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Abstract. We consider a nonlinear parabolic system modelling chemotaxis
u =V-(Vu—uVv), v =A~Av+u

in R?, ¢t > 0. We first prove the existence of time-global solutions, including self-similar solutions,
for small initial data, and then show the asymptotically self-similar behavior for a class of general
solutions.

1. Introduction. We are concerned with the large time behavior of solutions to the
Cauchy problem for the following system of partial differential equations:

%:v-(Vu—qu), r€R2 t>0,
(1.1) )

(Y

— =A 2 :

5 v+ u, reR* t>0

On the system we impose initial conditions
(1.2) u(z,0) =ug, v(x,0) =1y, x€R?

where ug > 0 and vy > 0.

The system (1.1) is a mathematical model describing chemotaxis, that is, the directed
movement of an organism in response to gradients of a chemical attractant (see [6, 12,
4]). The function u(x,t) > 0 corresponds to the population of the organism at the place
z € R? and time ¢ > 0, and v(z,t) > 0 to the concentration of the chemical.
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The existence of local and global in time solutions, including self-similar solutions,
of the problem (1.1)—(1.2) has been studied by Biler [3]. In this paper we show the
asymptotically self-similar behavior for a class of general solutions of (1.1)—(1.2).

We write (1.1)—(1.2) in the form of the integral equation

u(t) = ePug — / (Ve =98 . (u(s)Vu(s)) ds,
(1.3) y
v(t) = ePug + / (=98 (s) ds,
0

where
(e f)(x) = | G~y )y
and G(z,t) is the heat kernel

1 z|?
G(.’L‘,t) = mexp <—%) .

In what follows, ||- ||, represents the norm of LP(R?) for 1 < p < co. For u: R? - R,
we use the notations Vu = (01u, Ou) and ||Vul|, = ||O1ull, + ||02ullp, where 0; = 0/0x;.

We look for mild solutions (u,v) of (1.3) in the class v € X, with p € (4/3,2),
where X, is the set of Bochner measurable functions u : (0,00) — LP(R?) such that
SUP;~q v lu(t)||, < co. We will obtain v according to the second formula in (1.3) for
u € Xp. Define || - ||x, by

_1
lullx, = sup t' 7 [|u(t)]|,.
t>0

Throughout this paper, p € (4/3,2) is fixed. First we show the existence of time global
solution of (1.3) with uy € L'(R?) and Vg € L?(R?).

THEOREM 1. Assume that constants M > 0, ag > 0, and By > 0 satisfy the inequalities

(1.4) N L CoCi(Bo+ M) <1 and CoCy(Bo+2M) <1,

(4n)" v M
where positive constants Co and C are given below in Lemma 2.2. Suppose that ug €
LY(R?) and Vvg € L*(R?) satisfy ||uolli < oo and ||Vuol2 < Bo. Then there exists

a unique global solution (u,v) of (1.3) such that |lu||x, < M.
The system (1.1) is invariant under the similarity transformation
(1.5) ur(w,t) = Nu(Az,\*t) and vy(x,t) = v(Az, \?t)

for A > 0, that is, if (u,v) is a solution of (1.1) then so is (ux,vy). A solution (u,v) is
said to be self-similar, when the solution is invariant under this transformation, that is,
u(z,t) = uy(z,t) and v(x,t) = vy(z,t) for all A > 0. Letting A = 1/4/¢, and putting
¢(z) = u(z,1) and P(x) = v(z,1), we find that the self-similar solution (u,v) has the
form

u(z, t) = %¢5 (%) and v(x,t) =1 (%)

for z € RZ and t > 0.
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Let us consider the problem

u(t) = aG( 1) — / (Vet=92Y . (4(5)Vu(s)) ds,
(1.6) 0

t
v(t)z/ (=8 (s) ds,
0

where « is a positive constant and G is the heat kernel. We show the existence of the
self-similar solutions of (1.6).

THEOREM 2. Assume that constants M > 0 and ag > 0 satisfy the inequalities

(1.7) (4)?31]\4 + 6001M <1 and QC'OOlM <1,
T P

where positive constants Cy and Cy are the same as in Theorem 1. Then, for a € (0, a],
there exists a unique self-similar solution (uq,va) of (1.6) such that ||ua|x, < M.

REMARK 1. (i) We do not know the uniqueness of self-similar solution of (1.6) without
the assumption ||uq|x, < M. Concerning the non-uniqueness of self-similar solutions for
semilinear heat equations, we refer to [11].

(ii) For the properties of self-similar solutions to (1.1), we refer to [3, 9]. We also refer
to [1, 2, 10], where the self-similar solutions to the parabolic-elliptic problem have been
studied.

(iii) It is clear that, if M, oy, and Gy satisfy (1.4), then (1.7) holds. Thus, for a solution
v), constructed by Theorem 1, there exists a self-similar solution (u, v, ) of (1.6) with

(u,
a = [lugl|:-

Let (uq,vq) be a self-similar solution of (1.6), constructed by Theorem 2. By the
argument above, (uq, ) has the form

Uo(,t) = %% (%) and  vo(z,t) = Yq <%>

for z € R? and t > 0. We note here that
1
v lua (- )l = [I¢all, for t > 0.

From |Juq | x, < M, it follows that ¢, € LP(R?).
We consider the asymptotic behavior of solutions of (1.3) constructed by Theorem 1.

THEOREM 3. Let (u,v) be a solution of (1.3) constructed by Theorem 1. Assume, in
addition, that ug and v satisfy (1 + |z|*)ug € L'(R?) and Vvy € L*(R?). Let (uq,va)
be a self-similar solution of (1.6) with o = |lug||1, constructed by Theorem 2. Then there
exists o € (0,1/2) such that

(1.8) 7 Ju( ) — ua ()|l = O(t™7)  ast — .

In particular, |[tu(-Vt,t) — ¢a(-)|l, = Ot ) as t — .
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It is interesting to compare the results for the problem (1.1) and the problem

%:V-(Vu—qu), z€R2, >0,
(1.9) )

v

— = Av— 2 )

5 v—v+u, zreR* t>0

It has been shown by Nagai [7, 8] that every bounded solution of the problem (1.9) on
R? x [0,00) decays to zero and behaves like a constant multiple of the heat kernel as
t — oo. The large time behavior for higher dimensional case is also studied in [8].

Theorems 1 and 2 are proven by employing the contraction mapping argument in
suitable function spaces. We prove Theorem 3 by estimating the terms in the integral
equations. We will give the proofs of Theorems 1 and 2 in Section 2, and we prove
Theorem 3 in Section 3.

2. Proofs of Theorems 1 and 2. First we recall LP—L? estimates for the heat semi-
group, which are proved by Young’s inequality for convolution.

LEMMA 2.1 Let 1 <qg<p<oo and f € LY(R?). Then
(i_1
(2.1) e fllp < (4mt) =21 £,
S(l_1y_1 .
(2.2) 19562 fllp < Clo, @)t~ fllgy 5 =1,2,
where C(p, q) is a positive constant depending only on p and q.

Let
Xp = {u:(0,00) — LP(R?) : supt' ™7 |u(t)||, < oo}
t>0

with p € (4/3,2). Define [ - || x, by
_1
lullx, = sup ' =7 [fu(t)]|,.
>0
For u € X, and Vuy € L?(R?), we define v by
t
(2.3) v(t) = ePug + / =)y (s) ds,
0
and then ®(u) by
t
(2.4) ®(u)(t) = / (Velt=9)2) . (u(s)Vu(s)) ds.
0

In what follows, we put ¢ = p/(p — 1) for fixed p € (4/3,2). We denote by B(p, q) the
beta function.

LEMMA 2.2. (i) We have
(2.5) sup 45 Vo(t) g < Co([Vuollz + [lullx, ).
>

where

(2.6) Co = max{(47)"379), Co}, Co=2C(g,p)B(3-2,1).
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(ii) We have

(2.7) [®(u)x, < CoCr([Vuoll2 + l|ullx,)lulx,,
where
(2.8) ¢y = C(p, 1)B( - 1,1).

Proof. (i) From (2.3) we have
¢
dju(t) = e ;v + / et (s) ds
0
for j =1,2. From (2.1) and (2.2) we obtain

t
1001y < lled;v0ll, + / 105643 u(s) |, ds

Note that

By the definition ||Vul|, = [|01ullq + [|O2ul|4, we obtain
11 _(1_1 .
3 Ve(o)ll, < (4m)~ 3D Ve s +20(0, ) BE — 2, 1) Jullx,.
This implies that (2.5) holds.
(ii) By using of (2.2) and the Hélder inequality, we have

||<I>(U)(t)||p§/0 1(Ve™=2) - (u(s) Vo (s)) [ ds

< Cp.1) / (t - )3~ ¥ u(s) Vo(s)] ds

< C(p,1) / (t— )7~ % ||u(s)[|, | Vo(s) |l ds = C(p, DI

Note that

3 1

t
I< / (t— )5 4574 |lullx, (sup 24| Vo)
0 t>0

Thus we obtain

_1 1_1
vl e(u) ()], < Clp, 1)B(; — 5, %)||U||xp(§1>113t2 *[[Vollg)-

From (2.5) we obtain (2.7). m
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For u € X, and Vug € L?*(R?), define v and ®(u) by (2.3) and (2.4), respectively. For
u € X, define
o(t) = ePug + /O t e85 (s) ds
and then ®(a) by
O(a)(t) = /0 t(w(t*sm) - (a(s)Vi(s)) ds.
We obtain the following estimates.

LEMMA 2.3. (i) We have

(2.9) supt4 =3[ Vu(t) = Vi(b)lly < Collu—ilx,
>

where Cy is the constant given by (2.6).
(if) We have

(2.10) 1©(u) = (@)||x, < CoCi([[Vuoll2 + ullx, + lallx,) v —dllx,,
where Cy is the constant given by (2.8).

Proof. (i) By the definition of v and ¥, we see that

dy0(t) — B,(t) = /O 9,649 (u(s) — i(s)) ds

for j = 1,2. By (2.2) we have

¢
[070(t) = 8;5(8)l4 < Cla.p) / (t = 8)77 5 *lu(s) — a(s)]|, ds.
By a similar argument as in the proof of (i) of Lemma 2.2, we obtain
10;0() — B53(1)ly < 55 C(a,p)BE — 2, Lllu - alx,
Thus we obtain
5 Vo(t) = Vo(t)lg < 20(a0) B - 3, p)llu— dillx, = Collu—alx,.

In particular, (2.9) holds.
(ii) We see that

Then
[®(u)(t) — (@) )], = /O [(Vel=22) - ((u(s) — a(s)) Vo(s) |, ds

+ [ NT98) a(s) (Vols) = Vi) I ds = 1+ o
0
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By a similar argument as in the proof of (ii) of Lemma 2.2 we obtain

1 - 11
L <tv~'Cp,1)B(; — %,%)HU—UHXp(fugtz [[Vollg)
>

and
1 . 11 -
B <7100 )B(G - b D, (upetHVuls) - V(o))
From (i) of Lemma 2.2 and (i) of this lemma, it follows that
194 _ 194 _ _
I < 571 CoChlu— allx, (IVolla + llullx,) and Iy < 57 CoCylalx, Jlu — il x,
where C is the constant given by (2.8). Thus (2.10) holds. m

Proof of Theorem 1. We will show the existence of global solutions of the problem (1.3)
by applying the contraction mapping principle. We remark that X, is a Banach space
endowed with the metric | - || x,. Define

(2.11) Xpm = {u e Xp: [lulx, < M}.
For uw € X, ar, we define v and ®(u) by (2.3) and (2.4), respectively, and define the
operator ¥(u) by
(u)(t) = ePug — ®(u)(t).

For u € X, r, we have ||U(u)|x, < [le"®uollx, + || ()| x,. By (2.1) we have

e uo|lx, = supt'~F[le 2 ugll, < (4m) "7 [lugl < (4m) P ag.

>0
From (ii) of Lemma 2.2 we obtain ||®(u)||x, < CoCy (Bo + M)M. Then it follows from
the first part of (1.4) that
19(w)||x, < (4m)~ P ag + CoCi(fo + M)M < M.

This implies that W(u) € X, s for all u € X, ar.
Let u, @ € X,. From (ii) of Lemma 2.3, we have

1% (u) = ¥(a)llx, = |P(w) — @(@)llx, < CoCr(Bo +2M)lu — il.x,.

From the second part of (1.4), ¥ is contractive on X, ps. Then, by the contractive fixed
point theorem, there exists an element u € X, pr such that u = ¥(u). Define v by (2.3).
Then it follows that (u,v) is a unique solution of (1.3) such that [u||x, < M. =

Proof of Theorem 2. Define the set X, as by (2.11). For v € X, pr, we define v by

¢
(2.12) u(t) = / e(=)2(s) ds.
0
Define the operators ®(u) and ¥, (u) with o > 0, respectively, by (2.4) and
Vo (u)(t) = aG(t) — D(u)(t).
From the fact that ||G(-, 1), < (47#)417%), we have
laG (. 1)llx, = asupt'=F G (- 1), < (4m) "4 Pay.
>0

Then, from (ii) of Lemma 2.2 and the first part of (1.7), we obtain

W (u)llx, < (4m)~ " Pag + CoCLM? < M.
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This implies that WX, ;y C X, a. By a similar argument as in the proof of Theorem 1,
we see that W, is contractive on X, ps. Then, by the contractive fixed point theorem,
there exists an element u € X, 5s such that u = U(u). Define v by (2.12). Then it follows
that (u,v) is a solution of (1.6) and is unique in the class [jul[x, < M.

For A > 0, define (ux,vx) by (1.5). Then we easily see that (uy,vy) satisfies the
problem (1.6). Furthermore, from the fact ||ux(¢)||, = AT [w(A%) ||, we have |lux|x, =
lullx, < M for all X > 0. By the uniqueness, we obtain u = uy and v = vy for all A > 0.
This implies that (u,v) is a self-similar solution of (1.6). m

3. Proof of Theorem 3. First we show the following lemma.
LEMMA 3.1. Let o € (0,1/2). Then

(3.1) supt2~a (1 + )7 || VeLupl|, < oc.
t>0

Proof. From (2.1) we have
(L1
[8;¢* w0l = lle D0 llg < Ot~ 90012
for j =1,2. Then
lim 575 (14 6)7[9;¢ 20 ] < 0.
From Vuvg € L'(R?) and (2.1), we have
_(1-1
105 2 vollq = €™ Dju0llq < CE=17 ) [|9j00 1.
Then
: 1-1 o tA
lim 577 (14 ) [19;¢ S vol < oc.
Thus we obtain (3.1). =
Throughout this section, we put

Ao,y = sup 273 (1 4 1)7|| Ve vp,.
t>0

Let o € (0,1/2). For uw € X, and ¢ > 0, we define
1 -
lullxg ey = sup 5" % (1+5)7|[u(s)]p-
0<s<t
Let (u,v) and (uq, vs) be solutions of (1.3) and (1.6), respectively.
LEMMA 3.2. Let o € (0,1/2). For t > 0, we have

1_1 -

(3.2) Sup 57 (14 5)7[[Vo(s) = Vva(s)llq < Ao,e + Coollu — uallxs @),
<s<t

where

(33) OO,O' = 2C(Qap)B(% - %a % - 0)'

Proof. We see that
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for j = 1,2. Then it follows from (2.2) that
t
1950(t) = Bjva(t)llq < 195" v0llq +/0 10;¢"79% (u(s) — ua(s))llq ds

t
<03 2uall + Clap) [ (=9 Hue) ~ ua(ol ds.

We observe that

From the fact that

1+1¢ 4
(3.4) i < - fort>s,
14+s 7 s
we obtain
t t 1 2 1 1
/ (t—s)27ps? (145)7ds<t?(1+t)77 [ (t—s)2 psr "~ “ds
0 0
=t i1+t B(E -2, 1 —0)
Then

141 .
18;0(t) = jva(B)llg < 1056 vollq +12F3(1+8)"7C(q,p)B(3 = 2,3 — o)llu—tal xz(1)-
Thus we obtain (3.2). =

LEMMA 3.3. Let o € (0,1/2). For t > 0, we have

(3.5) [@(u) = @(ua)llxg @) < Ao.oCrolluallx, + A10Crollu — uallxg @),
where
Cio = Cp. B~ 1,1 — ),
and
(3.6) Aro = Co([[Veollz + llullx,) + Coolluallx, -

In (3.6), Co and Cy » are constants defined by (2.6) and (3.3), respectively.
Proof. We see that
1@ (u)(t) = ®(ua) (D)l

< [ UT2) - ws) V() — as) Ve (5)
< [ UT2) () = () Vo)l ds

+ [ NTE)  (wa()(Te(s) — Fea(s))pds = 1+ I
0
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By (2.2) and the Holder inequality, we have

I < C(p, 1)/0 (t—s) 3t

=

[(u(s) — ua(s))Vo(s)| ds

wjeo

<O, 1)/0 (t=5) 725 |[uls) — ua(s)llp Vo(s)ll, ds

wleo

< Cp, 1)/0 (t—s)"

From (3.4) it follows that

11 s 1_1
FhsTH (1) dsllu = wall g (sup D4 Tu(t) ).
>

t t
/(t—s)*%ﬁs—%(us)—vds St"(l—i—t)“’/ (t— ) 3t5s 37 qs
0 0
=t7F (14 0) 7 B(, — 5.3~ 0).
From (i) of Lemma 2.2, we have

_141 . 11
BN L <t i(1+)77Cp,)B(; — 3,5 — U)”U*UaHXg(t)(iggtz 1[[Vo(t)llq)

_141 o ~
<t a(14+4)77C1 o Co(||Vuollz + [[ull x, ) [[u — wallxg 1)-
By (2.2) and the Holder inequality, we have

I, < C(p,1) / (t = 5) 757 lua(s) (Vo(s) — Vav(s)) |1 ds
< C(p,1) / (t =) 55 [ua(s) |, Vo(s) — Vau(s)lly ds

t
SC(p,l)/ (t—s) 5 5573 (1 4 8) 77 ds|ual|x, Az.0,
0

where
Azy = (sup 273 (14 1)7||Vo(t) — Vua(t)[l,)-
t>0

It follows from (3.4) that
141 .

I <t 27 a(14t)77C(p, 1)B(% — %, % —0)||tuallx,A2.0-

From Lemma 3.2 we obtain
141 5

(3.8) I, <t 27a(141) Crolluallx, (Ao,e + Coollu — UaHXg(t))-
Combining (3.7) and (3.8), we obtain (3.5). =
Proof of Theorem 3. We see that

[u(s) = ua(s)llp = lleCuo — aG (- )], + () = D(ua) |-
By the arguments in the proofs of Theorems 1 and 2, we obtain

sup t'47 e ®ug — aG (- 1), < sup 5 [[ePug]l, + sup t1 7 | aG(-, 1), < co.
t>0 t>0 t>0

By [5, Lemma 2.1] we have
e ug — aG (-, )|, < Ct7 3| (2] + L)uol|1.
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Then we have

su%) t1+%(1 + )7l ug — aG (-, 1)|l, = Ag.p < 00
>

From Lemma 3.3 we obtain

39) v —uallxgt) < A2,0 + [|P(u) = P(ua)lxg ()
3.9
§ AQ,U + AO,a'Cl,aHuozHXp + Al,ocl,U”U - ua||Xg(t)~

We note here that Cy , — Cy and C , — C; as 0 — 0, where Cjy and C; are constants
defined by (2.6) and (2.8), respectively. Then, from (3.6) and Cy < Cj, we obtain

lim Ay, = Co([Vuoll2 + [lullx, ) + Colluallx, < Co(Bo +2M).
From the second part of (1.4), we find that Cy ,A; » < 1 for sufficient small ¢ > 0. Then
it follows from (3.9) that
A2,o‘ + AO,UCLU”UQHXP
1- Al,a'cl,a
This implies that [[u — ua|[xg () is bounded for all ¢ > 0. Thus we obtain
lu—uallx, <C(A+1)7 forallt>0

< oo fort>0.

lu = uallxg ) <

with some constant C' > 0. In particular, we conclude that (1.8) holds. =
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