak−1

if ak−1 < n
2 , ∞ otherwise. This is an increasing sequence provided we begin with a0 >

2 − γ, and then there exists a finite k0 such that ak0
= ∞. Then we introduce the
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sequences εk > 0 and bk such that

bk =
(n − 2)(1 − γ)

n − 2bk−1
bk−1 − εk

has the same properties as ak, in particular there is k0 such that bk0
> n

2 . We also define

q̄k−1 :=
nbk−1

n − bk−1
.

By [6, (42) and (43)] we see that there exist q0, ..., qk0
such that

(21) 2 < qk−1 < q̄k−1,

(

n

qk−1
− 1

)

bk−1 < n(1 − γ)

and

(22)

(

n

qk−1
− 1

)

bk < (n − 2)(1 − γ).

Lemma 1.2 gives us the startpoint of the bootstrap procedure that allows us to con-

clude that (14) holds for γ0 > n
2 . Indeed, beginning with (9) we have b0 > 2− γ and esti-

mating successively sup(0,T ] ‖∇v‖qk−1 thanks to Lemma 1.3 (i), and then sup(0,T ] ‖u‖bk

thanks to Lemma 2.2, (21) and (22), finally we arrive at (14), γ0 > n
2 since there ex-

ists bk0
> γ0 > n

2 . But then once again we use Lemma 1.3 (i) in order to estimate

sup(0,T ] ‖∇v‖q, q > n. Then by Lemma 2.2 (with q instead of q0 in (16)), since (20) holds

for arbitrary finite γ1, we obtain (14) with γ0 > n, and the proof is finished.
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