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Abstract. We consider a nonlinear parabolic system modelling chemotaxis

ut = ∇ · (∇u − u∇v), vt = ∆v + u

in R
2, t > 0. We first prove the existence of time-global solutions, including self-similar solutions,

for small initial data, and then show the asymptotically self-similar behavior for a class of general

solutions.

1. Introduction. We are concerned with the large time behavior of solutions to the

Cauchy problem for the following system of partial differential equations:

(1.1)















∂u

∂t
= ∇ · (∇u− u∇v), x ∈ R2, t > 0,

∂v

∂t
= ∆v + u, x ∈ R2, t > 0.

On the system we impose initial conditions

(1.2) u(x, 0) = u0, v(x, 0) = v0, x ∈ R2,

where u0 ≥ 0 and v0 ≥ 0.

The system (1.1) is a mathematical model describing chemotaxis, that is, the directed

movement of an organism in response to gradients of a chemical attractant (see [6, 12,

4]). The function u(x, t) ≥ 0 corresponds to the population of the organism at the place

x ∈ R2 and time t > 0, and v(x, t) ≥ 0 to the concentration of the chemical.
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The existence of local and global in time solutions, including self-similar solutions,

of the problem (1.1)–(1.2) has been studied by Biler [3]. In this paper we show the

asymptotically self-similar behavior for a class of general solutions of (1.1)–(1.2).

We write (1.1)–(1.2) in the form of the integral equation

(1.3)



















u(t) = et∆u0 −
∫ t

0

(∇e(t−s)∆) · (u(s)∇v(s)) ds,

v(t) = et∆v0 +

∫ t

0

e(t−s)∆u(s) ds,

where

(et∆f)(x) =

∫

R2

G(x− y, t)f(y)dy

and G(x, t) is the heat kernel

G(x, t) =
1

4πt
exp

(

−|x|2
4t

)

.

In what follows, ‖ · ‖p represents the norm of Lp(R2) for 1 ≤ p ≤ ∞. For u : R2 → R,

we use the notations ∇u = (∂1u, ∂2u) and ‖∇u‖p = ‖∂1u‖p + ‖∂2u‖p, where ∂j = ∂/∂xj .

We look for mild solutions (u, v) of (1.3) in the class u ∈ Xp with p ∈ (4/3, 2),

where Xp is the set of Bochner measurable functions u : (0,∞) → Lp(R2) such that

supt>0 t
1− 1

p ‖u(t)‖p < ∞. We will obtain v according to the second formula in (1.3) for

u ∈ Xp. Define ‖ · ‖Xp
by

‖u‖Xp
= sup

t>0
t1−

1

p ‖u(t)‖p.

Throughout this paper, p ∈ (4/3, 2) is fixed. First we show the existence of time global

solution of (1.3) with u0 ∈ L1(R2) and ∇v0 ∈ L2(R2).

Theorem 1. Assume that constants M > 0, α0 > 0, and β0 ≥ 0 satisfy the inequalities

(1.4)
α0

(4π)1−
1

pM
+ C̃0C1(β0 +M) ≤ 1 and C̃0C1(β0 + 2M) < 1,

where positive constants C̃0 and C1 are given below in Lemma 2.2. Suppose that u0 ∈
L1(R2) and ∇v0 ∈ L2(R2) satisfy ‖u0‖1 ≤ α0 and ‖∇v0‖2 ≤ β0. Then there exists

a unique global solution (u, v) of (1.3) such that ‖u‖Xp
≤M .

The system (1.1) is invariant under the similarity transformation

(1.5) uλ(x, t) = λ2u(λx, λ2t) and vλ(x, t) = v(λx, λ2t)

for λ > 0, that is, if (u, v) is a solution of (1.1) then so is (uλ, vλ). A solution (u, v) is

said to be self-similar, when the solution is invariant under this transformation, that is,

u(x, t) ≡ uλ(x, t) and v(x, t) ≡ vλ(x, t) for all λ > 0. Letting λ = 1/
√
t, and putting

φ(x) = u(x, 1) and ψ(x) = v(x, 1), we find that the self-similar solution (u, v) has the

form

u(x, t) =
1

t
φ

(

x√
t

)

and v(x, t) = ψ

(

x√
t

)

for x ∈ R2 and t > 0.
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Let us consider the problem

(1.6)















u(t) = αG(·, t) −
∫ t

0

(∇e(t−s)∆) · (u(s)∇v(s)) ds,

v(t) =

∫ t

0

e(t−s)∆u(s) ds,

where α is a positive constant and G is the heat kernel. We show the existence of the

self-similar solutions of (1.6).

Theorem 2. Assume that constants M > 0 and α0 > 0 satisfy the inequalities

(1.7)
α0

(4π)1−
1

pM
+ C̃0C1M ≤ 1 and 2C̃0C1M < 1,

where positive constants C̃0 and C1 are the same as in Theorem 1. Then, for α ∈ (0, α0],

there exists a unique self-similar solution (uα, vα) of (1.6) such that ‖uα‖Xp
≤M .

Remark 1. (i) We do not know the uniqueness of self-similar solution of (1.6) without

the assumption ‖uα‖Xp
≤M . Concerning the non-uniqueness of self-similar solutions for

semilinear heat equations, we refer to [11].

(ii) For the properties of self-similar solutions to (1.1), we refer to [3, 9]. We also refer

to [1, 2, 10], where the self-similar solutions to the parabolic-elliptic problem have been

studied.

(iii) It is clear that, if M , α0, and β0 satisfy (1.4), then (1.7) holds. Thus, for a solution

(u, v), constructed by Theorem 1, there exists a self-similar solution (uα, vα) of (1.6) with

α = ‖u0‖1.

Let (uα, vα) be a self-similar solution of (1.6), constructed by Theorem 2. By the

argument above, (uα, vα) has the form

uα(x, t) =
1

t
φα

(

x√
t

)

and vα(x, t) = ψα

(

x√
t

)

for x ∈ R2 and t > 0. We note here that

t1−
1

p ‖uα(·, t)‖p = ‖φα‖p for t > 0.

From ‖uα‖Xp
≤M , it follows that φα ∈ Lp(R2).

We consider the asymptotic behavior of solutions of (1.3) constructed by Theorem 1.

Theorem 3. Let (u, v) be a solution of (1.3) constructed by Theorem 1. Assume, in

addition, that u0 and v0 satisfy (1 + |x|2)u0 ∈ L1(R2) and ∇v0 ∈ L1(R2). Let (uα, vα)

be a self-similar solution of (1.6) with α = ‖u0‖1, constructed by Theorem 2. Then there

exists σ ∈ (0, 1/2) such that

(1.8) t1−
1

p ‖u(·, t) − uα(·, t)‖p = O(t−σ) as t→ ∞.

In particular, ‖tu(·
√
t, t) − φα(·)‖p = O(t−σ) as t→ ∞.
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It is interesting to compare the results for the problem (1.1) and the problem

(1.9)















∂u

∂t
= ∇ · (∇u− u∇v), x ∈ R2, t > 0,

∂v

∂t
= ∆v − v + u, x ∈ R2, t > 0.

It has been shown by Nagai [7, 8] that every bounded solution of the problem (1.9) on

R2 × [0,∞) decays to zero and behaves like a constant multiple of the heat kernel as

t→ ∞. The large time behavior for higher dimensional case is also studied in [8].

Theorems 1 and 2 are proven by employing the contraction mapping argument in

suitable function spaces. We prove Theorem 3 by estimating the terms in the integral

equations. We will give the proofs of Theorems 1 and 2 in Section 2, and we prove

Theorem 3 in Section 3.

2. Proofs of Theorems 1 and 2. First we recall Lp–Lq estimates for the heat semi-

group, which are proved by Young’s inequality for convolution.

Lemma 2.1 Let 1 ≤ q ≤ p ≤ ∞ and f ∈ Lq(R2). Then

(2.1) ‖et∆f‖p ≤ (4πt)−( 1

q
− 1

p
)‖f‖q,

(2.2) ‖∂je
t∆f‖p ≤ C(p, q)t−( 1

q
− 1

p
)− 1

2 ‖f‖q, j = 1, 2,

where C(p, q) is a positive constant depending only on p and q.

Let

Xp = {u : (0,∞) → Lp(R2) : sup
t>0

t1−
1

p ‖u(t)‖p <∞}

with p ∈ (4/3, 2). Define ‖ · ‖Xp
by

‖u‖Xp
= sup

t>0
t1−

1

p ‖u(t)‖p.

For u ∈ Xp and ∇v0 ∈ L2(R2), we define v by

(2.3) v(t) = et∆v0 +

∫ t

0

e(t−s)∆u(s) ds,

and then Φ(u) by

(2.4) Φ(u)(t) =

∫ t

0

(∇e(t−s)∆) · (u(s)∇v(s)) ds.

In what follows, we put q = p/(p − 1) for fixed p ∈ (4/3, 2). We denote by B(p, q) the

beta function.

Lemma 2.2. (i) We have

(2.5) sup
t>0

t
1

2
− 1

q ‖∇v(t)‖q ≤ C̃0(‖∇v0‖2 + ‖u‖Xp
),

where

(2.6) C̃0 = max{(4π)−( 1

2
− 1

q
), C0}, C0 = 2C(q, p)B( 3

2 − 2
p
, 1

p
).
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(ii) We have

(2.7) ‖Φ(u)‖Xp
≤ C̃0C1(‖∇v0‖2 + ‖u‖Xp

)‖u‖Xp
,

where

(2.8) C1 = C(p, 1)B( 1
p
− 1

2 ,
1
2 ).

Proof. (i) From (2.3) we have

∂jv(t) = et∆∂jv0 +

∫ t

0

∂je
(t−s)∆u(s) ds

for j = 1, 2. From (2.1) and (2.2) we obtain

‖∂jv(t)‖q ≤ ‖et∆∂jv0‖q +

∫ t

0

‖∂je
(t−s)∆u(s)‖q ds

≤ (4πt)
1

q
− 1

2 ‖∂jv0‖2 + C(q, p)

∫ t

0

(t− s)
1

q
− 1

p
− 1

2 ‖u(s)‖p ds.

Note that
∫ t

0

(t− s)
1

q
− 1

p
− 1

2 ‖u(s)‖p ds ≤
∫ t

0

(t− s)
1

q
− 1

p
− 1

2 s
1

p
−1 ds ‖u‖Xp

= t
1

q
− 1

2B( 3
2 − 2

p
, 1

p
)‖u‖Xp

.

By the definition ‖∇u‖q = ‖∂1u‖q + ‖∂2u‖q, we obtain

t
1

2
− 1

q ‖∇v(t)‖q ≤ (4π)−( 1

2
− 1

q
)‖∇v0‖2 + 2C(q, p)B( 3

2 − 2
p
, 1

p
)‖u‖Xp

.

This implies that (2.5) holds.

(ii) By using of (2.2) and the Hölder inequality, we have

‖Φ(u)(t)‖p ≤
∫ t

0

‖(∇e(t−s)∆) · (u(s)∇v(s))‖p ds

≤ C(p, 1)

∫ t

0

(t− s)
1

p
− 3

2 ‖u(s)∇v(s)‖1 ds

≤ C(p, 1)

∫ t

0

(t− s)
1

p
− 3

2 ‖u(s)‖p‖∇v(s)‖q ds ≡ C(p, 1)I.

Note that

I ≤
∫ t

0

(t− s)
1

p
− 3

2 s−
1

2 ‖u‖Xp
(sup

t>0
t

1

2
− 1

q ‖∇v‖q)

= t
1

p
−1B( 1

p
− 1

2 ,
1
2 )‖u‖Xp

(sup
t>0

t
1

2
− 1

q ‖∇v‖q).

Thus we obtain

t1−
1

p ‖Φ(u)(t)‖p ≤ C(p, 1)B( 1
p
− 1

2 ,
1
2 )‖u‖Xp

(sup
t>0

t
1

2
− 1

q ‖∇v‖q).

From (2.5) we obtain (2.7).
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For u ∈ Xp and ∇v0 ∈ L2(R2), define v and Φ(u) by (2.3) and (2.4), respectively. For

ũ ∈ Xp, define

ṽ(t) = et∆v0 +

∫ t

0

e(t−s)∆ũ(s) ds

and then Φ(ũ) by

Φ(ũ)(t) =

∫ t

0

(∇e(t−s)∆) · (ũ(s)∇ṽ(s)) ds.

We obtain the following estimates.

Lemma 2.3. (i) We have

(2.9) sup
t>0

t
1

2
− 1

q ‖∇v(t) −∇ṽ(t)‖q ≤ C̃0‖u− ũ‖Xp
,

where C̃0 is the constant given by (2.6).

(ii) We have

(2.10) ‖Φ(u) − Φ(ũ)‖Xp
≤ C̃0C1(‖∇v0‖2 + ‖u‖Xp

+ ‖ũ‖Xp
)‖u− ũ‖Xp

,

where C1 is the constant given by (2.8).

Proof. (i) By the definition of v and ṽ, we see that

∂jv(t) − ∂j ṽ(t) =

∫ t

0

∂je
(t−s)∆(u(s) − ũ(s)) ds

for j = 1, 2. By (2.2) we have

‖∂jv(t) − ∂j ṽ(t)‖q ≤ C(q, p)

∫ t

0

(t− s)
1

q
− 1

p
− 1

2 ‖u(s) − ũ(s)‖p ds.

By a similar argument as in the proof of (i) of Lemma 2.2, we obtain

‖∂jv(t) − ∂j ṽ(t)‖q ≤ t
1

q
− 1

2C(q, p)B( 3
2 − 2

p
, 1

p
)‖u− ũ‖Xp

.

Thus we obtain

t
1

2
− 1

q ‖∇v(t) −∇ṽ(t)‖q ≤ 2C(q, p)B( 3
2 − 2

p
, 1

p
)‖u− ũ‖Xp

= C0‖u− ũ‖Xp
.

In particular, (2.9) holds.

(ii) We see that

Φ(u)(t) − Φ(ũ)(t) =

∫ t

0

(∇e(t−s)∆) · (u(s)∇v(s) − ũ(s)∇ṽ(s)) ds

=

∫ t

0

(∇e(t−s)∆) · ((u(s) − ũ(s))∇v(s) − ũ(s)(∇v(s) −∇ṽ(s)) ds.

Then

‖Φ(u)(t) − Φ(ũ)(t)‖p =

∫ t

0

‖(∇e(t−s)∆) · ((u(s) − ũ(s))∇v(s)‖p ds

+

∫ t

0

‖(∇e(t−s)∆) · ũ(s) (∇v(s) −∇ṽ(s)) ‖p ds ≡ I1 + I2.
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By a similar argument as in the proof of (ii) of Lemma 2.2 we obtain

I1 ≤ t
1

p
−1C(p, 1)B( 1

p
− 1

2 ,
1
2 )‖u− ũ‖Xp

(sup
t>0

t
1

2
− 1

q ‖∇v‖q)

and

I2 ≤ t
1

p
−1C(p, 1)B( 1

p
− 1

2 ,
1
2 )‖ũ‖Xp

(sup
t>0

t
1

2
− 1

q ‖∇v(s) −∇ṽ(s)‖q).

From (i) of Lemma 2.2 and (i) of this lemma, it follows that

I1 ≤ t
1

p
−1C̃0C1‖u− ũ‖Xp

(‖∇v0‖2 + ‖u‖Xp
) and I2 ≤ t

1

p
−1C̃0C1‖ũ‖Xp

‖u− ũ‖Xp
,

where C1 is the constant given by (2.8). Thus (2.10) holds.

Proof of Theorem 1. We will show the existence of global solutions of the problem (1.3)

by applying the contraction mapping principle. We remark that Xp is a Banach space

endowed with the metric ‖ · ‖Xp
. Define

(2.11) Xp,M = {u ∈ Xp : ‖u‖Xp
≤M}.

For u ∈ Xp,M , we define v and Φ(u) by (2.3) and (2.4), respectively, and define the

operator Ψ(u) by

Ψ(u)(t) = et∆u0 − Φ(u)(t).

For u ∈ Xp,M , we have ‖Ψ(u)‖Xp
≤ ‖et∆u0‖Xp

+ ‖Φ(u)‖Xp
. By (2.1) we have

‖et∆u0‖Xp
= sup

t>0
t1−

1

p ‖et∆u0‖p ≤ (4π)−(1− 1

p
)‖u0‖1 ≤ (4π)−(1− 1

p
)α0.

From (ii) of Lemma 2.2 we obtain ‖Φ(u)‖Xp
≤ C̃0C1(β0 + M)M . Then it follows from

the first part of (1.4) that

‖Ψ(u)‖Xp
≤ (4π)−(1− 1

p
)α0 + C̃0C1(β0 +M)M ≤M.

This implies that Ψ(u) ∈ Xp,M for all u ∈ Xp,M .

Let u, ũ ∈ Xp. From (ii) of Lemma 2.3, we have

‖Ψ(u) − Ψ(ũ)‖Xp
= ‖Φ(u) − Φ(ũ)‖Xp

≤ C̃0C1(β0 + 2M)‖u− ũ‖Xp
.

From the second part of (1.4), Ψ is contractive on Xp,M . Then, by the contractive fixed

point theorem, there exists an element u ∈ Xp,M such that u = Ψ(u). Define v by (2.3).

Then it follows that (u, v) is a unique solution of (1.3) such that ‖u‖Xp
≤M .

Proof of Theorem 2. Define the set Xp,M by (2.11). For u ∈ Xp,M , we define v by

(2.12) v(t) =

∫ t

0

e(t−s)∆u(s) ds.

Define the operators Φ(u) and Ψα(u) with α > 0, respectively, by (2.4) and

Ψα(u)(t) = αG(·, t) − Φ(u)(t).

From the fact that ‖G(·, t)‖p ≤ (4πt)−(1− 1

p
), we have

‖αG(·, t)‖Xp
= α sup

t>0
t1−

1

p ‖G(·, t)‖p ≤ (4π)−(1− 1

p
)α0.

Then, from (ii) of Lemma 2.2 and the first part of (1.7), we obtain

‖Ψα(u)‖Xp
≤ (4π)−(1− 1

p
)α0 + C̃0C1M

2 ≤M.
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This implies that ΨXp,M ⊂ Xp,M . By a similar argument as in the proof of Theorem 1,

we see that Ψα is contractive on Xp,M . Then, by the contractive fixed point theorem,

there exists an element u ∈ Xp,M such that u = Ψ(u). Define v by (2.12). Then it follows

that (u, v) is a solution of (1.6) and is unique in the class ‖u‖Xp
≤M .

For λ > 0, define (uλ, vλ) by (1.5). Then we easily see that (uλ, vλ) satisfies the

problem (1.6). Furthermore, from the fact ‖uλ(t)‖p = λ1− 1

p ‖u(λ2t)‖p, we have ‖uλ‖Xp
=

‖u‖Xp
≤M for all λ > 0. By the uniqueness, we obtain u ≡ uλ and v ≡ vλ for all λ > 0.

This implies that (u, v) is a self-similar solution of (1.6).

3. Proof of Theorem 3. First we show the following lemma.

Lemma 3.1. Let σ ∈ (0, 1/2). Then

(3.1) sup
t>0

t
1

2
− 1

q (1 + t)σ‖∇et∆v0‖q <∞.

Proof. From (2.1) we have

‖∂je
t∆v0‖q = ‖et∆∂jv0‖q ≤ Ct−( 1

2
− 1

q
)‖∂jv0‖2

for j = 1, 2. Then

lim
t→0

t
1

2
− 1

q (1 + t)σ‖∂je
t∆v0‖q <∞.

From ∇v0 ∈ L1(R2) and (2.1), we have

‖∂je
t∆v0‖q = ‖et∆∂jv0‖q ≤ Ct−(1− 1

q
)‖∂jv0‖1.

Then

lim
t→∞

t
1

2
− 1

q (1 + t)σ‖∂je
t∆v0‖q <∞.

Thus we obtain (3.1).

Throughout this section, we put

A0,σ = sup
t>0

t
1

2
− 1

q (1 + t)σ‖∇et∆v0‖q.

Let σ ∈ (0, 1/2). For u ∈ Xp and t > 0, we define

‖u‖Xσ
p
(t) = sup

0<s≤t

s1−
1

p (1 + s)σ‖u(s)‖p.

Let (u, v) and (uα, vα) be solutions of (1.3) and (1.6), respectively.

Lemma 3.2. Let σ ∈ (0, 1/2). For t > 0, we have

(3.2) sup
0<s≤t

s
1

2
− 1

q (1 + s)σ‖∇v(s) −∇vα(s)‖q ≤ A0,σ + C0,σ‖u− uα‖Xσ

p
(t),

where

(3.3) C0,σ = 2C(q, p)B( 3
2 − 2

p
, 1

p
− σ).

Proof. We see that

∂jv(t) − ∂jvα(t) = ∂je
t∆v0 +

∫ t

0

∂je
(t−s)∆(u(s) − uα(s)) ds
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for j = 1, 2. Then it follows from (2.2) that

‖∂jv(t) − ∂jvα(t)‖q ≤ ‖∂je
t∆v0‖q +

∫ t

0

‖∂je
(t−s)∆(u(s) − uα(s))‖q ds

≤ ‖∂je
t∆v0‖q + C(q, p)

∫ t

0

(t− s)−
1

p
+ 1

q
− 1

2 ‖u(s) − uα(s)‖p ds.

We observe that
∫ t

0

(t− s)−
1

p
+ 1

q
− 1

2 ‖u(s) − uα(s)‖p ds ≤
∫ t

0

(t− s)
1

2
− 2

p s
1

p
−1(1 + s)−σ ds‖u− uα‖Xσ

p
(t).

From the fact that

(3.4)
1 + t

1 + s
≤ t

s
for t ≥ s,

we obtain
∫ t

0

(t− s)
1

2
− 2

p s
1

p
−1(1 + s)−σ ds ≤ tσ(1 + t)−σ

∫ t

0

(t− s)
1

2
− 2

p s
1

p
−1−σ ds

= t−
1

2
+ 1

q (1 + t)−σB( 3
2 − 2

p
, 1

p
− σ).

Then

‖∂jv(t)− ∂jvα(t)‖q ≤ ‖∂je
t∆v0‖q + t−

1

2
+ 1

q (1+ t)−σC(q, p)B( 3
2 − 2

p
, 1

p
− σ)‖u−uα‖Xσ

p
(t).

Thus we obtain (3.2).

Lemma 3.3. Let σ ∈ (0, 1/2). For t > 0, we have

(3.5) ‖Φ(u) − Φ(uα)‖Xσ

p
(t) ≤ A0,σC1,σ‖uα‖Xp

+A1,σC1,σ‖u− uα‖Xσ

p
(t),

where

C1,σ = C(p, 1)B( 1
p
− 1

2 ,
1
2 − σ),

and

(3.6) A1,σ = C̃0(‖∇v0‖2 + ‖u‖Xp
) + C0,σ‖uα‖Xp

.

In (3.6), C̃0 and C0,σ are constants defined by (2.6) and (3.3), respectively.

Proof. We see that

‖Φ(u)(t) − Φ(uα)(t)‖p

≤
∫ t

0

‖(∇e(t−s)∆) · (u(s)∇v(s) − uα(s)∇vα(s))‖p ds

≤
∫ t

0

‖(∇e(t−s)∆) · (u(s) − uα(s))∇v(s)‖p ds

+

∫ t

0

‖(∇e(t−s)∆) · (uα(s)(∇v(s) −∇vα(s))‖p ds ≡ I1 + I2.
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By (2.2) and the Hölder inequality, we have

I1 ≤ C(p, 1)

∫ t

0

(t− s)−
3

2
+ 1

p ‖(u(s) − uα(s))∇v(s)‖1 ds

≤ C(p, 1)

∫ t

0

(t− s)−
3

2
+ 1

p ‖u(s) − uα(s)‖p‖∇v(s)‖q ds

≤ C(p, 1)

∫ t

0

(t− s)−
3

2
+ 1

p s−
1

2 (1 + s)−σ ds‖u− uα‖Xσ

p
(t)(sup

t>0
t

1

2
− 1

q ‖∇v(t)‖q).

From (3.4) it follows that
∫ t

0

(t− s)−
3

2
+ 1

p s−
1

2 (1 + s)−σ ds ≤ tσ(1 + t)−σ

∫ t

0

(t− s)−
3

2
+ 1

p s−
1

2
−σ ds

= t−
1

2
+ 1

q (1 + t)−σB( 1
p
− 1

2 ,
1
2 − σ).

From (i) of Lemma 2.2, we have

I1 ≤ t−
1

2
+ 1

q (1 + t)−σC(p, 1)B( 1
p
− 1

2 ,
1
2 − σ)‖u− uα‖Xσ

p
(t)(sup

t>0
t

1

2
− 1

q ‖∇v(t)‖q)(3.7)

≤ t−
1

2
+ 1

q (1 + t)−σC1,σC̃0(‖∇v0‖2 + ‖u‖Xp
)‖u− uα‖Xσ

p
(t).

By (2.2) and the Hölder inequality, we have

I2 ≤ C(p, 1)

∫ t

0

(t− s)−
3

2
+ 1

p ‖uα(s)(∇v(s) −∇αv(s))‖1 ds

≤ C(p, 1)

∫ t

0

(t− s)−
3

2
+ 1

p ‖uα(s)‖p‖∇v(s) −∇αv(s)‖q ds

≤ C(p, 1)

∫ t

0

(t− s)−
3

2
+ 1

p s−
1

2 (1 + s)−σ ds‖uα‖Xp
A2,σ,

where

A2,σ = (sup
t>0

t
1

2
− 1

q (1 + t)σ‖∇v(t) −∇vα(t)‖q).

It follows from (3.4) that

I2 ≤ t−
1

2
+ 1

q (1 + t)−σC(p, 1)B( 1
p
− 1

2 ,
1
2 − σ)‖uα‖Xp

A2,σ.

From Lemma 3.2 we obtain

(3.8) I2 ≤ t−
1

2
+ 1

q (1 + t)−σC1,σ‖uα‖Xp
(A0,σ + C0,σ‖u− uα‖Xσ

p
(t)).

Combining (3.7) and (3.8), we obtain (3.5).

Proof of Theorem 3. We see that

‖u(s) − uα(s)‖p = ‖et∆u0 − αG(·, t)‖p + ‖Φ(u) − Φ(uα)‖p.

By the arguments in the proofs of Theorems 1 and 2, we obtain

sup
t>0

t1+
1

p ‖et∆u0 − αG(·, t)‖p ≤ sup
t>0

t1+
1

p ‖et∆u0‖p + sup
t>0

t1+
1

p ‖αG(·, t)‖p <∞.

By [5, Lemma 2.1] we have

‖et∆u0 − αG(·, t)‖p ≤ Ct
1

p
− 3

2 ‖(|x|2 + 1)u0‖1.
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Then we have

sup
t>0

t1+
1

p (1 + t)σ‖et∆u0 − αG(·, t)‖p ≡ A2,σ <∞.

From Lemma 3.3 we obtain

(3.9)
‖u− uα‖Xσ

p
(t) ≤ A2,σ + ‖Φ(u) − Φ(uα)‖Xσ

p
(t)

≤ A2,σ +A0,σC1,σ‖uα‖Xp
+A1,σC1,σ‖u− uα‖Xσ

p
(t).

We note here that C0,σ → C0 and C1,σ → C1 as σ → 0, where C0 and C1 are constants

defined by (2.6) and (2.8), respectively. Then, from (3.6) and C0 ≤ C̃0, we obtain

lim
σ→0

A1,σ = C̃0(‖∇v0‖2 + ‖u‖Xp
) + C0‖uα‖Xp

≤ C̃0(β0 + 2M).

From the second part of (1.4), we find that C1,σA1,σ < 1 for sufficient small σ > 0. Then

it follows from (3.9) that

‖u− uα‖Xσ

p
(t) ≤

A2,σ +A0,σC1,σ‖uα‖Xp

1 −A1,σC1,σ

<∞ for t > 0.

This implies that ‖u− uα‖Xσ
p
(t) is bounded for all t > 0. Thus we obtain

‖u− uα‖Xp
≤ C(1 + t)σ for all t > 0

with some constant C > 0. In particular, we conclude that (1.8) holds.
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