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Abstract. A priori estimates for solutions of a system describing the interaction of gravitation-
ally attracting particles with a self-similar pressure term are proved. The presented theory covers
the case of the model with diffusions that obey either Fermi—Dirac statistics or a polytropic one.

1. Introduction. We consider the following initial-boundary value problem:

(1) ng=V-(D(Vp+nVyp)) in Qx(0,00),
(2) Ap=n in Qx(0,00),
(3) (Vp+Vp) - v=¢p=0 on 00 x(0,00),
(4) n(0)=ng >0 in €,

where Q C R? is a bounded domain and the pressure is self-similar, i.e.

(5) p(n,0) = 0421 p(no=4/?).

Notice that due to (5) and a specific choice of the diffusion coefficient, [5], [1], [2],
(6) D=P,

the system (1) (4) can be transformed to the following one:

(7) ng=V-(0P? Vn+nP Vo) in Qx(0,00),

(8) Ap=n in Qx(0,00),

(9) (0P Vn+nP' Vo) - v=¢=0 on 0Qx (0,00),

(10) n(0)=np>0 in Q,
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with a given positive continuous temperature § = 6(t) and the nonnegative density of the
particles n = n(z,t) and gravitationally induced potential ¢ = ¢(z,t) to be solved for.

Numerous pressure formulas coming from statistical mechanics of self-interacting par-
ticles have been collected in [3] including Maxwell-Boltzmann, Bose-Einstein, Fermi-
Dirac and polytropic distributions. We list below all of them in a series of examples but
subsequently we shall focus on those P, which have the power of order 1+ 2/d as the
highest order term at infinity, i.e.,

(11) P(z) = p12' /% + R(2),

with R(z) = o(2'7?/%), as in examples 2 and 4 presented at the end of this section.

In [1] the authors proved the existence result for the specific choice of the diffu-
sion parameter D = P’ and density p corresponding to the Fermi-Dirac statistics in the
isothermal three-dimensional case § = const (cf. Example 2 below). Moreover, the asymp-
totic behaviour with the possibility of the evolution towards steady states was addressed
in [2] for nonisothermal case. The problem of existence of steady states was examined
in [7].

In this paper we will prove some a prior: estimates for the solutions of the problem
(7)—(10), both for the density n (Section 2) and for the temperature (Section 3) under the
assumption that at z = oo the leading term of the P(z) function is of the form p; z**+2/4
as in (11). Thus, the polytropic and the Fermi-Dirac cases are relevant examples. These
estimates cannot be derived from the paper [1] as the isothermal (6 = const) entropy,
used there to get L'T2/¢ bounds for n, is no longer an entropy if we allow nonconstant
temperature 6 = 6(t). Instead, in Section 2, we use the ‘asymptotic energy’ to get the
desired estimate. Finally, we relegate the technical properties of the Fermi—Dirac model
to Appendix.

The results presented here are also related to the problem of the existence of solutions
to (7)—(10) in the microcanonical (nonisothermal) setting, i.e. with the given energy and
the temperature to be determined so that the energy relation

(12) E= g/ DY P(n9 =2 da 4 %/ ny dx = const
Q

Q

is satisfied for ¢ = . This, however, is the subject of the forthcoming paper [9], and so
is not extensively addressed herein. For the related steady states problem one can see
[8]. In Section 3, we show in the main Theorem 3.2 that all the values of the energy
attained at ¢ = 0 are admissible at ¢ > 0, i.e., could be attained at some ¥ = (), under
the smallness assumption of mass fQ ndx < 1 which is crucial for the existence theorem
in the microcanonical case. The existence result can be interpreted that the no gravo-
thermal catastrophe occurs provided that the mass of the cloud of particles is relatively
small compared to the energy. The details on the existence theorem are postponed to [9].

A related Keller—Segel model of chemotaxis phenomena with nonlinear diffusion but
in the whole space was recently studied in [6], [10], [11]. Note that this model corresponds
to the polytropic case and an analogous a priori estimate could be derived for the corre-
sponding Keller-Segel model provided that the diffusion and transport coefficients have
the required form.
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We end this section with a series of examples, in which the pressure has self-similar
form (5).

ExXAMPLE 1. For the Maxwell Boltzmann distributions
pus(n, 0) = On,

which follows after substitution in (5) Pysp = I. This classical Boltzmann relation leads
to the linear Brownian diffusion term An in (7) and, as such, will not be considered
herein.

EXAMPLE 2. For the Fermi—Dirac distributions one has

2
(13) Prp(z) = %(fd/z ° fgf/lg,l) (;Z>
implying, by (5),
2
(14) prp(n, 0) = %9d/2+1(fd/2 ° fd_/1271) (Iugdn/z)

The function f, denotes the Fermi integral of order @ > —1 defined by
8] @
B y* dy
(15) = [ 5
This leads to a nonlinear diffusion in (7). Properties of Fermi integrals (15) (convexity,
asymptotics, etc.) relevant to study the system (1)—(4) are collected in [1, Sec. 2] and |2,
Sec. 5], and our Appendix. In this case the leading term coefficient, being the limit of

Ppp(2)z=172/4 as z — oo, equals p; = ﬁ(%)wd, where 1 = nOZd/ZGag and G is the
gravitational constant, o4 the measure of a unit sphere in R%, and 79 a bound on the
density in the (z,v) phase space. For the origins of the derivation of the simplified model

(7)—(10) in the Fermi-Dirac case, see the argument at the end of Appendix.

EXAMPLE 3. An analogous construction is used to define the Bose Einstein distributions
whose properties, however, differ from those of Fermi Dirac ones,

" _ 2

Pas(z) = Haaz0 g3 (22):

implying
" _ 2 n
(16) pEE(n,0) = Eed/erl(gd/Q ©9y/a1) (; m)
which leads again to a nonlinear diffusion in (7). Here g, denotes the Bose—Einstein
integral of order o > —1 (cf. [3, Sec. 2]) defined, for z < 0, by
o La
y*dy

17 a(z) = .
(7) ol = [ S5

In this case, however, due to the fact that, for « > 0, G = sup, ( ga(%) is finite, ppg could
2

Wi
here, this case is excluded from our further considerations.

only be defined for < G. Thus, since the asymptotic condition (11) is irrelevant

EXAMPLE 4. Polytropes are classical equations of state of a gas with

(18) Priy(n,0) = 5,61 79/201 0
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with a polytropic constant x, > 0 and 0 < v < 2/d so that % > 0, which is physically a
natural condition. The limit value v = 2/d leads to the pressure

(19) P1y2/4a(n,0) = fi2/dn1+2/d

independent of 6 and satisfies (11). The limit case v\, 0 corresponds to the Boltzmann
density-pressure relation (1). The polytropic relations define evolution equations with
nonlinear diffusions as, e.g., in the porous media equation.

2. A priori estimates for the density. In this section we generalize some of the results
obtained in [1], where the authors considered Fermi-Dirac density Prp and a constant
temperature 6, whereas here we treat more general pressure forms P and allow a variable
temperature 6 = 6(t).

First, note that, as a consequence of (3), total mass

(20) M = / (z,t)d

is conserved during the evolution of the solution to the system (7)—(10).

LEMMA 2.1. For any 2 < d < 4 we have the estimate
/ nedxr| < CleQ/d/ nit2/d g,
Q

Q
Proof. Apply the Sobolev—Gagliardo—Nirenberg and Hélder inequalities. m

(21)

Now, we shall prove some a priori estimate for L'*2/¢ norm of the density n. We will
derive it directly from the equations (7)—(10).

LEMMA 2.2. Assume that, for P € C*, (11) holds with R satisfying additionally the global
condition

(22) |R!(z)|21/271/1 < B.
Define the ‘asymptotic energy’ by

d 1
(23) EYt) == / prnt ¥ de 4 —/ np dz.

2 Q 2 Q
Then, there is a constant C > 0 such that, for any fired T > 0 and any ¢ € [0, T,

d
(24) ZE (1) gcod/Q/ |Ve|? da.
Q

Proof. Let t € [0,T] and recall that both P and P’ are continuous functions of nf~%/2

2/d

Now, we multiply (7) by %n and integrate over  to obtain

@ d 1+2/d
il d :_9 P12 2 Z/d—ld _/Pl 2/d . d .
2(d+2)dt/Qn x /Q |Vn|*n x ., n“/*Vn - Ve dzx
Similarly, multiplying (7) by Ag, we get

éi/mpdﬂ::—A/P’n |V<p|2dx—A9/P’2 Vn - Vedz.
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Summing up the above equalities and using the following Holder inequality:

/ Plol/2 pl/d-1/2v,, . v(p(971/2n1/d+1/2 +AP’01/2n’1/d+1/2)dx
Q

S/ {P129n2/d—1|vn|2+%|v¢|2(9—1/2n1/d+1/2+AP/91/2n—1/d+1/2)2}dx
Q

we arrive, taking A(d + 2)p; = d, at
d

(25) E-Eia(t) S ﬁ/ |V<p|2(AP/(91/2n_1/d+1/2 _ 9—1/2n1/d+1/2)2 dx
Q

This yields the claim with C' = ﬁ, by the assumption (22) together with (11)
implying P'(z) = (p1(d +2)/d)z*/¢ + R'(z). =

REMARK. Note that Lemma 2.2 holds in the polytropic case with R(z) = 0 as well as
in the Fermi-Dirac case. Indeed, from Lemma 4.2 in Appendix it follows that R'(z) =
O(z72?/4) at z = oo and |R'(2)| < B at z = 0. This implies |R'(z)| < Bz'/471/2 for
2<d<6.

REMARK. It should be noted that for the polytropic case Lemma 2.2 implies the dissi-
pation of the energy, since in this case E* = F defined by (12). Therefore this energy
conservation postulate makes no sense in this case. Note also the disappearance of the
temperature in the formula (19).

REMARK. The name ‘asymptotic energy’ used here for E® can be understood, under
monotonicity assumption (eg. (33)), as the property E%(t) = limy_,o+ E(t).
Applying the estimate (21) from Lemma 2.1 and integrating (24) from Lemma 2.2

allows us to derive the following proposition.

PROPOSITION 2.3. Under the assumptions of Lemma 2.2, for CM*~2/% < dp,, the inte-
gral form of the growth condition reads

(26) 0 < E%(t) < E*(0) exp (C(t)),
where C(t) = CM fot ed/2(5)d$ with, CM = m

Proof. Applying the estimate (21) we get, for CM'=2/¢ < dp,,

d 1
ad/2/ |V<p|2dxgCMed/2<—/p1n1+2/dda;—/ Vgo|2d:v>,
Q 2 Q 2 Q

where Cyy = Applying this estimate to (24) yields the claim.

2
dp C—1M2/d—1_71"

Combining Lemma 2.1 with the above proposition, we are ready to obtain an L'*2/4
estimate for the density n.

COROLLARY 2.4. Assume that (11) holds with the lower order term satisfying (22) and
take sufficiently small mass M*~2/4 < dp,. Then

/ n' /4 dy < By E*(0) exp (C(1)),
Q

where C(t) = Cyy fot 09/2(s)ds with some constants Byy, Cpy.
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Owing to Corollary 2.4, an L?-estimate is also available for n. This will be the claim
of the next lemma which has its origins in the paper [1|, where d = 3, P = Ppp and
6 = const. Here the dependence on variable § = 6(t), which was irrelevant in [1], is
meticulously examined and any dimension d > 2 is considered (2 < d < 6 for Prp).

LEMMA 2.5. Let T > 0, 2 < d < 4 and assume (11), (22),

(27) P'(2) > po
and
(28) P12 T < P(2) < po(2HH4 4 1),

Then, there is a constant A, coming from Sobolev embedding, and a constant C depending
on the initial data, bounds on ¥ € [a,b] and T such that, for t € [0,T] and AM*? < 1,

t
(29) In(t)|2 + apa(1 — AM4/d)/ |Vn|3 ds < C.
0
Proof. Let t € [0,T] and multiply (7) by 2n and integrate over {2 to obtain
d
—|n(t)|3 +20 / P |Vn|? do = -2 / nP' Vn -V dx.
Next, we have

2

/ nP' Vn -V dz
Q

1
<0 /P’2 |Vn|? do + — /n2 |Vel|? da
Q 0 Q

by the Young inequality, whence

d 1
(30) LR+ 0 / P2 |Vnf? dr < < / n2 [Vol? deo.

dt Q 0 Ja
From (28) we get 0%/2+1P(nf=%/2) > pin'+?/4 and using the Holder inequality and
Sobolev embeddings we obtain, setting || - || a norm in Hg(£2),

_2d_ _2d_
n? [Vol? < [n' 252 [Volie < n'*/9 %52 n)iun,
Q a—2 2 a—2 3d+2
< |9d/2+1p|§|n1+2/dlﬁM4/d < A |64 PR M
d—2 d—2
This estimate applied to the right-hand side of (30), by (28), yields
d A
SR+ apb(L =AM [ |VaP e < 0 PRMYY,
Q

which ends the proof if we integrate the above inequality with respect to time and apply
(28) and Corollary 2.4. =

REMARK. Note that after the modification of the proof the above theorem is also valid
for d = 2. Note also that while assumption (28) is satisfied both for Fermi—Dirac and
polytropic model, condition (27) holds only for Prp and is violated for polytropes in the
neighbourhood of 0.

REMARK. Lemma 2.5 implies also an L* bound by a standard bootstrap argument, cf.
[1, 9]. Those L™ estimates are rather crude, i.e. insensitive to the signs of the terms
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involved, differently from the case L1t2/4 or L? estimates presented above which took
advantage of the negative sign of the diffusion term.

3. Fixed energy problem. If we postulate conservation of the energy (12) some a pri-
ori bounds follow directly as was done e.g. in [1] in the Fermi-Dirac case and in [3] and
[4] in more general case. Recall the following version of energy estimates (for the proof
see [4, Lemma 3.1]) valid in dimensions d = 2, 3.

LEMMA 3.1. Let v = 4/(d(4 — d)). Provided that P(s) > p1s'*, for any 4p; > e >0
and all s > 0 the following estimate holds:

(31) E+CMY > max{a/ n1+2/ddx,/ |V90|2dx}.
Q Q

Finally, for each 0 < & < d/2
/ nedz
Q

Note that this lemma does not imply the estimates from Section 2 which were obtained

(32) E> 5/ 92+ P(ng=?) da + —CM*M™.
Q

without energy conservation claim directly from the equations (7)—(10). Corollary 2.4 is
of great importance not only for further improvement of the integrability and regularity
properties of the density (cf. Section 2 and [9]) but to establish what is the range of
the energy (12). This issue was not addressed in [4] where under physically acceptable
property of the pressure: g—g > 0 expressed as

(33) P(2)z 174N py >0

the authors proved only the uniqueness of the temperature ¢ defined by the energy
formula (12). Now, in the following theorem, we are going to show that all positive values
of the energy are attained for some value 9(t) = ¢ (we fix t > 0).

THEOREM 3.2. Assume that (11), (22), (27) and (33) hold. Then the temperature op-
erator T : 0 — 9 is formally well defined by (12) for M < 1 and all the values of the
energy E admissible at t = 0. Moreover, for d = 2,3, v = 4/(d(4 —d)) and some postitive
constants B, C, it has to satisfy

(34) E < BM'*¥d _ oMy,

Proof. We are going to show that E(J) can be defined for ¥ = ¥(t) > 0, with fixed ¢ > 0,
by (12). In fact, it maps (0, 00) onto interval (E%, 00) 3 E. To this end, define

(2/d)F /pdx—/p n'+2/d 4y

Then, by Proposition 2.3 and the identity F* = F(¥), for any positive E > 0
attained initially at ¢ =0

E(9) < F(9) + (E — F(90)) exp(C(#))

but due to assumption (33)
F(99) > F(0)=0.
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Since F(9) — 0 as 9 — 07, we have for small ¢

(35) EW) < E
provided M is small enough to guarantee, by (2.1), that
(36) (€(0) < 5

exp E—Fdy)’

Moreover, by (27), E(9) > (d/2)Mpod + (1/2) |, ne dz yields E(¥) — oo as ¥ — oo.
The existence of positive 1 such that the given, positive energy E is attained

EW) =E

is implied by the continuity with respect to ¢ which proves the claim. Finally, (34) is an
easy consequence of (31) and (28). =

REMARK. Note that all the assumptions are satisfied for the Fermi-Dirac pressure, the
superlinearity assumption fails for polytropes, which is natural since, as a matter of fact,
the temperature ¥ disappears in the formula (12) for the polytropic pressure.

Finally, we shall show some a priori estimates for the fixed points of the temperature
operator T in the case P satisfies (11). First, we recall after [3] that the functional W

(37) W= / <nH ( 1) PG‘W) dz

is a Lyapunov functional for the problem (7)—(8) under the energy constraint (12). The
function H(z) depending on z = nf~%? is a primitive of P’(z)/z. However, due to the
assumption (11) the leading terms in (37) of order 1+ 2/d cancel out, and lower order
terms do not provide any better a priori estimates for the density n than (31). On the
other hand, the entropy can be used to get a priori bounds for the temperature as was
done in [3]. The authors assumed there, for negative initial values of the entropy, that

(38) lizniggf (H(z) — (d/2+1)P(2)/z) > W(0)/M .
If (11) is fulfilled then as we announced the highest order terms cancel and, if the limit
exists
(39) zlggo H(z)—(d/ZQ—i-l)P(z) :zhj{)lo <H(z)—ngl(z)>
= lim (G(2) - (d/2)2G'(2)) € Go
where
(40) H(z) = h2?? + G(2)

with G’(z) = 0(2%/? — 1), we are left with the analysis of the lower order term G'(z) =
912% 4 0(2%) with some 8 < 2/d — 1. Namely, if 8 < 1 then Gy = 0 in (39), e.g. for the
Fermi-Dirac model in d = 2. Otherwise, if 5 € [-1,2/d — 1) then the important factor is
the sign of g1 which has to be positive, and indeed is, e.g. g1 = 1 —2/d in the Fermi-Dirac
case for d > 3, to imply Gy = —oo and thus to guarantee (38).
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4. Appendix on Fermi—Dirac model. To prove the asymptotics for the Fermi Dirac
pressure Prp we need to recall some asymptotic properties of Fermi functions. In [2,
Lemma 5.1] substitute z = —log(\) and f,(z) = I,(e ?) to get the following

LEMMA 4.1. The following asymptotic relations hold as z — oo:
ZaJrl

(41) foz(z) - a+1 - O(Zail)a

for each o > 0, while for each a > —1
a+2 72

(12) @ T2 ) - -
Moreover, we have the iterative relation for the derivatives

(43) fa(2) = afa—1(2).

Now the announced asymptotic result follows.

LEMMA 4.2. For the Fermi—Dirac pressure form Prp we have at z = 00

(44) wp(2) = 072

and

(45) Prp(2) = p12' 7+ 02179,
where p; = ﬁ(d/u)z/d. Moreover, at z =0, we have

(46) Rpp(2) = 0(1).

Proof. To prove (44), we need to apply Lemma 4.1. First, using formula (13) gives, for
w=frh (o),

. fajz—1(w)

We want to prove that

(Ppp(2) = pr(1 +2/d)24)2%4 = 0(1),
or equivalently, recalling that 2z = pfq/o—1(w) and (41), the boundedness of

(it 5+ () () )

In the above formula the first two terms, due to (41) (42), converge at co to some

constant. As for the next two, more detailed calculations are required. To this end we

2u? 2 2/d
a4 —plw(l + E) (%fdﬂl(w))

2w(w'/? + Afyg/o1(w)/?)
d ZZ;}J w2 /91 (w)(d=1=k)/d Ad—1-k

with A% = py(1+d/2)(11/2)*/® and the first term of order O(w®2~2) and the second one
(the fraction) like O(w?~%?2). Thus we have just obtained the claimed boundedness.

express

as

(W2 = A fyy5 1 (w))



214 R. STANCZY

Moreover,
Prp(2) = pratt2/d 4 @(z2/dd/2-1)
follows, by (41), from
fajalz) = %deﬂ + o2
and

22 /1= 2/d( £} (22/w)™? + O((f, (22/w)¥*72).

The last claim of this lemma (46) follows from the asymptotic behaviour of the Fermi
functions. Namely, from [2, Section 5] it follows that

fa(z) exp(z) = 0(z)
at z = 0 which guarantees (46), and ends the proof of this lemma. =

Now, we shall show how (7)—(10) could be derived, in the Fermi-Dirac case, from
(1)—(4) under the assumption (5) with a particular diffusion coefficient. Recall that both
in [1] and [5] the authors used

(48) D(\) = —Lgj2-1(N)

REY/Te

where I,,(e7%) = f,(2) is another version of the Fermi function and

2n
—1
)\ = Id/Q—l (M@d/2> .

Using the recurrence derivation property (43) (cf. also [2, Section 5] and [7, Lemma 1.1])
and (47), we recover claimed relation D = P'.

Moreover, it should be noted that in [1] and [2] the authors used the following notation
F’ = P2V = nP’. Note that D should be defined exactly as in (48), which might differ
throughout these papers up to an inessential constant.
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