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1. Introduction. In this paper we consider the extensively studied problem
—Au=uP +ek(z)u inQ,
(Ps,k) u>0 in Q,
u‘ag =0

where 2 is a smooth bounded domain in RV, N >4, p = (N +2)/(N —2) is the critical
Sobolev exponent, € > 0 and k € C?(Q) is a given function.

We are interested in the asymptotic behavior of blowing up solutions to (P: ) as
e —0.

Note that when €2 is star-shaped (with respect to 0), the Pohozaev identity yields the
nonexistence of solutions to (P. ;) if k(z) + 1z - Vk(z) < 0 for any = € Q.

On the other hand, solutions to (P j) on a general domain can be obtained by solving
the constrained minimization problem

Sk = inf {/ |Vu|?dx — E/ k(x)qux}. (1.1)
u€Hy (9) Q Q

”u”Lp+1 (Q):l

Let S denote the best Sobolev constant. Let € > 0 be sufficiently small so that the operator
—A—¢k(z) is coercive on HE () (for example, it would be enough that 0 < & < W
for some constant 0 < C' < 1, here A\1(f2) denotes the first eigenvalue of —A acting on

H}(2)). Then, Brezis and Nirenberg proved that the conditions
(1) k(z) > 0 somewhere on §2,
(2) Ser < S,
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(3) St is achieved

are equivalent ([2], see also [1]).

From now on, we assume the condition (1), thus the existence of a minimizer u? of
S. i is assured. We may assume u? > 0 by considering |u?|
when € > 0 small, thus the Lagrange multiplier rule and elliptic regularity assure that

u? (1.2)

if necessary. S is positive

N—2

Ue = (Ss,k) 4

is a smooth solution to (P ). We call (u.) the least energy solutions to the problem
(Ps,k)'

In the following we consider only least energy solutions obtained by the method of
Brezis and Nirenberg.

Note that the least energy solutions (. ) is also a minimizing sequence for the Sobolev
best constant S, by the fact that S. = S+ o(1) as ¢ — 0. Thus, by [3] Lemma I.1
and [7], it is known that (%.) concentrate at one point of : There exist A\. > 0 with
Ae — 0 (¢ — 0) and a. € Q with A\./dist(a., Q) — 0 (¢ — 0) such that, by choosing a
subsequence if necessary, a. — ao € 2 and

N-—-2

T, (1.3)

||V(ﬂ€ - aNPU)\E7aE)HL2(Q) — 0, where anN = (N(N — 2))

V. |> = §% 6, (1.4)

in the sense of Radon measures of  as ¢ — 0, where 0a., is a Dirac mass at a. € Q.
Here for A > 0 and a € , PU, ,(z) denotes the projection of Uy , to H}(Q2) defined by
PUy o =Uxa— pra € H} () where ¢y, is the harmonic extension of Uy 4|aa to €,

N-—-2
A 2 N
U)\’a(l‘) = <m) , xeRY,
is the unique (up to translation and dilation) positive solution of —AU = N(N — 2)UP
in RV,

Concentration phenomena in elliptic problems involving critical Sobolev exponents
like (P 1) are now widely studied. For the special case of k = 1, see [4], 7], [8] and [9].
The Robin function of the domain plays an important role in these studies. Han and Rey
showed that if (u.) is a family of solutions of (P- 1) which concentrate at a point as, € Q
in the sense of (1.4), then a is interior of 2 and is a critical point of the (positive) Robin
function

R(a) = H(a,a), a€q,
where H(x,a) is the regular part of the Green’s function G(z, a),

1

= =2y

|:L' - a|27N - G(Z, a)a

here wy is the (N — 1) dimensional volume of S N=1 By the maximum principle and the
Harnack inequality, we have

Cy < R(a)(dist(a, 00))N 72 < Cy (1.5)
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for some C7,Cy > 0 independent of a € Q. Thus R(a) — co as a — 9. More precisely,

we know N
1 1 - 1
Blen) = (2w (ﬁ> * "(dw)

as d,, = dist(an, 9Q) — 0 by ([8, (2.8)]).
Later in [9], it is proved that any blow up point of least energy solutions is a minimum
point of the Robin function on general bounded domains in RN, N > 4.
Recently, Molle and Pistoia [6] studied a more general problem,
—Au =uP + ek(z)u? in Q,
(Pl)qu>0 in Q,
U‘BQ =0
where ¢ > 1if N >5,¢g>1if N =4 and q # p.
They showed that if (u.) is a family of solutions of (P?,) which concentrate at a point
(s €  (interior point) in the sense of (1.3), then a is a critical point of the function

a—p

tq(a) = k(a){R(a)} =, acqQ.
In addition,

o k(as) > 0 if ¢ < p (subcritical perturbation), and
o k(as) < 0if ¢ > p (supercritical perturbation).

Furthermore, they showed the existence of a family of solutions of (P?,) which con-
centrates at some point in €} as ¢ — 0. Especially, if ¢ < p and maxgk > 0, then there
exists a family of solutions which concentrates at a maximum point of the function .

Now, our main result in this note is the following

THEOREM 1.1. Let N > 4. Assume that Qy = {a € Q : k(a) > 0} # ¢. Let (u.) be a
family of least energy solutions obtained by the method of Brezis-Nirenberg and aoo €
be a blow-up point of (u.) in the sense of (1.3). Then

(1) aso € Oy, and
—2
(2) as mazimizes the function 1 (a) = k(a){R(a)}¥-2,a € Q4 :
Y1(acc) = max (a).
Mainly, our proof is almost the same as in [9] in which we treated the case when
k =1, and the argument there originates from [5]. But there is also some improvement
compared to the former calculations in [9].

2. Asymptotic behavior of S, ;. In this section, we will obtain an asymptotic formula
of Sc ase — 0.
For a given sequence ¢, — 0, let ugn be a positive minimizer for (1.1) and define

N-—2
v, =54

0
U, -
— . . *
Then we see that v, and u., have the same concentration point as, and |Vv,|?dr —
N . =
S0, in the sense of measures on €.
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Now, by a result of Rey ([8, Proposition 2]), we know there exists (an, An,an) €
R; xRy x Q such that

vy, = o, PUy + wy, (2.1)

holds true for n large, where
N-—-2
an, —ay = (N(N—-2)) 1

Ap — Ooo,

A"L .
R 0 where d,, = dist(ay, 09),

Wy, S E)\n,ana

wy, — 01in H(Q)
as n — oo. Here for A > 0 and a € Q, we set PUy o = Uy o —¥ra € H}(Q) where ¢ , is
the harmonic extension of Uy 4|aq to €2, and

Em{weH&(Q Of/Vw VPU, . dx

/Vw V( PU)\a>d$ N
/Vw V<a>\PU>\a) dx}

AT
|orman (@) = o(dN) (2.9)

holds by the maximum principle for harmonic functions and

~—

Note that the estimate

N+2
2
PN, an ((ln) = (N — Q)WN)\ 2 R(an) + O()\dN ) (23)
by [8, Proposition 1].
Let
Ik :/ |an|2dx—€n/ k(m)vidw. (2.4)
Q Q
Then S;, ; = Si=% n.k, 50 in the following we calculate J,, ;, by using the expression
(2.1).

The first lemma concerns the H} norm of the main part and is well known, see [9].

s (1))

LEMMA 2.1. Let N > 4. We have
)\N

/ |VPUy, o, ?de = N(N —2)A — (N — 2)2w% R(a,)NY 2 4+ 0 <d—
Q n

as n — 0o, where

[ ey, TON/2) g
A= /R L Ubd'de = T :

Next we will prove
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LEMMA 2.2 (Asymptotic behavior of L? norm of the main part). When N > 5, we
have

/ k(:c)PUfmand:v = k(an)wnCNA2 +0(A\2)  asn — oo,
Q

where

ds =

o Nt r(E)r(&4)
CN:/O (1+ s2)N-2 TN —2)

When N = 4, we have

A2 A2
[ H@PUR, o = Kan a2 og |+ O (d—”| log w/?) e (d_>
Q n n
as n — Q.

Proof. We extend PU) to RV by setting PU,

Ux

i, and gy = 0 and @y

., Tespectively, in RV \ Q.
First we treat the case N > 5. We have

/k:(x)PUfmandx:/k(x)Ui“a"d:c—i—/k(ac)go?\manda:
Q Q Q

1/2 1/2
+ O<(/ Ui“a" dx) (/ Lpiman dx) > (2.5)
Q Q
|00 as=0( [ 030 dr) =000, (2:6)
Q RN

nsAn nsAn nsn T

We easily see

When N > 5, we can check that

9 >\N72
/ngAmandx = O(dz_‘l

Indeed, we represent the integral as

/ (pg\n,andx :/ <p§ngan dx +/ (pimandx'
Q Ba,, (an) O\ Ba,, (an)

Now,
/B o B = Olen, )0l By 02))
M\ V-2
B O((dﬁ*) 'd") - O(dﬁ“‘)
by (2.2), and

/ @%\n,an dr =0 (/ Ux\zn,an dm)
Q\Bdn (an) RN\Bdn (an)

> An N N-1 A2
of [, () ) =o(Gi=),

since 0 < @, .4, < Un,.a, in Qand oy, 4, = Uy, 4, on RY \ Q. Thus we obtain (2.7).
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By (2.6) and (2.7), we have

1/2 1/2
JRCE. da:+0<( [0 dx) ( [ A da:) )o(Ai»
Q Q ’ Q o

Now, we estimate the term fQ z)U? 5,.a, dz. We split the integral as

/ k:(x)Ufa dx = / k(:r:)U?\a dx + / k:(x)Ufa dx.
Q Bdn(an) Q\Bdn (an)

Making a Taylor expansion of k(z) on By, (a,), we have

[ k@R =ke) [ 03 et k) [ UF @ ads
Bdn(an) By, (an) B

dn (an)

+ /B o O OUT Kl e — )
d, (an

A calculation shows

U do—uy [ () g
/Bd,xan) A x_WN/o (A2+7‘2> B
et [ et
(1+s2)N-2 "\Jo " Jan,

SN 1
,wN)\ <C’N+O(‘/d //\n 71_'_82)]\,_2 ds>>

AN-2
= wyCn A2 —|—O<dN 4>
here we have used the assumption N > 5. Since the integrand is odd, we also have

/ U)\ruaw (x — ay,)dz = 0.
Ba,, (an)

Now, a direct calculation shows

dn \ N-2
|z — a,|*U3 dx:wN/ (471) N dy
/Bdn (an) n n,0n 0 )\% + r2

dn/An gN+1
= wN)\i/ ————ds
0 (

14 s2)N=2
and
da/An N+ o), N>T1,
/ Azt = OlogAn/dn)l), N =6,
’ OAN=6/dN~=%), N<6

Thus we obtain

/ K@)UZ, o de = k() wnCnA2 + o(A2)
Ba,, (an)
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as n — o0o. On the other hand, we estimate
‘ / K@)UZ, ., da| = o<||k||Lm / v . da:),
Q\Bdn (an) RN\Bdn (an)

</ A \V L AN-2
of [, (&3=) ) =o(3=)

as before when N > 5. Thus returning to (2.5), we have

/ k(z)PU3 . dz = k(an)wnCNAL + 0(A7)
Q

as n — o0.
When N =4, we argue as follows.
We fix a bounded domain @ 55 Q. Note that 3Cy > d,, := dist(a,,0Q) > Cy > 0
for all n since a,, € Q. Denote R = diam(Q). We extend k € C2(Q) to Q (which we also
denote by k) so that k € C?(Q).

A calculation shows

/ 5 r=L A2 5 ) s=L/\n $3
Ui . dx:w4/ " dT:(,U4)\n/ ————ds
Bu(ay r=0 (AR +72)? o (1+s2)2

1 1 s=L/A\p
= w2 {2 log(1 + s%) + 5(1 + 52)1]

S

1 1
_ 2 2 2
= wg; {QIOg()\nJrL )+ |log A\ | + 2()\2 +L2> — 2}
= wiA2|log A\, | + O(N2)

for n sufficiently large. Thus

/ Ufn_an dr = wi\2|log \| + O(A2) (2.8)
d, (an) /

since log(A\2 + d2) = O(1) as n — oo and

[ 0ade= ([ 0Rd0) =000, (29)
Q Bé(an)

Next, splitting the integral

/.. goiﬂwan dx = / winaan dx + /. gpin%hl dl"
Q Bljn (an) Q\BJn (an)

n

and estimating
/ (pin,an dr = O(H‘Pkn,an Le(Q) / PAnsan dx)
Bjn (an) BJ" (an)

VLT VR A2
o(#) [ wiwrer)=o(3)
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[ Auw=o( 03, )
\Bg, (an) Bpr(an)\Bg,, (an)

R A 2
— n 3 _ 2 1 r=
O(/n ()\EL—H“Q) r dr) O(X;, [logr],— ’

224

d
we have
3 .dr=0 Ay (2.10)
Q@An,an Xr = @ . .
Now, by (2.9) and (2.10), we have
/ k(z)PU3 , dx = / k(z)PU3 . dx (2.11)
Q Q
1/2 1/2
:/kz(yc)U)\2 u dx—i—O((/Uf mda:) (/(pina"dx) )
Q e a Q ’

+ [ MR, do
Q ns

2 AL An 1/2
= [ k(@)U o, dz+0O( =5 | +0 | log Ay, | .
Q nsan dn dn

Finally, as before we split the integral

k()U2 , dot / k@)U, .

/_ k(z)U3 . do = / ]
Q By, (an) N\B;, (an)

Taylor expansion of k(x) leads to
2o —ay)dz

/ K@)UZ, . dr = k(an) / U2 . di + Vk(ay) - / vz .
By (an) By (an) By, (an)

+ O(/ |z — an\2U§man dx)
Bd"n(an)

2
= k(an)/ U o, dx+0+0<d—g>
By, (an) n

n

2
= k(an)wi\2|log A\, | + O<d2 ),

2772 4 WA g i ()
x—an|°U5 d:r::w4)\n/ 7ds=O()\n-(—n> )
/Bd (an) | "o 0 (14 s2)2 An

since

and (2.8). On the other hand, we see that
2 . A ? 2 A

k(x)U adsz(/ < - >rdr>=0()\n):0< ")
/Q\Bd.n(an) A 4, \A% 712 7

since Cy > d,, > Cb. Going back to (2.11), we obtain Lemma 2.2 when N = 4. u

Since wy, € Ej, 4, (see (2.2)), we have

/|Wn|2dx=ai/ |VPU,\man|2dx+/ Vw2 da.
Q Q Q



BREZIS-NIRENBERG EQUATION 225

Also we can estimate

/ k(:r:)vfl dx = ai/ k(:r:)PUi“a” dz + O(||PUy, a,
Q Q

L2||wn|\L2)+/k($)widx
Q
and

enO([lwnlliz () = ollIVwnl72(a),

AN An AN-2
O(@ log (a) ) - O(_W),
enO(||PU, a, |12 |[wn| 12) = O(EY2 || PU, o, ||22) + O/ 2| Vw, [|22)
= 0(en||PUA, a, I72) + ([ Vwn|72)

by the Poincaré inequality. Combining these with Lemma 2.1 and Lemma 2.2, we have
the following lemma concerning J,, ; defined by (2.4):

LEMMA 2.3 (Asymptotic behavior of .J,, ;). We have

ok = / Vonl? da — <, / k()0 do
Q Q
= a2 {N(N —2)A — (N — 2)%wi R(an)\) 7% — enk(an)wnCn AL}
+ Vw22

N—2
+ 0<%) +o(en)2) asn — oo

n

when N > 5, and
Tk = a2 {84 — 4wiR(an) N2 — enk(an)wirZ|log A, |}
+ [IVwa |72

)\2

+ O<d_;) + O(HVMTLH%Q(Q)) + 0(ex X2 log A\n|)  asn — oo
n

when N = 4.

To proceed further, we need to know the precise asymptotic behavior of o, as n — oo.
This is the subject of the next lemma.

LEMMA 2.4 (Asymptotic behavior of o). As n — oo, we have
N2\ (3 Noo N2 .
O[i = a?\[ + 20{?\[ (T) (%)R(an))\n 2 m AN Ufnvan’wi d$

) )\N—2
+o([[Vwn||72(0)) +0<ﬁ>
—2 n

for N > 4, where ay = (N(N — 2)) =

Proof. After extending vy, PUx, q,, and w, by 0 outside (2, we have
SN/2 = / vﬁ"'l dx = / | PUA,, a0, + wn|p"'1 dx. (2.12)
Q RN

We set Wy, := —apnx, ,a, + Wy, here we extend @y, 4, to RY as Ux, a,, O0 RV \ Q.
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By expanding the right hand side of (2.12), we have

SN/2 — / (nUn, an + Wy)PHda
RN
:afjl/ s dx+(p+1)ag/ Uy W,dx
R RN ny¥n

s

1
4 et Dp )pap—l/ Ul w2 dy
RN

2 n An,@n
0 / |Wnp+1dx> (N > 6).
+ F (2.13)
0 / vl IWnIBdH/ |Wnp+1dx) (N =4,5).
RN o RN
First, we know
aﬁ“/ ULl dr=aBtl A (2.14)
RN ’
Next, by using the equation —AUy, 4, = ( 2) o in RY, we calculate
ot val [ VR Wods = / (CAUy, 0 )Wy do
RN o RN
L VU o, - VWyd
TR e VR
2aP

—92qPt1

= = / (VPUAn,an + v@)\n,an) : (_anV@)\man + an) dx
RN
_ &% 2

- (N _ 2)2 \/RN ‘V@An,7aw,| dz

= —20P 1WA R(a,) AN =2 + O()\

(V- 2)?
gios (22)

is a harmonic function on Q, w,, € F)

N

). (2.15)

Here we have used the fact that o) and

n,an n,an

/ |V<p,\man|2dx:/ |VU,\man\2dx—/ |VPUy, o, ? dx
RN RN

An
— 2.1
o8 (dn> D (2.16)
by Lemma 2.1.

The third term of (2.13) is calculated as follows: we split

/ Ut Wdef/ vt W2d:c+/U§’_}l W2de =1, + I.
RN nysvn RN\Q 7}7 n Q nyn

Since W,, = —a, Uy, 4, On RY \ Q, the first term is estimated as

I1:/ Uy~ ZWde—oz / Up+}l dm—O(/ U§+}1 dx)
RN\ rR¥\Q RN\Ba, (an) "

Now we compute

4 (VY aa o
oY dr = - Tdr=0( =% 2.17
/RN\Bd”(an) An,@n x WN /dn ()\%+7.2) r r (dN)’ ( )

N

= (N —2)%w% R(a,) AV~ 2+0<dN
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so we have
-1 g A
.[1 :/ Ufnvaan d$:O<d—N> (218)
RN\Q n
Next, substituting W,, by —o, ¢, .a,, + Wy in Iz, we have
I = / ULl w2 dx:ai/ Urt o2 dx+/ Url w?de
Q nysn Q ny¥n ’ RN ns¥n

1/2 1/2
+ O(( / Uf\’;inw% d:c) < / Uf;}lngaiman dx> > (2.19)
Q Q

The Hélder and the Sobolev inequalities imply

= T
/Ufm}lnwidx20<(/ Uf:}l dm) (/wﬁ'|r1 dx) )
Q RN o Q
= O(||Vwn|Z2(q))- (2.20)

When we estimate the first term on the right hand side of (2.19), we consider the
cases according to the dimension. First we assume N > 5. We split the integral

/ U PRa, 42 = / Uy a4 + / UL L Q3 o, doe (2.21)
Q T Ba, (an) " Q\Bg, (an)

Then,
/ Uf:y]én gpiwnan dﬂj = O<|gp)\n7an H%M(Q) ’ / Uf;;%ln dx)
Ba,, (an) Ba,, (an)

n \0n

N2—2 2 N
= 0<(A]’;2> -Aidﬁ)’—‘*) = 0(2—;) (2.22)

d 2
" A
Up~l do = wN/ (—") PNl dr = O(A2dN )
‘/Bdn (an) Ansn 0 )\% + 7“2

for N > 5. On the other hand, by (2.17),

)\N
[ w=o( [ o, ) =03 )
Q\Bdn (an) nan ’ RN\Bdn (an) n,an d

Thus we have

since

1 AN
/ US, o Pina, Az = O((ﬁ) (2.23)
Q n

when N > 5.
When N = 4, we have

[ A= 0(lora e [ U3 )
Ba,, (an) Ba,, (an)

o) () o)

1 1
/ ULl de = wy\? [—log(1+52) + —(1—}—52)_1}
Bu, (an) 2 2

Il

S
R
&’y
S®|Fw
~—

since

nAn

s=0
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So arguing as above, we have

1 A3
/Q U5 0 Ponan, 0 = O(d—§> (2.24)
when N = 4. Combining (2.23) and (2.24), we conclude
)\Nfl
/QUpn,anQDAn,aw dx = 0(#) (2.25)

when N > 4.
Returning to (2.19) with (2.20) and (2.25), and using the Young inequality

N—1 2N -3 1
)\n 2 )\n 2 )\n 2
() " iwetie=of(3) ) vo((ar) 1eetis)

)\N 2
/ vt W,%dx:/ Ut w dx+0< )+o(|VwII2Lz)~ (2.26)
RN nssUn RN d

Ansan

we have

Finally, by the Sobolev inequality and the inequality (a+b)! < C(al+0bt) for C = 2t-1
(a,b>0,t > 1), we have
41

/ Wn|p“dx:0<</ VWn|2dx> )
RN RN

O<</ IVor,.an 2dx+/ |an|2dx> )
RN RN
p+1 41

of(f o)) of ([ o0

So by (2.16) and the estimate of the Robin function (1.5),

)\712/—2 N]XQ
/RN (W, [P da = o((ng) ) +O(|\anHLz<m)

AN 9
_ O(dN) + o([[Vwnl[72(0))- (2.27)

When N = 4,5, we also need to estimate the term fRN Uf;in W32 dx. But the calcu-
lation is almost the same. Indeed, by the Hélder inequality and (2.27), we have

/ UP=2 \W,| de = 0((/ W, [P+ dx) ) X 0((/ Pt dx) )
RN non RN RN AnsQn

)\2] p+1 ﬁ
— (0(%) +otvulitta)) " <o)

n

)\N 3(12\[1;2) 3(N—2)
:O<<dyv>) +O(ITwnl i) "5
)\N72
= O<d1\r 2) +0(||an“L2(Q)) (2.28)

Here we have used the inequality (a + b)" < (a' 4 b*) for a,b > and 0 < ¢ < 1.
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Inserting (2.14), (2.15), (2.26), (2.27) (and (2.28) when N = 4,5) to (2.13), we obtain

AP A — 20271 W2 R(a,) AN 2
1
(p+Dp p_l/ Ul w2dr 4o

+ 2 O(n Ansan

SN/Q _
A
(=) +ollvulo)

n

1
= o’ we have

Dividing both sides by A and noting that S e
+1 1 1 2w12v N-2
o = abtl — bt e R(an) A~
+ 1 ap—l _ )\N—2
+ %HT - Ufminwidx—ko(ﬁ +o(|[Vwl|22).

(2.29)

O(dN%Q), we know

))\N—Z ozp+1R(a ))\N—2+0()\£1V_2>
N n;n N-2 |°

n
n

Since a2+l = ot 4 0(1) and R(a,) =

P R(ay,

Similarly, we have
p—1 p—1 2 _ p—1 p—1 2 2
al /NU wy, dr = oy /Nan,anwndeFO(”VWHH)-

R R

An,a

Substituting these in (2.29), we have
P+l ”“(2%2‘])]%(%))\2]_2

ag+1 = aN A
plp+1) ok’ 1 AN-2 )
5 A o Uf o w? dx + o i + o(||Vwl12),
which implies
2w 5 (p+1p / _
p+1 _ p+l N )\N 2 UP 1 2 4
ay, OéN { ( A ) ( ) QAOLN RN )\n,anwn €z

R
N
T o[V o) + ( 0 )

By Taylor expansion (1 + x)P% (z) as x — 0, we conclude that

2 2w? D _
2 2 Jq N A2 / p—1 2
{ + (p n 1) ( )R(a A, AT Jan Uy o, W dx

2 )\N
oI Vnl ) + o 3

as n — 00.
This completes the proof of Lemma 2.4. m
= SN/2 we obtain:

Combining Lemma 2.3 and Lemma 2.4, and noting a3, N(N —2)A
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PROPOSITION 2.5 (Asymptotic behavior of S, ). As n — oo, we have

Se, k= inf {/ |Vv\2dx—€n/ k(x)vgdx}
veHj () Q Q

||7J”Lp+l(n):1
— -5 — N -2\ (w} N-2
=58 n,k_s+s< < ><A>R(an))\n
SWNCN 2
— enk(an) <N(N — 2)A)>\"

+ S(Q—N)/2{|an”%2 — N(N + 2)/N Uf:}lwi dx}
R

/\N—Z ) ,
+ O<d§f—2) + O(HVUJn”L?(Q)) + o(enAy)

when N > 5, and

_ S (w3 9 Swy \ (o
557“]@ =95 + 5 (X)R(an))\n — Enk(an) (8—A )\n‘ log)\n|

+ S‘1{||an||i2 —24 /RN UR. a0 dx}

A
+ O<d_2) + O(HanH%z(Q)) + 0(g, A2 | log A |)
when N = 4.

To proceed further, we need the nondegeneracy result first shown by Rey ([8, Ap-
pendix DJ).

LEMMA 2.6 (Nondegeneracy inequality). There exists a constant C > 0 which depends
only on the dimension N such that for any wy, € Ex, 4.,

/ |Vw, |? dac—N(N—i—Z)/ Ul w?dr > C |Vw,|* dz.
RN RN Aman RN
Furthermore, we need the appropriate bound of the value S, ; from the above. The

following Lemma is proved by the same argument of Lemma 2.7 in [9], so we omit the
proof.

LEMMA 2.7 (Upper bound of S. ). For any a € Q4 = {a € Q : k(a) > 0} and p > 0,
there exists an €9 = €o(a, p) such that if € € (0,&¢), then

e (ool 53]

when N > 5, and

Sa,k SS_

Sek(a)wy S8waR(a) + ek(a)/e+2p
164e ( -= ek(a) >

when N = 4.
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3. Proof of Theorem. In this section, we prove Theorem 1.1.
The following elementary facts are important in the argument: for constants C'4,Cp
> 0, the function
NN =S+ C0aNY"2 - CpA?

has the unique global minimum value

min fy (A) = 5 — (ﬁ:g‘)cB((NiC;O)M (3.1)

when N > 5, and
fa(N) =854+ Ca\? —CA%log\|, 0<A<1,

has the unique global minimum value
. Cp 2Cy
= - - - '2
I)P;% f4()\) s ( 2e ) P ( CB > (3 )
when N = 4.

Now, we treat the case N > 5. Set
N -2\ [w? SwnCn
Ki=8—— )X Koy=——7-—.
! ( N )(A)’ > N(N-2)A
First, we prove that k(a,,) > 0 for n sufficiently large. Assume the contrary that there
exists a subsequence such that k(a,) < 0. In addition if k(a,) < —C < 0 for some C' > 0
independent of n, then Proposition 2.5 and Lemma 2.6 yield the inequality S, > S.
This is a contradiction to the fact S > S, i by Brezis and Nirenberg, see Introduction.
Thus k(a,) — 0 for every sequence with k(a,) <0.
On the other hand, by the result of Brezis and Nirenberg, Proposition 2.5, Lemma
2.6 and (1.5), we have C; > 0 independent of n such that

S>Se, k=S +CiAY 2 — (k(an) Kz + pn)enl
for some p,, > 0, p,, — 0. Therefore we have
Cg(n) :== Kyk(an) + pn >0
for n large. Thus by (3.1), we obtain

2

Connecting this with the upper bound
I
ngk S S — CQEn N4
for some C5 > 0, which is assured by Lemma 2.7, we have a contradiction since we have
seen that Cg(n) — 0 as n — 0. Thus we have proved k(a,) > 0 for n sufficiently large.
The same argument shows that when k(a,) > 0 for n sufficiently large, it cannot
happen that k(as) = lim, . k(a,) = 0.
Next, we will show that the blow up point as is in the interior of 2. Suppose the
contrary. Then ao, € 9Q and d,, = d(ay, Q) — 0 as n — oo. Then by Proposition 2.5,
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Lemma 2.6, (1.5) and the fact that k(a,) > C > 0 for large n, we can find constants
C1,C5,C3 > 0 such that when N > 5,

S.. S+S<NN 2)(”})3(%)&2

SwNC'N 2
— ank(an) <m) )\n

+ S(Q—N)/2{|an||2L2 — N(N +2) /RN Uf\:}lnwi dx}

AN=2 2 2
T ( ;;2) T o VealBagey) + 0(enX?)

)\N—2
>S5S+ C (#) — Che\2

N —4 QCQEn N—4
>S5 — | ——— |Cagy,
- (N—2> . {<N—2>ol<d+2>}

N—2 2(N-2)

=8 —Csep dp,"" =8 +olep = 4)7
since we assumed d,, — 0. Here we used (3.1) in derlvmg the second inequality.

N—-2
On the other hand, we know that S, , <5 — CeXN~" for some C' > 0 by Lemma 2.7.
This contradicts the above estimate, so we conclude that as is in the interior of ).
Now, since we have proved that d,, > C for some constant C' > 0 uniformly in n, we
may drop d,, in the asymptotic formula of Proposition 2.5. Then we can find p,, g, > 0,
Py qn — 0 such that

Seok =S+ KiR(a,)NY 7?2 — g, k(a,)Ka)\2

+ §2-N)/2 |\an||L2—N(N+2)/ vy wida;}
Ry M

+ oA 72) + o[ Vwn[[Z2(0) + 0(eny)
> 8+ (K1R(an) — pn)AY 2 = (Kak(an) + gn)en s,
2
N -4 2en (Kak(an) +qn) |7 °°
> S — | —— |en(K2k(an n :
> 5= (g Jenatlon) 0| i
The last inequality of (3.3) follows again by (3.1) and the fact that Ksk(a,)+ ¢, > 0 for
n large.

(3.3)

On the other hand, Lemma 2.7 gives an upper bound

Sep e <8 — (Ko — p)enk(a) [%] =1

for any a € Q4 and p > 0 sufficiently small. Therefore by combining these, we have

26, (K2k(an) + 0n) ] L

(N - 2)(K1R(an) - pn)
22, k(a) } v

(N — 2)K,R(a)

(Kak(an) + qu)en [

> (K — p)k(a)en [
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[V

N
Dividing both sides by e, ~*, letting n — oo and p — 0, we check that a., will maximize

k(a)(’“(c‘))ﬁ = (a(@) ¥,

When N = 4, the fact that k(a,) > 0 for n large and k(as) # 0 is proved similarly
as in the proof when N > 5.

M)

The proof of the fact that the blow up point belongs to the interior of §2 is also the
same. We give a proof for the reader’s convenience. Since k(a,) > C' > 0 uniformly in n
large, we have some C7,Cy > 0 such that

Swi Swy \ |
Se, k S+(2A)R(an))\ —enk(a n)(sA))\ | log Ay, |

+ Sl{“anH%z —24 /RN Uf\’;jlnwz dx}

2
+ 0( ) + 0(en A2 | log A |) + O(HanHLz(Q )

A%
>S5+ (@) — Ogk(an)en A2 |log Ay |
1
enk(an)Cy 2C1(g2)
> AN DA ’n
= 2e 7 ( nk(an)Cs

again we used (3.2).
On the other hand, Lemma 2.7 yields constants C3, C4 > 0 such that

Se, k < S —Csepexp (—%)

En

Combining these, we obtain

Csk(an) eXp(— Cola) > > 3exp<_%>

Enk(an) En

for some C5,Cg > 0. Taking logarithms of both sides and multiplying by &,,, we have

en log Cs + €, log k(ay,) — > eplogCy — Cy.

k(an)
Note that €, log k(a,) — 0 as n — oco. Then the above inequality leads to the contradic-
tion if d,, — 0. Thus, d,, /4 0.

Now, as before, we may drop d,, in the expansion of S,  and

S.. k> S+ K3R(an)\2 — enk(an)Ky\2 | log Ay
+0(A3) +o(en A7 [ log Anl)
> S+ (K3R(an) — pn) A2 — e (Kak(an) + ¢,)A2 | log A,

2o (P e (G ) 00
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where py,, gn > 0,pn, ¢, = o(1) and

S (W} _ Swy
K3_§<X)’ Kao=3a

The last inequality of (3.4) follows again from (3.2).

Combining (3.4) with the upper bound Lemma 2.7 as before, we have

5 <K4k(an) + qn>5n exp ( _ 2(K3R(an) — pa) )

2e (K4k(an) + Qn)5n
< San,k <
g Kyk(a) o (- 8wsR(a) + en/e+2p
2e enk(a)

for any a € Q4 and p > 0. This leads to

€n log(K4k(an) +Qn> -

Q(KBR(G’TL) - pn)
(K4k(an) + Qn)

> ¢, log(K1k(a)) — (SwiR(a) +2n /e +2p) /h(a).

Finally, letting n — oo and then p — 0, we obtain

Rlas) . . R(a)

Haw) = “k(a)

*8(4}4

This completes the proof of Theorem.
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