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Abstract. This paper provides an introduction to delay differential equations together with a

short survey on state-dependent delay differential equations arising in population dynamics. Our

main goal is to examine how the delays emerge from inner mechanisms in the model, how they

induce oscillations and stability switches in the system and how the qualitative behaviour of a

biological model depends on the form of the delay.

1. Introduction. The goal of this work is to provide an introduction to delay differential

equations considered in the context of ecology and to discuss some of the mathematical

issues arising in their treatment. We remind the reader that delay differential equations

are in some sense associated with the early development of mathematical ecology through

the predator-prey models proposed in the twenties by V. Volterra ([42]). The subject has

grown since, it has been extended in various ways, for example, to partial differential

equations with functional delay terms ([12], [20], [21]). For these presentations, we chose

to restrict our considerations to equations involving only time and possibly some structure

variable, not space, involving only zeroth and first order terms, not second order terms

(except possibly in the time variable). We decided to focus our presentation on stabil-

ity and oscillations. There have been a lot of speculations in the seventies and eighties

about the role of the delay in the occurrence of oscillations in real systems: it has been

hypothesized that increasing delays in a system would result in an increase of oscillatory
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properties of the system and would finally drive the system towards oscillating stable

states. This idea has been introduced in the context of blood production by L. Glass

and M. Mackey ([35]) and has progressively invaded other domains, with nuances which

for example led to the study of systems where stability and instability alternate when

the delay is increased. Our personal inclination in the modeling of real systems is not to

introduce delays in order to produce such or such a phenomenon, but rather let the delay

emerge from some inner mechanisms of the model. One important class of models where

delays emerge are those describing the dynamics of a population, divided into several

stages, when the passage from a stage to the next one requires that the individual has

reached a threshold size. These are the models on which we will concentrate after some

preliminaries where we will introduce some vocabulary and present basic ways of inves-

tigating stability and oscillations. A study of the ecological mechanisms to provide delay

has been performed in the eighties by W. Gurney and R. Nisbet and coworkers ([27], [31]).

They notably were concerned with determining rules about the way stability and oscilla-

tions can also emerge from such ecological considerations. We will present a classification

of the mechanisms and some of their results. More recently, one of us has considered,

in collaboration with several students and colleagues, models where delays arise from a

size threshold to be reached. This leads to state-dependent delay differential equations.

The work is in the context of fish populations. But, such equations can be met in various

contexts: for example, J. Bélair and M. Mackey ([10]) consider a state-dependent delay

equation modeling commodity price. These equations pose problems even with regards

the resolution and uniqueness of solutions. In collaboration with A. Fathallah ([9]), a clas-

sification of such equations has been proposed as well as the study of local stability and

the onset of oscillations. In joint works of O. Arino with K. Hadeler, M. Hbid ([4]) and P.

Magal ([36]), global results have been obtained for a subclass of such equations, namely,

we proved the existence of a global branch of non-trivial slowly oscillating periodic solu-

tions, thus extending to those equations results previously obtained for delay differential

equations in the seventies and the eighties. These global aspects prolong naturally the

local work near equilibriums. For the sake of focusing, we will not deal with such aspects

and refer the interested reader to the above mentioned publications. In summary, the

following subjects will be addressed, in the given order:

1. Preliminaries on delay differential equations.

2. Instability and oscillations induced by delays: local analysis using the characteristic

equation.

3. State-dependent delay differential equations.

We will leave untouched most of the subject of delay differential equations: from the

theoretical viewpoint, the past twenty years have been marked by the burgeoning of

new approaches, using integrated semigroups or the so-called sun star machinery, which

have shed a new light on such equations; the theory of dynamical systems associated

with delay equations has also been spectacularly boosted starting at the beginning of the

eighties: the most recent results give a full description of the attractor set of a class of

delay differential equations. Such results have been reported in books, notably the latest

edition of [28] by J. K. Hale and S. M. Verduyn Lunel, updating two previous editions
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by J. K. Hale, also the book [19] as well as a number of monographs of the A.M.S. or

others and articles in various journals, by H. O. Walther, J. Mallet-Paret and coworkers.

Delay functionals have also been introduced in a variety of ways and have led to as many

types of equations which require specific treatment, not covered here: neutral equations,

infinite delay equations, equations with piecewise constant delayed arguments, impulsive

delay equations, partial differential equations with delays, stochastic delay equations.

2. Preliminaries on delay differential equations

2.1. First examples and problems set. Historically, the very first model of mathematical

ecology is a predator-prey system of equations introduced by V. Volterra in the twenties

([42]). The system reads as:



N ′1(t) = [b1 − a1N2(t)]N1(t),

N ′2(t) =

[
−b2 + a2N1(t) +

∫ 0

−r
k(s)N1(t+ s)ds

]
N2(t)

where N1 and N2 are the densities of prey and predators respectively. A distributed

delay in the second equation represents retarded growth of the predator ensuing prey

consumption.

Since the seminal work by Volterra, delays have been considered in many situations.

In the third section, we will present a general framework for delay in ecological models.

Let us here focus our attention on a model simple enough to pose the main problems:

the logistic equation. The logistic equation is an equation of the type

x′(t) = rx(t)

[
1− x(t)

K

]

in which r > 0 would be the growth rate of the population in the case of low abundance

(supposedly here optimal for growth), while K > 0 would be the maximal population

biomass that the system is able to sustain (the carrying capacity). Non zero solutions of

that equation converge monotically towards the steady-state x∗ = K. The introduction

of a delay in the logistic equation is motivated by repeated observations made for sev-

eral animal populations about oscillations of the abundance with, in some cases, bursts

of populations followed by quasi-extinctions. One of the explanations would be that the

system is not immediately responsive, there is some inertia or some delay between the en-

vironmental changes and the adaptation of the population. A very simple way to account

for this leads to

x′(t) = rx(t)

[
1− x(t− τ)

K

]

in which the number τ > 0 is the delay, the quantity 1− x(t−τ)
K represents a modulation

of the growth rate r in terms of the abundance of the population at a previous time.

One can immediately see that such a term gives the possibility for oscillations about the

value K. Oscillations may be of different natures: slow or fast, damped or sustained, and

there is even the possibility of periodic oscillations. This equation has attracted a lot of

interest in the seventies around a number of issues which constitute the main problems

associated with such equations, especially in the context of ecology: existence of steady
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states, periodic solutions; stability, instability of steady states, bifurcation of new steady

states, periodic solutions or more complicated invariant manifolds and the transitions

from an equilibrium to another one or to an attracting set; parameter sensitivity, notably,

the role of the delay in the dynamical features. So, the main problems are of a qualitative

nature, as opposed to quantitative issues which would be connected to predictive models.

In order to investigate such problems, it was necessary to develop a machinery analog to

what is available for the study of dynamical systems associated with ordinary equations:

this includes a linear theory of delay differential equations as well as a theory of nonlinear

perturbations of such equations.

2.2. Definition, existence, uniqueness, linear theory, semi-linear theory. One of the sim-

plest examples of a delay differential equation is

x′(t) = ax(t− 1)(1)

in which x(t) denotes a real-valued function of time t, a is a parameter. In this formulation,

one sees that the derivative of the unknown function x(t) is, at time t, a function of the

value of x at time t− 1. We will also deal with the inhomogeneous equation

x′(t) = ax(t− 1) + f(t)(2)

in which it will be assumed that f is locally integrable. There are indeed several ways in

which a solution may be defined. One can consider, as a solution, a function defined on the

whole of R, satisfying the above formula at every point. Assuming x to be continuous, the

equation yields the same property for x′. The formula also shows that such a solution does

not grow faster than linear when t is increased. On the other hand, no such limitation

prevails when t is moved to the left. And in fact, there are such solutions defined on

the whole of R and whose behavior at −∞ is faster than any given exponential. As a

consequence it is not in general feasible (or, say, not practical) to transform the equation

via a Fourier transform. But, under the assumptions made on x, one can compute the

Laplace transform for the restrictrion to any interval of the form [t0,+∞[. Let us compute

it for example in the case t0 = 0 and consider the homogeneous equation (1) for a moment.

We denote

x̂(s) :=

∫ +∞

0

exp(−st)x(t) dt

and we assume the reader is familiar with the basics on the Laplace transform. We obtain

sx̂(s)− x(0) = a

∫ +∞

0

exp(−st)x(t− 1) dt

which, by an obvious change of variables in the integral, leads to

sx̂(s)− x(0) = a

∫ 0

−1

exp(−s(t+ 1))x(t) dt+ ax̂(s) exp(−s)

from which we get

x̂(s) = (s− a exp(−s))−1x(0) + a exp(−s)(s− a exp(−s))−1

∫ 0

−1

exp(−st))x(t) dt.(3)

The formula expresses x̂(s), therefore using the inverse Laplace transform, x(t), as a

function of a quantity computed in terms of the restriction of x(t) to the interval [−1, 0].
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So, in order to be able to compute x(t) on the right of t = 0, it is first of all necessary to

assume it known on the interval [−1, 0] and, in fact, if x1 and x2 are two solutions equal

on [−1, 0], then

x̂1(s) = x̂2(s),

which allows us to extend the equality to the right of 0. Similarly, if we want to solve

the equation to the right of a time t0 it is necessary to assume it known on the interval

[t0−1, t0] and, from the value on that interval, there is only one possible extension to the

right of t0. So, the equation determines a family of maps from the space C([−1, 0]) into

the space C([t0− 1, t0]), ∀t0 ≥ 0, which can be viewed as a one-parameter family of maps

on the same space by shifting the functions defined on [t0 − 1, t0] over the fixed interval

[−1, 0], using the phase shift

∀θ ∈ [−1, 0], xt(θ) := x(t+ θ).(4)

Existence may be proved in at least two ways. The most elementary way is to integrate

equation (1) stepwise. From an initial value given on the interval [−1, 0], one can compute

the solution on the next interval [0, 1] by a direct quadrature formula

x(t) = ϕ(0) + a

∫ t−1

−1

ϕ(s) ds.

Then x(t) can be shifted back to [−1, 0] and provides a new initial datum from which

the same computation as above can be repeated, infinitely many times. The function

obtained this way is continuous on [−1,+∞[, it is differentiable on [0,+∞[, it is twice

differentiable on [1,+∞[, three times differentiable on [1,+∞[, etc.

The other way starts from (3) and uses the inverse Laplace transform of x̂ given by

(3). Note R(t) the inverse transform of the function (s− a exp(−s))−1. The second term

in the right hand side of (3) can be written in the form

a(s− a exp(−s))−1

∫ 1

0

exp(−st))x(t− 1) dt

which appears as the product of the Laplace transforms of aR(t) and the function

χ[0,1](t)x(t− 1). This leads to the following expression for the solution:

x = Rϕ(0) + aR ∗ χ[0,1](·)ϕ(· − 1)

where ∗ denotes the convolution in the set R+. This formula makes sense even for the

case when ϕ is a step function, equal to zero for θ ∈ [−1, 0[ and some value ξ at θ = 0.

In this case, the solution reduces to

x(t) = R(t)ξ.

Indeed, R(t) can be interpreted as the solution of equation (1) starting from the initial

data X0 defined by

∀θ < 0, X0(θ) = 0, X0(0) = 1.

We now introduce the shift operator along the solutions, namely a one-parameter family

of linear maps {T (t)}t≥0, defined as follows:

T (t) : C([−1, 0])→ C([−1, 0]), ϕ 7→ T (t)ϕ := xt,
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where xt is defined in (4). It is immediate to see that

T (0) = Id, T (t)T (s) = T (t+ s), for all t, s ≥ 0

which gives the family the basic properties of a semigroup of operators. Moreover, the

implication (continuity on closed bounded intervals ⇒ uniform continuity) entails the

continuity of the map t 7→ xt, that is to say, for each ϕ ∈ C([−1, 0]), the map t 7→ T (t)ϕ

is continuous. This property is named in the literature strong continuity: {T (t)}t≥0 is

a strongly continuous semigroup of operators, also called a C0-semigroup of operators.

Using the expression of T (t)ϕ in terms of the solution x, one can observe an important

property, typical for semigroups associated with delay equations, namely that (T (t)ϕ)(θ)

depends only on t+ θ, in particular

(T (t)ϕ)(θ) =

{
(T (t+ θ)ϕ)(0) if t+ θ ≥ 0,

ϕ(t+ θ) if t+ θ < 0.

A semigroup enjoying such a property is called a translation semigroup. Since the semi-

group is defined on a space of functions F(J,X), where J is an interval and X is a Banach

space, it is possible to associate with each solution a function x(t) with values in X such

that

T (t)ϕ = xt.

2.2.1. Extension of the concept of solution to discontinuous functions. For each t ≥ 0,

θ ∈ [−1, 0], the map

ϕ 7→ (T (t)ϕ)(θ)

is linear, continuous, from the space C([−1, 0]) into R, so it determines a Radon measure

which can be extended to a larger set of functions, notably to Borel measurable ones. The

extension is unique, and satisfies the semigroup properties as well as the shift property.

However, it is not in general strongly continuous. We will keep the same notation T (t)

for the extension. In terms of the extension, we can notably express R(t) as

R(t) = (T (t)X0)(0).

2.2.2. Solution of the inhomogeneous equation (variation of constants formula). Assum-

ing that f has a Laplace transform, equation (2) can be transformed into

(s− a exp(−s))x̂(s) = x(0) + a exp(−s)
∫ 0

−1

exp(−st))x(t) dt+ f̂(s)

which leads to

x = Rϕ(0) + aR ∗ χ[0,1](·)ϕ(· − 1) +R ∗ f.
In terms of the semigroup T (t) and its extension, the above expression reads

x(t) = (T (t)ϕ)(0) +

∫ t

0

(T (t− s)X0)(0)f(s) ds

or

xt = T (t)ϕ+

∫ t

0

T (t− s)X0f(s) ds.(5)
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2.2.3. Generalization. The following is a more general linear delay differential equation,

the most frequently used in the literature

x′(t) = L(xt)(6)

or its inhomogeneous expression

x′(t) = L(xt) + f(t)(7)

in which x takes its values in X, X being Rn or an infinite dimensional Banach space,

L is a bounded linear operator from the space C([−r, 0], X), (r > 0), into X. In finite

dimensions, L is just a vector valued Radon measure and can be represented (in the

canonical basis) as the measure associated with a matrix valued function with bounded

variations

L(ϕ) =

∫ 0

−r
dη(θ)ϕ(θ).

Let us define

∆(s) := sId− L(exp(s·)).(8)

As in the example, the Laplace transform inverse of ∆(s) determines a matrix valued

function R(t), defined for t ≥ 0, which is the fundamental solution of the equation, from

which it is possible to calculate solutions in terms of the initial value or the inhomogeneous

forcing. When there is a risk of confusion we will use the notation RL for the fundamental

solution associated with the operator L.

2.2.4. Semigroup theory. A delay differential equation may be regarded in two ways: it

describes the temporal variations of some numerical indicators of a real system, at a given

time t, but the variations are determined in terms of past values of these indicators. One

can focus on the values at each given time and treat the past values as a forcing term or

a parameter function, it is the way it is done when using the Laplace transform method.

Or, one may prefer to work in a phase space context, and consider the solution operator

as a shift along the initial values. This view is more suited to the study of dynamical

features of the equation. The phase space in this case is C([−r, 0], X), where X may be a

general Banach space or just Rn. This view is in the line of ordinary differential equations

or evolution equations associated with PDE’s. For ODE’s, the shift T (t) expresses itself

as exp(tA) where A is the linear map defining the equation

x′(t) = Ax(t).

For evolution equations, the operator is most of the time an unbounded operator defined

on part of the phase space and T (t) although being tightly related to A is not expressible

as an exponential. There are several advantages in taking the view of a generalized ODE:

the reduction of the equations to invariant subspaces determined solely in terms of the

operator A, the description of spectral properties of T (t) in terms of those of A, valid when

the semigroup has some additional properties, for example, if it is a compact operator or

an eventually compact operator. For instance, if X = Rn, the following property can be

shown (see [28]):

Proposition 1. The semigroup {T (t)}t≥0 associated with equation (6) is compact for

t ≥ r.
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The operator A, which is called the infinitesimal generator of the semigroup, is cal-

culated from T (t) by the formula:

Aϕ := lim
h→0+

T (t)ϕ− ϕ
t

(convergence in X)

and the domain of A, D(A), is the set of ϕ ∈ X for which the limit exists.

For equation (6) the following characterization of the operator A can be shown:

Aϕ = ϕ′,

D(A) = {ϕ ∈ C([−r, 0], X); ϕ′ ∈ C([−r, 0], X) and ϕ′(0) = L(ϕ)}.
In order to determine the spectrum of A, it is first advisable to compute the resolvent

operator, that is to say, the operator

R(λ,A) := (λI −A)−1

obtained by solving for each f ∈ C([−r, 0], X) given, the equation

λϕ−Aϕ = f.

This equation leads readily to the following expression:

ϕ(θ) = exp(λθ)ϕ(0) +

∫ 0

θ

expλ(θ − s)f(s) ds(9)

to be completed by the condition ϕ′(0) = L(ϕ) which leads to

∆(λ)ϕ(0) = f(0) + L

(∫ 0

·
expλ(· − s)f(s) ds

)
(10)

where ∆(λ) is given by formula (8). It is easily seen that the right hand side of equation

(10) has X for its range, both in finite and infinite dimensions. So, in order for equation

(9) to have a solution for each f , it is necessary and sufficient that ∆(λ) be invertible.

We refer the reader to [28] for a wide development of this theory and to [6] and [7]

for the infinite dimensional case.

In the following we restrict ourselves to the finite dimensional case. In this case,

[∆(λ)]−1 exists if and only if det ∆(λ) 6= 0. We will use the notation p(λ) or pL(λ) for

the characteristic equation of the delay equation, namely,

p(λ) := det ∆(λ) = 0.(11)

Lemma 2. Each root of p(λ) has a finite multiplicity. The location of the roots is as

follows: only a finite number of roots can be found on any right half-plane of the complex

plane; only a finite number of roots can be found in any vertical band, with finite width,

of the complex plane.

Lemma 3. Let λ be such that p(λ) = 0. Denote m(λ) the multiplicity of λ as a root of p,

and let N(λ) be a vector subspace of C([−r, 0], X), maximal (with respect to the inclusion)

within the spaces invariant under A on which the operator λI−A is nilpotent. Then N(λ)

is unique and has dimension equal to m(λ).

Let us consider the following nonlinear delay differential equation

x′(t) = L(xt) + f(xt)(12)
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where L is linear and f is a nonlinear perturbation of L near 0, that is,

f(ϕ) = o(ϕ).

For our next purpose, it is sufficient that f be C1 and such that f(0) = 0 and Df(0) = 0.

Equation (12) can be seen as an inhomogeneous equation of the type of equation (7)

with f(t) = f(xt), thus, it is possible to write it in integral form, using the variation of

constants formula for the linear part (5):

xt = T (t)ϕ+

∫ t

0

T (t− s)X0f(xs) ds.

Using the above formula, one can show that the nonlinear perturbation inherits the

stability and instability properties of the linear equation, more precisely:

Proposition 4. Consider equation (12), with f ∈ C1 near 0 and such that f(0) = 0

and Df(0) = 0. Assume that 0 is a hyperbolic equilibrium of equation (6), that is, the

characteristic equation (11) has no root with zero real part. Then, both the linear and

the nonlinear equations behave the same near 0, that is, they are both stable or unstable.

Moreover, the stable (resp. unstable) manifold associated with the nonlinear equation is,

near 0, homeomorphic to the corresponding linear manifold and tangent to it at 0.

The treatment of the critical case, that is, when there is an imaginary root or 0 is

a root, leads to bifurcation theory. For most of our purposes, the above result will be

sufficient: it tells us that the study of stability of an equilibrium of a nonlinear delay

differential equation reduces to the study of the characteristic equation associated with

the linearization of the equation near that equilibrium.

3. Instability and oscillations induced by delays: local analysis using the char-

acteristic equation. The intuition is that delays induce oscillations which drive the

system to instability from which stability can only be regained near periodic orbits or

more complicated invariant subsets. Although the intuition is right in a number of cases,

for example for the logistic equation, it fails in many cases where increasing the delay

may lead to a succession of unstable then stable situations. We briefly discuss examples

illustrating the right and wrong intuition, before we present a theory elaborated in the

beginning of the eighties by W. Gurney and R. Nisbet in which some distinctive features

of oscillations are related to biological properties of the modeled population.

3.1. Introductory examples

3.1.1. A first order equation with delay. Consider the first order delayed differential

equation

x′(t) = ax(t) + bx(t− τ).(13)

The characteristic equation of (13) is

λ− a− b exp(−λτ) = 0.

in which we may eliminate one parameter, say τ , introducing z := λτ , p := aτ , q := bτ

and then,

pez + q − zez = 0.(14)
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Theorem 5 (see [29]). A necessary and sufficient condition for all the roots of equation

(14) to have a negative real part is that

1. p < 1 and

2. p < −q < (θ2 + p2)1/2, where, for p 6= 0, θ is the only root of the equation

θ = p tan θ, 0 < θ < π

or θ = π/2 for p = 0.

A general consequence of Theorem 5 is that if equation (13) is stable for τ = 0, then

either it is stable for all τ ≥ 0, or there exists a value τ ∗ such that the equation is stable

for τ < τ∗ and unstable for all τ > τ∗. In this situation, stability, once lost, cannot be

recovered.

3.1.2. The case of a second order equation with delay. Consider the second order delayed

differential equation

x′′(t) + ax′(t) + bx(t) + cx(t− τ) = 0(15)

whose characteristic equation is

p(λ) := λ2 + aλ+ b+ ce−τλ = 0.(16)

In order to determine stability changes, one looks for imaginary roots and the sign of the

derivative of the real part. We restrict the study to the case when the three parameters

a, b and c are positive. If in addition we assume b ≤ c, then there is a threshold value for

τ beyond which the equation is unstable.

If, on the other hand, b > c, then one may have stability switches, that is to say, when

τ is increased, one crosses intervals of values for which the equation is stable followed by

intervals where it is unstable, then again stability, etc. Let us look at the situation more

precisely. The equation for imaginary roots reads, substituting iω, ω ∈ R, for λ,




cos τω =
ω2 − b
c

,

sin τω =
aw

c
,

(17)

which implies

ω4 + (a2 − 2b)ω2 + (b2 − c2) = 0.(18)

Equation (18) characterizes the possibility for the instability index of equation (15), that

is, the number equal to the sum of multiplicities of the roots of equation (16) with a

positive real part to increase when the delay increases. Equation (18) has 0, 1 or 2 real

roots.

We examine the three cases:

• Zero root. This case corresponds to

(a2 − 2b)2 − 4(b2 − c2) < 0

which, after straightforward algebra, reduces to

4c2 < a2(4b− a2).
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In this case, the instability index is the same for non-negative τ. As a consequence, if the

equation is stable for τ = 0, it remains stable for all τ > 0.

• One root. This case corresponds to

b2 − c2 < 0.

The equation
X2 + (a2 − 2b)X + (b2 − c2) = 0

has two real roots, one positive, the other negative. The positive root is

X =
1

2
[−(a2 − 2b) +

√
(a2 − 2b)2 − 4(b2 − c2)]

which yields

ω =

√
1

2
[−(a2 − 2b) +

√
(a2 − 2b)2 − 4(b2 − c2)].(19)

Let us now compute τ for (17) to hold. One has sin τω > 0, while cos τω > 0, = 0 or < 0

according to whether

a2b < c2, a2b = c2 or a2b > c2.

Let us only consider the case a2b < c2. It can be shown that there is one and only one

value τ0 such that 0 < τ0ω <
π
2 , which satisfies the two equations (17):

τ0 =
1

ω
sin−1

(
aω

c

)

and there are infinitely many other solutions, τn, n ≥ 1,

τn = τ0 +
2nπ

ω
.

For each value τn, iω is a simple root of equation (16). In fact, we have,

∂p

∂λ
= 2λ+ a− cτe−τλ

so that

Im

(
∂p

∂λ

)

λ=iω

= 2ω + cτ sin τω = 2ω + aωτ > 0.

As a consequence, the root iω can be extended, in a neighborhood of each τn, as a root

of the equation for values of τ close to τn. The extension leads to the definition, for each

n, of a function λ = λn(τ), smooth enough.

Let us determine the sign of Re
(dλn(τ)

dτ

)
near τ = τn. Differentiating formula (16) we

have
dλ

dτ
=

cλe−λτ

2λ+ a− cτe−λτ .

At λ = iω, we obtain the following expression:

dλ

dτ
=

cω sinωτ + icω cosωτ

(a− cτ cosωτ) + i(2ω + cτ sinωτ)
,

which leads to

sign

(
Re

dλ

dτ

)
= sign[(cω sinωτ)(a− cτ cosωτ) + (cω cosωτ)(2ω + cτ sinωτ)]

= sign[a sinωτ + 2ω cosωτ ] = sign[a2 − 2b+ 2ω2].
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In view of (19), one deduces that

sign

(
Re

dλ

dτ

)
(τn) > 0.

In conclusion, at each value τn, the instability index gains two units, due to two new

branches of roots of the characteristic equation crossing the imaginary axis. So, increasing

the delay increases the instability and one could also see that the oscillations associated

with this instability are becoming more and more rapid.

• Two roots. Note that equation (18) has ω = 0 as a root if b2− c2 = 0 and it is indeed

the only root if in addition we have a2 − 2b = 0. However, equation (16) has 0 as a root

only if b+ c = 0, which is precluded here by the assumption b > 0 and c > 0. Conditions

for the existence of two distinct roots of (18) > 0 are

a2 − 2b < 0, b2 − c2 > 0 and (a2 − 2b)2 − 4(b2 − c2) > 0.

We assume these conditions hold. Then, one has two roots, ω+ and ω−,

ω± =

√
1

2
[−(a2 − 2b)±

√
(a2 − 2b)2 − 4(b2 − c2)].

Assuming in addition a2b− c2 < 0, one has ω2
− < b < ω2

+ from which we obtain
{

cos τω− < 0,

sin τω− > 0,
and

{
cos τω+ > 0,

sin τω+ > 0.

To each root, a family of delays is associated, τ+,n, τ−,n , each of them being computed

according to the same formula as previously seen:

τ+,n = τ+,0 +
2nπ

ω+
, 0 < τ+,0 <

π

2

and

τ−,n = τ−,0 +
2nπ

ω−
,

π

2
< τ−,0 < π.

By construction, one has

τ+,0 < τ−,0.

On the other hand, one can compute the sign of the real part of the root, as has been

done previously,

± sign

(
Re

dλ

dτ

)
(τ±,n) > 0.

This implies that the instability index gains 2 at each τ+,n, and loses 2 at τ−,n. Moreover,
2π

ω−
>

2π

ω+
. Therefore, even if returns to stability are feasible, there are only a finite

number of them, and the equation is eventually unstable.

3.2. A population growth equation ([17]). In this section we consider the equation

P ′(t) + d(P (t))P (t) =

∫ t

−∞
g(t− s)m(P (s))P (s) ds(20)

which models the growth of a population, with P (t) denoting the biomass at time t. The

coefficient d(P ) is the mortality rate per unit of time and unit of population biomass,
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m(P ) is the maternity function, equal to the mass of eggs produced per unit of time

and unit of population biomass and g is a distribution density which we assume to be

supported by the half-line [0,+∞[, so that,
∫ +∞

0

g(s)ds = 1.

For each s > 0, g(s) ≥ 0 is the density of probability for eggs produced at some moment

of time to reach maturity at age s. In [17], J. Cushing considers a number of models of

the distribution g. Specifically, he studies the following family of distributions,

gn(s) =
1

n!
T−n−1sn exp(−s/T ), n = 0, 1, . . .(21)

where T is a fixed parameter. For n = 0, it is the expectation of the Poisson law

g0(s) =
1

T
exp(−s/T ).

For all n, the quantity ∫ +∞

0

sgn(s) ds = (n+ 1)T := τn

represents the average time from hatching to maturity, and it can also be interpreted as

a delay to reproduction.

3.2.1. Equilibrium points. Apart from P = 0, equilibrium points are the solutions of the

equation

d(P0) = m(P0).

A usual scheme is that the function d(P ) is increasing and m(P ) decreases, therefore a

solution P0 exists and is unique.

3.2.2. Linearization near P0. To construct a linearized system near P0, we express the

solution in the form

P (t) = P0 + y(t)

and we expand all the terms of equation (20) in powers of y. Retaining the first order

terms in y and dropping the higher order terms, this leads to

y′(t) + [d(P0) + P0d
′(P0)]y(t) = [m(P0) + P0m

′(P0)]

∫ t

−∞
g(t− s)y(s) ds.(22)

Note that in order for the equation to make sense, it is necessary that the integral exists.

It is also important to check that
∫ 0

−∞ g(t−s)y(s)ds→ 0 as t tends to +∞: this is a fading

memory effect. It holds for example with g(s) = e−αs for some α > 0, if the function y is

just bounded on ]−∞, 0].

Equation (22) can be written in the form

y′(t) + ay(t) = b

∫ t

−∞
g(t− s)y(s) ds

where a, b are some constants.
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Stability of zero as a solution of that equation is equivalent to that of the null solution

of the Volterra equation

y′(t) + ay(t) = b

∫ t

0

g(t− s)y(s) ds.

If ŷ(z) (resp. ĝ(z)), denotes the Laplace transform of y (resp. g), the transformed equation

reads

(z + a− bĝ(z))ŷ(z) = y(0).

Each solution is determined by its value at t = 0 and solutions are just multiples of one

another. Let us assume for example that y(0) = 1, that is,

ŷ(z) =
1

(z + a− bĝ(z))
.

Stability of equation (22) is entailed by the sign of the real part of the root with the

greatest real part of the equation

z + a− bĝ(z) = 0.(23)

Let us now restrict our attention to the family gn defined by (21), starting with n = 0.

In this case, we have

ĝ0(z) =
1

1 + zT
.

Substituting in equation (23), the following polynomial equation is obtained:

Tz2 + (aT + 1)z + (a− b) = 0

where the expressions of the coefficients a and b in terms of the parameters of the original

equation are:

a = d(P0) + P0d
′(P0), b = m(P0) + P0m

′(P0).

Under the assumptions d′(P0) > 0 > m′(P0), one concludes that

a− b = P0(d′(P0)−m′(P0)) > 0 and a > 0.

It implies that both the roots of the polynomial equation have a negative real part, that

is to say, stability holds independent on the delay T .

We now turn to the case n = 1 in (21). This gives

ĝ1(z) =
1

(1 + zT )2
.

Substituting in equation (23), we obtain the following polynomial equation:

T 2z3 + (2T + aT 2)z2 + (1 + 2aT )z + (a− b) = 0.(24)

In the case when a > b, one can have either each of the three roots with a negative real

part, or a negative real root and two roots with a positive real part. This time, stability

depends on T .

Let us first look at the asymptotic situation, that is, when T approaches +∞. We

define t = 1/T and divide by T 2 in (24) arriving at

z3 + (2t+ a)z2 + (t2 + 2at)z + (a− b)t2 = 0.
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We then perform the study in terms of t, starting from t = 0. For t = 0, the equation

reduces to

z3 + az2 = 0

whose roots are: z = −a and z = 0 (double). For t > 0 small enough, the root z = −a
extends to a real root close to −a, while the double root splits into two roots of the order

t, z = tς. The equation in ς reads

tς3 + (2t+ a)ς2 + (t+ 2a)ς + (a− b) = 0.

For t = 0, the equation reduces to

aς2 + 2aς + (a− b) = 0

which, if a > b > 0, has two real negative roots

ς = −1±
√
b

a

or two conjugate complex roots with real part equal to −1, if we have b < 0.

So, the equation is stable for T large enough. Let us study whether it can become

unstable for lower values of T . If so, it can only be done by the onset of imaginary roots

for some T . Therefore, we look for roots of equation (24) of the form z = iα with α > 0,

which leads to the following system of equations:
{−(2T + aT 2)α2 + (a− b) = 0,

−T 2α3 + (1 + 2aT )α = 0,

from which we can compute a single value for α,

α =

√
a− b

2T + aT 2

and the following formula relating a, b and T (eliminating α between the above two

equations):

2a2T 2 + (4a+ b)T + 2 = 0.(25)

If we assume b < −8a, then equation (25) has two positive roots T1 and T2, T1 < T2.

Differentiating equation (24) with respect to T , at a root z, yields the following expression

at z = iα and Tj , j = 1, 2,

sign

(
Re

∂z

∂T

)
= (2 + 2aTj)[(1 + 2aTj)− 3T 2

j α
2] + (2Tjα

2 − 2a)2(2Tj + aT 2
j ).

One can check that the sign is negative at T1 and positive at T2.

As a conclusion of this example, when the delay increases from the value 0, the

equation is stable at first, then it loses stability at T1 and remains unstable up to the

value T2. It then recovers stability again and remains so for all T > T2. The same result

holds for higher values of n, however with an increasing number of switches when n

increases.

3.3. Slow and fast oscillations induced in population dynamics. In [27], W. Gurney and

R. Nisbet introduce a variety of models of population dynamics, differing by the point
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in the life cycle where a limiting resource acts on the growth rate or simply by the way

it acts. In [31], a classification of these models is proposed, according to the value of the

period/delay ratio: some of the control mechanisms are connected to long cycle duration

(with a period/delay ratio larger than 2), while the others correspond to short cycle, with

a period falling inside the interval [1, 2]. We first briefly recall the models presented in

[27]: the first two belong to the long cycle category, the last two to the short cycle. We

illustrate in two examples the intuitive idea according to which the proposed classification

can be interpreted by the nature of the feedback: long cycle would correspond to negative

feedback, short cycle to positive feedback. Note that the classification is of local nature:

it is expected to reflect the behavior in the vicinity of an equilibrium, and is established

by inspection of the characteristic equation.

3.3.1. Long cycle and short cycle models. Let us consider models for insect populations

with two stages: larva and adult. The delay is the duration of the larval stage which

depends on the relationship between the total population and the environment.

In these models, the following variables are considered, either all of them, or, more

frequently, some of them:




τ(t) = duration of the larval stage for larvae becoming adults at time t

L(t) = total number of larvae at time t

∆(t) = mortality rate/larva/unit of time, at time t

P (t) = proportion of larvae born at t− τ(t) becoming adults at time t

α(t) = probability of success of the maturation at time t

R(t) = recruitment rate in the adult stage at time t

A(t) = total number of adults at time t

B(t) = rate of production of viable eggs at time t

δ(t) = adult mortality rate/adult/unit of time, at time t

Some of these variables can be expressed in terms of the others, for example
{

P (t) = exp(−
∫ t
t−τ(t)

∆(x) dx),

R(t) = B(t− τ(t))(1− τ ′(t))P (t)α(t).
(26)

The following four types of competition can be considered:

Model 1. Density dependence of the larval mortality rate. In this case, the larval

mortality rate increases with the density of larvae L(t) and tends to infinity as L tends

to a threshold value. An example of such models can be:




L′(t) = B(t)−B(t− τ)P (t)−∆(t)L(t),

A′(t) = R(t)− δA(t),

P ′(t) = P (t)[∆(t− τ)−∆(t)],

(27)

where

∆(t) =





c1 + L(t)

c2 − L(t)
if L(t) < c2,

+∞ otherwise,

for some values of the positive constants c1, c2.
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Model 2. Density dependence in the duration of the larval stage. Transition

from larva to adult depends on a size threshold. Growth slowed down implies the matu-

ration slowed down and then the survival from egg to adult decreases.

Let W (t, t0) be the individual weight at time t, of the larvae of the cohort born at t0.

Then:

W (t, t0) = W0 +

∫ t

t0

g(x) dx

where g(x) is the individual larval growth rate. It is a function of the total number of

larvae at time t. Under the simplifying assumption of the ideal free distribution of food,

larvae going to the adult stage at time t are those whose weight reaches a threshold value

W ∗ at that time.

The birth date t0 or, equivalently, the duration of the larval stage τ(t) = t − t0 is

determined by solving the equation

W (t, t0) = W ∗.

The formula (26) for P shows that an increase in τ(t) results in a decrease in the larval

survival.

Model 3. Metamorphosis at a fixed age with success depending on weight.

The duration of the larval stage is a constant τ for all the individuals but the transition

to adult stage depends on weight. The weight at metamorphosis is

W (t) =

∫ t

t−τ
g(x) dx

where

g(t) =





gm
1 + L(t)/L0

− Γ if L(t) < L0

(
gm
Γ
− 1

)
,

0 otherwise,

and gm, Γ, L0 are positive constants.

In this model it is accepted that the rate of success of metamorphosis for the larvae

aged τ at time t is given by

α(t) =





W (t)−W1

KW +W (t)−W1
if W (t) > W1,

0 otherwise.

Furthermore, under the hypotheses:




∆(t) = 0 (no larvae mortality),

δ(t) = δ (mortality of adults constant),

B(t) = eA(t),

we arrive at the following system of retarded differential equations:




L′(t) = B(t)−B(t− τ),

A′(t) = B(t− τ)α(t)− δA(t),

W ′(t) = g(t)− g(t− τ).

(28)

While in the preceding model, larvae reach maturity at a fixed weight, in this one, weight

is distributed. We observe that this model does not give any information about the weight
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of adults and, in particular, the model does not establish any relationship between the

weight of adults and the number of descendents or their initial weight. It would be logical

to suppose the existence of such relationship in the form of e = e(W (t)) and this is the

hypothesis we make in the following competition model.

Let us notice that in fact the system (28) is not equivalent to the model: indeed, the

model assumes

L(t) =

∫ t

t−τ
B(s) ds, W (t) =

∫ t

t−τ
g(s) ds,(29)

which is only one out of all the expressions (up to the addition of two arbitrary constants)

obtained by integrating the first and third equations of system (28). This difference is

essential in the study of steady-state solutions: there are an infinity of such solutions for

the system (28), but only one non-trivial if the integral formulation (29) is considered.

Model 4. Density dependence on adult fertility. If the adults do not eat or the

females get their protein needs from the food eaten during the larval stage, and if the

transition into the adult stage is subject to an age threshold, then a slower larval growth

will result in less fecund adults.

Supposing that τ(t) = τ (constant), ∆(t) = 0, δ(t) = δ (constant), α(t) = 1 and the

following equation for the newborns:

B′(t) = qR(t)W (t)− δB(t)

in which q > 0 is a proportionality constant between the fecundity and the weight at

metamorphosis, the model reads:




L′(t) = B(t)−B(t− τ),

A′(t) = B(t− τ)− δA(t),

W ′(t) = g(t)− g(t− τ),

B′(t) = qB(t− τ)W (t)− δB(t).

Models 1 and 2 are short cycle models, in which the period of oscillations is less than

two times the maximum delay. Models 3 and 4 are long cycle models, with oscillations

whose period exceeds two times the maximum delay. Roughly speaking, the first two

classes of models would correspond to positive feedback, while the last two present some

similarity with the delayed logistic equation, thus, corresponds to negative feedback.

Positive feedback. Let us for example consider system (27), assuming, to make it

easier, that: B(t) = eA(t), where e is a constant, and α(t) = 1. The relationship between

∆ and L may be given a more general expression than the one given in the example,

namely,

∆ = Φ ◦ L

where the function Φ is assumed to be increasing, and such that Φ(x) = +∞ for x > L.

From the equation satisfied by P we obtain

P (t) = exp

(
−
∫ t

t−τ
∆(s) ds

)
.
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Introducing the variables

a(t) = exp

(∫ t

0

∆(s) ds

)
A(t), l(t) = exp

(∫ t

0

∆(s) ds

)
L(t)

we arrive at the following system:
{
a′(t) = (∆(t)− δ)a(t) + ea(t− τ),

l′(t) = e(a(t)− a(t− τ)).

From the latter equation, we deduce

l(t) = e

∫ t

t−τ
a(u) du.

Plugging the expression of ∆ in terms of L in the equation for l, we have

l(t) = exp

(∫ t

0

Φ(L(s)) ds

)
L(t)

from which one can extract L in terms of l

L = Λ(l).

(L may be obtained as a solution of the Volterra equation L = l exp(−
∫ ·

0
Φ(L(s)) ds). It

is not difficult to see that the operator Λ is non-decreasing.) Combining this relationship

and the expression of l in terms of a, we arrive at

L = Λ

(
e

∫ ·

·−τ
a(u) du

)
.

Thus, the whole system may be reduced to a differential equation to be satisfied by the

function a

a′(t) =

(
Φ

([
Λ(e

∫ ·

·−τ
a(u)du)

]
(t)

)
− δ
)
a(t) + ea(t− τ).

Clearly, the right hand side of the above equation is non-decreasing with respect to a,

which corresponds to positive feedback.

Negative feedback. We can find this type of feedback in system (28). Since α(t) is

increasing in W , W can be expressed in terms of g through the integral formula (29),

g(t) = min

(
gm

1 + L(t)/L0
− Γ, 0

)

which in turn allows us to express g in terms of L, and finally using the fact that B = eA,

we obtain for A an equation of the form

A′(t) = eA(t− τ)F(At)− δA(t)

whereF is a non-increasing operator. Under further assumptions, the mapϕ 7→ ϕ(−τ)F(ϕ)

will also be non-increasing, so that the last equation is similar to a delayed logistic

equation.

3.3.2. Relationship between slow and fast oscillations and the characteristic equation.

We have just seen that the classes of delay differential systems considered by W. Gurney

and R. Nisbet ([27]) can be divided into systems with positive feedback and systems

with negative feedback. W. Gurney, R. Nisbet and coworkers ([31]) have shown that the
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feedback type can be associated with the ratio period/delay of the periodic oscillations

arising in the vicinity of an unstable equilibrium. Their results are local, they are based

on the study of the characteristic equation associated with the linearization of the equa-

tion near an equilibrium. Before going through these results, we give a brief historical

perspective about the study of the comparison of the delay and the period. For scalar

delay differential equations of logistic type, which were introduced in ecology by G. E.

Hutchinson ([30]), J. A. Yorke ([44]) was the first to observe that a large class of such

equations (with odd non-linearity) have periodic solutions of period 4 times the delay.

On the other hand, in the case of positive feedback and delay differential equations of

monotone type (non-decreasing in the sense of the usual order in the state space), it has

been shown that periodic solutions are never stable and the period in this case is less

than 2 times the delay. Indeed, for slowly oscillating periodic solutions typical of negative

feedback, two times the delay seems to be a lower bound, while it is an upper bound for

equations with positive feedback. Incidentally, it was also J. A. Yorke who observed that

scalar delay differential equations with a single delay

x′(t) = f(x(t), x(t− τ))

cannot have non-trivial periodic solutions of period 2τ , a result that was partially ex-

tended by S. N. Chow and J. Mallet-Paret ([14]). It is a little of a happy surprise to see

that such a separation can be traced in the class of systems considered by W. Gurney

and R. Nisbet, even though the results in this case are only local. A related result due

to J. Mahaffy ([37]) for delay differential equations with a characteristic equation of the

type

F (λ)−G(λ)e−λτ = 0(30)

where F (λ) and G(λ) are some particular polynomials, shows that the period/delay ratio

is greater than 2 when the values of parameters are taken in the boundary of stability.

In the sequel we present similar results in a more general setting than polynomials.

The parameter values in the boundary of stability (i.e. the values of parameters in which

the solutions become unstable) are characterized by purely imaginary roots in equation

(30). Suppose that F , G satisfy for all ω ∈ R:

F (iω) = F (−iω), G(iω) = G(−iω)

and let us denote

P (z) := Re(F (z)), Q(z) := Im(F (z)),

A(z) := Re(G(z)), B(z) := Im(G(z)).

A root iω with ω > 0 of equation (30) should satisfy the system
{
A(iω) cosωτ +B(iω) sinωτ = P (iω),

B(iω) cosωτ −A(iω) sinωτ = Q(iω),
(31)

from which we obtain

cosωτ =
[X(ω)]2 − 1

[X(ω)]2 + 1
, sinωτ =

2X(ω)

[X(ω)]2 + 1
(32)

where X(ω) is a rational function of A, B, P , Q.
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If a root iω (ω > 0) of (31) exists, the following condition should be satisfied:

[A(iω)]2 + [B(iω)]2 = [P (iω)]2 + [Q(iω)]2.(33)

In this case, there exists θ > 0 such that the system (31) is satisfied with θ instead of ωτ .

To obtain a root iω of equation (30) it is enough to choose τ = θ/ω.

A simple calculation shows that

ωτ =

{
2mπ − α if X(ω) < 0,

2(m− 1)π + α if X(ω) > 0,

where

cosα =
[X(ω)]2 − 1

[X(ω)]2 + 1
.

From this, we obtain the following relationship between the period T and the delay τ :

T

τ
=





1

m− (α/2π)
if X(ω) < 0,

1

m− 1 + (α/2π)
if X(ω) > 0.

This formula allows us to conclude that the appearance of new purely imaginary roots of

equation (30) leads to a decreasing ratio T/τ .

We are now developing a model for larval competition presented in [31] which is an

interesting example of a state-dependent delay differential equation. In this model, the

authors find the ratio T/τ to lie in the interval [1, 2], which corresponds to a short cycle

model similar to model 2 we presented before.

Keeping the above notations, the model reads
{
L′(t) = eA(t)−M(t)− δL(t),

A′(t) = M(t)−A(t),
(34)

where M(t) is the rate of exit from the larval stage per unit of time. This rate is modeled

in the following way:

M(t) = eA(t− τ(t))e−δτ(t) g(t)

g(t− τ(t))
.(35)

In this formula, g(t) is the rate of larvae growth per unit of time. Let us suppose that

this rate is inversely proportional to the density of larvae,

g(t) =
1

1 + L(t)
.

The growth is expressed in units of time, hence g(t) can be understood as the progression

rate in the larval stage per unit of time and per individual. This progression is fastest in

absence of competition, i.e. if L(t) = 0. In this case, the duration of the larval stage, τm,

is the same as the larva age at metamorphosis.

In the general case, the progression through the larval stage is slower than chronolog-

ical time. For a larva which becomes adult at time t, if τ(t) is the duration of the larval

stage,

τm =

∫ t

t−τ(t)

g(s) ds.(36)
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Differentiating this formula with respect to t we get

1− τ ′(t) =
g(t)

g(t− τ(t))
(37)

which is an ordinary differential equation for τ(t), supposing that the function g(t) is

known. Since g(t) is a function of L(t), the delay τ(t) depends in fact on the state

variables.

Substituting the left side of (37) for the ratio g(t)/g(t− τ(t)) in (35) yields

M(t) = eA(t− τ(t))(1− τ ′(t))e−δτ(t).

Omitting natural mortality, the density of larvae at instant t can be represented in terms

of those who where produced by adults and who have not yet metamorphosized:

L(t) =

∫ t

t−τ(t)

eA(s) ds.

Differentiating in this formula with respect to time, we obtain a state-dependent delayed

differential equation.

If we take into account natural mortality of larvae, the formula is

L(t) =

∫ t

t−τ(t)

eA(s)e−δ(t−s) ds(38)

which gives the first equation of system (34) by differentiation with respect to t.

We focus our attention to the steady-state solutions of system (34). Setting in this

system L′(t) = A′(t) = 0, it is evident that A = L = 0 is such a solution. In general,

there is an additional one, under the assumption log e > δτm, which is

L∗ =
τ∗

τm
− 1, A∗ =

δ

e− 1
L∗, τ∗ =

log e

δ
.

The linearized equation about this point is obtained by writing the variational equations

and keeping only the first order terms:

L(t) = L∗ + u(t), A(t) = A∗ + v(t), τ(t) = τ∗ + w(t).

We calculate, for example, the first order variation of the expression g(t)/g(t−τ(t)) which

appears in the calculations for M and τ ′(t). Since

g(t)

g(t− τ(t))
=

1 + L(t− τ(t))

1 + L(t)

we have, bearing in mind that ∆[L(t)] = u(t), ∆[L(t− τ(t))] = u(t− τ(t)),

∆

(
g(t)

g(t− τ(t))

)
=

(1 + L∗)∆[L(t− τ(t))]− (1 + L∗)∆[L(t)]

(1 + L∗)2
=
u(t− τ∗)− u(t)

1 + L∗
.

Hence, the variational equation for M is

∆M(t) = e∆[A(t− τ(t))e−δτ(t)] + eA∗e−δτ
∗
∆

[
g(t)

g(t− τ(t))

]

= e[v(t− τ∗)e−δτ∗ −A∗δe−δτ∗w(t)] + eA∗e−δτ
∗
[
u(t− τ∗)− u(t)

1 + L∗

]
.
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Therefore, the linearized system of (34) about the non-trivial steady-state is




u′(t) = ev(t)− δu(t)− e[v(t− τ ∗)e−δτ∗ −A∗δe−δτ∗w(t)]

−eA∗e−δτ∗
[
u(t− τ∗)− u(t)

1 + L∗

]
,

v′(t) = −v(t) + e[v(t− τ ∗)e−δτ∗ −A∗δe−δτ∗w(t)]

+eA∗e−δτ
∗
[
u(t− τ∗)− u(t)

1 + L∗

]
,

w′(t) =
u(t)− u(t− τ∗)

1 + L∗
.

(39)

The characteristic equation for (39) is derived by looking for a non-trivial solution of the

form

u(t) = eλtU, v(t) = eλtV, w(t) = eλtW

which leads to

det



λ+ δ + (A∗/(1 + L∗))(e−λτ

∗ − 1) e−λτ
∗ − e −δA∗

−(A∗/(1 + L∗))(e−λτ
∗ − 1) 1 + λ− e−λτ∗ δA∗

(1/(1 + L∗))(e−λτ
∗ − 1) 0 λ


 = 0,

that is,

(λ+ δ)

[
λ(1− e−λτ∗ + λ)− A∗

1 + L∗
(1− e+ λ)(1− e−λτ∗)

]
= 0.

This equation has the root λ = 0, which is not an eigenvalue for the integral formulation

(38). Putting aside the root λ = −δ, the equation can be written as

F (λ)−G(λ)e−λτ
∗

= 0(40)

with 



F (λ) = λ2 +

[
1− τ∗ − τm

τ∗2
× log e

e− 1

]
λ+

(τ∗ − τm) log e

τ∗2
,

G(λ) =

[
1− τ∗ − τm

τ∗2
× log e

e− 1

]
λ+

(τ∗ − τm) log e

τ∗2
.

Remark 1. Since F (0) = G(0), λ = 0 is a root of the characteristic equation and F ′(0) =

G′(0), τ∗G′(0) 6= 0 in the general case, 0 is a simple root. Nevertheless, λ = 0 is not an

eigenvalue for the model formulated in its integral form (38). Let us notice that the

linearization (39) has been calculated for the differential system.

The linearization of the integral equation (38) gives

u(t) = eA∗e−δτ
∗
w(t) + e

∫ t

t−τ∗
v(s)e−δ(t−s) ds

where

w(t) =
1

1 + L∗

∫ t

t−τ∗
u(s) ds(41)

is the linearization of equation (36). A simple calculation shows that the eigenvectors

associated to λ = 0 in system (39) satisfy

U =
e− 1

δ
V, W = 0.
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Substituting these values in (41) we obtain

W =
1

1 + L∗
τ∗U

which implies U = 0 and then V = 0. Therefore, λ = 0 cannot be an eigenvalue except

in the case e = 1.

A feature added by the state-dependent delay to the characteristic equation is the

following: the coefficients of F and G depend on the delay τ ∗. This is in sharp contrast

with the ordinary delay case in which τ ∗ appears only in the exponent.

With the aim to study the existence of purely imaginary roots λ = iω of equation (40),

we proceed as in (30), decomposing functions F and G into real and imaginary parts. We

obtain the system (31) and equation (33), but in all these equations the corresponding

functions A, B, P , Q and X depend on the parameters τ ∗ and τm.

Let us notice that as τ ∗ approaches infinity, F and G tend to the functions

F∞(λ) = λ2 + λ, G∞(λ) = λ

which are independent of the parameters and the same is true for the corresponding limit

functions A∞, B∞, P∞, Q∞ and X∞. Then we can assure the existence of a solution

ω = ω∞ ≥ 0 of (40).

By a standard application of the implicit function theorem, we can determine a

branch of solutions of (40) ω = ω(τ ∗) defined for τ∗ big enough, with ω∞ as a limit

as τ∗ approaches infinity. Going back to the equations (32), we observe that the point

(cos(τ∗ω(τ∗)), sin(τ∗ω(τ∗))) goes around infinitely many times the unit circumference as

τ∗ tends to infinity, while X(ω(τ∗)) tends to a constant, X(ω∞), so that the point defined

by the right member of (32) goes around the unit circumference at most a finite number

of times. Applying an intermediate value theorem type of argument, we can assure the

existence of infinitely many purely imaginary roots of the characteristic equation (40).

In our model,

P∞(iω) = −ω2, Q∞(iω) = ω, A∞(iω) = 0, B∞(iω) = ω

and equation (33) is ω4 + ω2 = ω2, which leads to the solution ω∞ = 0.

3.3.3. Study of the period/delay ratio. Bearing in mind that T/τ = 2π/(ωτ), we can

estimate an asymptotic expression for the ratio near τ ∗ = +∞. To this end, we introduce

s := 1/τ∗ and define

a(s) := 1− (s− s2τm)
log e

e− 1
, b(s) := (s− s2τm) log e.

Then

A(iω, s) = b(s), B(iω, s) = ωa(s),

P (iω, s) = −ω2 + b(s), Q(iω, s) = ωa(s).

Equation (33) can be written as

b2(s) + ω2a2(s) = ω4 + ω2[a2(s)− 2b(s)] + b2(s) ⇒ ω2[ω2 − 2b(s)] = 0
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which should be coupled with the formulae

cosωτ∗ =
b2(s) + ω2[a2(s)− b2(s)]

ω2a2(s) + b2(s)
, sinωτ∗ =

−ω3a(s)

ω2a2(s) + b2(s)
.

Putting ω2 = 2b(s) in these expressions we have:




cosωτ∗ =
b(s) + 2[a2(s)− b2(s)]

2a2(s) + b(s)
:= γ(s),

sinωτ∗ =
−2
√

2b(s)a(s)

2a2(s) + b(s)
:= σ(s),

(42)

where

lim
s→0

γ(s) = 1, lim
s→0

σ(s) = 0, σ(s) < 0.

On the other hand,

ωτ∗ =

√
2b(s)

s
∼
√

2 log e√
s

(s→ 0).

Therefore, the system (42) has infinitely many solutions which determine a sequence {sn}
going to zero and such that

1√
sn+1

− 1√
sn
∼ 2π√

2 log e
(n→∞).

To each solution corresponds a pair of values τ ∗n, ωn,

τ∗n =
1

sn
, ωn =

√
2b(1/τn∗), ωnτ

∗
n ∈

(
3π

2
, 2π

)
(mod 2π).

The largest value of the ratio T/τ is 4/3, which is actually achieved.

We then conclude that the model has only short cycle oscillations.

4. State-dependent delay differential equations. State-dependent delay differen-

tial equations have already appeared in the previous section. We have seen that, in the

scenarios considered by W. Gurney and R. Nisbet, the time to maturity or the weight at

maturity are often expressed as a function of the population or part of the population.

We will return to this later on when discussing some specific models of stage-structured

population. Here we want to provide a quick review of what has been done in terms of

mathematical issues. As far as we know, one of the earliest studies of a state-dependent

delay equation was undertaken in the sixties by K. Cooke ([15]) who considered an equa-

tion of the type

x′(t) = −ax(t− r|x(t)|)
in which the delay at time t is

τ(t) = r|x(t)|.
Clearly, it is a function of the solution. K. Cooke was interested in proving an asymptotic

result, for solutions going to zero at infinity. In this case, the delay is also going to zero,

and the equation is asymptotically close to

y′(t) = −ay(t).
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So, the question was: can we compare the solutions of both equations? that is, can we

recover asymptotically the same result for the state-dependent equation as for its limit

equation, namely that solutions approach zero as a multiple of exp(−at)? This is indeed

one of the results obtained by K. Cooke in his work. In the mid-seventies, R. Nussbaum

([41]) considered a logistic like state-dependent delay equation of the type

x′(t) = −f(x(t− r(x(t)))(43)

in which the delay is a function r(x), and showed, as a consequence of a general index

theory, the existence of slowly oscillating periodic solutions to the above equation. At the

end of the seventies and beginning of the eighties, W. Alt ([3]) considered a broad class of

such equations, including the equation that had been studied by R. Nussbaum, and proved

a result of existence of slowly oscillating periodic solutions. One of the successful efforts

made by W. Alt was to give a sort of direct proof of the result, avoiding the recurse to the

somewhat involved treatment presented by R. Nussbaum. From the theoretical viewpoint,

no significant achievement seems to have been done during the eighties, and in some sense

the subject fell into dormancy as far as the theory is concerned. Next, we will discuss

the progress in the modeling. To end with the theory, the subject regained interest by

the beginning of the nineties. In 1993, two concurrent papers appeared: one by Y. Kuang

and H. L. Smith ([34]), the other by J. Mallet-Paret and R. Nussbaum ([39]). The paper

by J. Mallet-Paret and R. Nussbaum introduces a functional analysis framework for

the treatment of such equations and proves the existence of periodic slowly oscillating

solutions for an equation which again is very close to the logistic delay. On the other hand,

it seems that Y. Kuang and H. L. Smith had been the first to notice a crucial property,

also essentially valid in the case of state-dependent logistic-like equations, namely that if

x(t) is a solution of equation (43), then for each point t0 where x′(t0) = 0, we have

∀t ≥ t0, t− r(x(t)) ≥ t0 − r(x(t0))

and

∀t < t0, t− r(x(t)) < t0 − r(x(t0)).

So, this means that the past to be considered to solve the equation from t0 onwards

does not go earlier than t0 − r(x(t0)). If we take the view of r(x) being the duration

of the juvenile stage of an individual and t − r(x(t)) is the birth date of individuals

becoming mature at time t, we can say that there is no overlap of generations between

those born before t0 and those born after t0. This property allowed the authors to derive

the existence of slowly oscillating periodic solutions using a straight extension of the

method previously used for the delay logistic equation. Concerning periodic solutions

of equations with state-dependent delay, the paper [40] should be cited. More recently,

O. Arino, K. P. Hadeler and M. L. Hbid ([4]), then P. Magal and O. Arino ([36]) have

proved existence of slowly oscillating periodic solutions for a class of equations completely

different from the one studied by the above-mentioned authors.

We will now briefly discuss modeling issues. Models involving state-dependent delays

can be found in various contexts: in economy ([10]), in [25] a structured model of blood cell

production is considered by A. Grabosch and H.J.A.M. Heijmans. The model is initially

a system of PDE of the first order, which, by solving along the characteristic lines, is
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turned into a state-dependent delay. Closely related to it is a model derived recently by

J. Mahaffy, J. Bélair and M. Mackey ([38]). The model is a system of equations




M ′(t) = exp(βµ1)S0(E(t− T ))− γM(t)−Q,
E′(t) = f(M(t))− kE(t),

v′F (t) = 1− Q exp(−βµ1 + vF (t))

S0(E(t− T − vF (t))
.

Note that in that model, the state-dependence is not on the delay, which is constant, but

on the coefficients of the ordinary differential equation satisfied by vF .

An important class of state-dependent delays corresponds to threshold models, in

which a change of stage is subject to a functional of the state reaching a prescribed level.

Here is a simple example of such a threshold model ([5]).

4.1. Population divided into two stages with stage change subject to reaching a threshold

size. Consider a population divided into two stages, the juveniles and the adults, each

one being structured by the age in the stage. Denote by j(a, t) (resp. m(a, t)) the density

(in biomass per unit of age) of juveniles (resp. adults) of age a. µj (resp. µm) is the

mortality rate of juveniles (resp. adults). We have the following equations:




∂j

∂a
+
∂j

∂t
= −µj(a)j(a, t),

∂m

∂a
+
∂m

∂t
= −µm(a)m(a, t).

(44)

We point out the fact that the variable a represents the age of the juveniles in the function

j(a, t) while it is the age of the adults in the function m(a, t). The above two equations

have to be supplemented by boundary conditions and initial values. For the juvenile, we

have

j(0, t) = B(t), j(a, 0) = 0

where B(t) represents the time density of newborns, and the condition j(a, 0) = 0 ex-

presses the fact that no juvenile is supposed to exist at the time t = 0 (or, no one is able

to survive beyond a certain time period). We define J(t) to be the biomass of juveniles

at time t,

J(t) =

∫ T

0

j(a, t) da,

T being the maximum age of juveniles at time t. The passage from the juvenile to the

adult stage is described in terms of the weight function of the juvenile, namely, we assume

that
∂w

∂a
+
∂w

∂t
=

K

J(t) + C

where w(a, t) is the quantity of food eaten until time t by an individual entered in the

juvenile stage a time units ago. Assuming that w(0, t) = 0 and w(a, 0) = 0 (which

corresponds to the absence of juveniles at time t = 0), we arrive at

w(a, t) =

∫ t

t−a

K

J(s) + C
ds.
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We now introduce a threshold condition: we assume that juveniles turn adult when the

food index reaches a prescribed value w∗, that is, at each time t,

w(a, t) = w∗.

We define a(t) to be the root of the above equation: it is unique if it exists, that is, for t

large enough. Assuming t chosen so that a(t) is defined, we have a(t) = T , and so

J(t) =

∫ a(t)

0

j(a, t) da.

Solving the equation in j from system (44), along the characteristic lines starting from

a = 0, we obtain

j(a, t) = exp

(
−
∫ a

0

µj(s) ds

)
B(t− a).

Assuming for simplicity that B(t) = kJ(t), we arrive at

J(t) = k

∫ a(t)

0

exp

(
−
∫ a

0

µj(s) ds

)
J(t− a) da.

Assume, again for simplicity, that µj = 0. Then the above equation reduces to

J(t) = k

∫ t

t−a(t)

J(s) ds

which, by differentiation, gives

J ′(t) = k[J(t)− J(t− a(t))(1− a′(t))].
On the other hand, differentiating the identity

w∗ =

∫ t

t−a(t)

K

J(s) + C
ds

we obtain

a′(t) =
J(t− a(t))− J(t)

J(t) + C
.(45)

Substituting
J(t− a(t)) + C

J(t) + C
for (1− a′(t)) in the expression of J ′, it yields

J ′(t) = k

[
J(t)− J(t− a(t))

J(t− a(t)) + C

J(t) + C

]
,(46)

that is, a delay differential equation with the delay a(t) being a solution of an ordinary

differential equation whose coefficients are functions of J .

As a conclusion to this example, we have obtained a state-dependent delay differential

equation, rather a system (45)-(46), starting from an equation without delay: obviously,

the delay arises from the threshold condition.

4.2. Modeling of state-dependent delays: example of a wrong model. In this section we

consider a stage-structured population model of single-species growth, where the individ-

uals of the population have a life history that takes them through two stages, immature

and mature.
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The first version of this model, incorporating a constant delay, was presented by W.

Aiello and H. Freedman in [1]. In an attempt to obtain a more realistic biological model,

W. Aiello, H. Freedman and J. Wu ([2]), introduced a state-dependent delay in the model.

We are going to present both models and we will discuss the validity of the latter one:

we will show that this model misses several important issues, both at the level of its

application and at the level of its mathematical properties. Then we will introduce a new

model which, we believe, is more realistic. The revised model was described for the first

time in a paper by A. Fathallah and O. Arino ([22]).

4.2.1. The early model: a system of ordinary delay differential equations. Let xi(t), xm(t)

be the number of immature and mature individuals in the population, respectively, at time

t. Supposing that the population being studied is in a closed homogeneous environment

and that the time that passes from birth to maturity for an individual is a known constant

value τ > 0, the model proposed in [1] is, for t ≥ 0:
{

x′i(t) = αxm(t)− γxi(t)− αe−γτxm(t− τ),

x′m(t) = αe−γτxm(t− τ)− βx2
m(t),

(47)

with xi(t) = ϕ(t) for t ∈ [−τ, 0], xm(0) = x0
m and α, β, γ positive constants.

From a mathematical analysis, W. Aiello and H. Freedman reach in [1] the following

conclusions:

1. There exists a unique equilibrium E∗ = (x∗i , x
∗
m) with x∗i > 0, x∗m > 0, which is

globally asymptotically stable.

2. Let us consider this equilibrium as a function of τ , E∗(τ), and define the total

carrying capacity as K(τ) := x∗i (τ) + x∗m(τ).

If the birth rate α is greater than the death rate γ of immature, which is a meaning-

ful biological hypothesis, then there exists an optimal delay τ ∗ > 0 which maximizes

K(τ). This can be understood as an evolutionary strategy, consistent in changing

maturation time to maximize the total population in a given environment.

But a constant delay term τ means that at any time t the time from birth to maturity

for any new member will not be influenced by any changes in the population size, and

then the over-crowding effects will not lead to any sort of destabilization of the equilibria.

4.2.2. A first model: a simple state-dependent delay equation. As a supposedly more

accurate biological representation, W. Aiello, H. Freedman and J. Wu ([2]) modified (47)

by considering, instead of a fixed delay τ , a time to maturity which is a state-dependent

delay as a function of the total population

z(t) = xi(t) + xm(t),

that is, in (47), τ is taken in the form τ(z(t)).

Two objections may be raised to the choice of such a delay: the first one is to the delay

term itself, which implies that the maturation time for any newborn at time t depends

on the existing population size at that time t. This may be a good model for populations

with a short maturation time. But, in many animal populations, the time to maturity is

more susceptible to be influenced by the past history of individuals and the environment

they have lived in from the beginning of their life. It is even possible that it is affected
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by the way the egg and the embryo (in the case of mammalian populations) have grown.

The second objection is that this model does not preserve positiveness unless additional

restrictions and assumptions are superimposed on the initial values. On the other hand,

concerning the steady-state solutions, the conclusion obtained from this model is that if a

unique equilibrium exists, then it is always stable and all multiple equilibria are unstable.

This result does not reflect any of the biological facts about the existence of non-unique

stable equilibria which have been observed in nature, for example in the case of Antartic

whales (see [32]), also the case study of [2] and in prey-predator models (see [18], [43]),

or the case considered in [13].

In the sequel we present an alternative version of the above model, which was proposed

in [22].

4.3. A variant: a delay state-dependent delay equation. We modify the previous model

by assuming that these are the environmental conditions prevailing at birth, rather than

the ones existing at the time when maturity takes place, which influence the age to

maturity. Using the same function τ as above, τ(z(s)) is now the age at maturity of

the individuals born at time s, in contrast to the actual age of those turning adult at

time s, as previously assumed. So, individuals entering adulthood at time t have an age

determined by the state of the environment at the time of their birth, r(t), according to

the following equation:

r(t) = t− τ(z(r(t))).(48)

The equations for the population densities have to be modified accordingly. Balancing

influx and outflux in each of the two compartments, the immature and the mature ones,

we arrive at the following system (expressed in terms of z and xm instead of xi and xm):
{

z′(t) = −γz(t) + (α+ γ)xm(t)− f(xm(t))xm(t),

xm
′(t) = αxm(r(t))r′(t) exp[−γτ(z(r(t)))]− f(xm(t))xm(t).

(49)

More specific assumptions on the function τ are that it is a smooth increasing function

of z, with

0 < τ0 ≤ τ(z) ≤ τM , lim
z→0

τ(z) = τ0, lim
z→+∞

τ(z) = τM < +∞.

In order to solve equation (49) it is necessary to specify initial values for the functions

z(t) and xm(t). We express them as follows:

∀t ∈ [−τM , 0], z(t) = ϕ(t) ≥ 0, xm(t) = ψ(t) ≥ 0.

We use the pair (z, xm) instead of (xi, xm). Both representations are obviously equivalent

to each other. The only thing to keep in mind is a consistency property: not only z and

xm, but also the difference z − xm, should be non-negative.

Regarding the function f , we may assume that it is a smooth increasing function such

that

f(0) = 0 ≤ f(x) ≤ fm := lim
x→+∞

f(x) < +∞.

An important property of the model is the existence of an integral relationship, describing
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xi in terms of xm, namely, we can check that

d

dt

[
exp(γt)xi(t)− α

∫ t

r(t)

exp(γs)xm(s) ds)

]
= 0.

On the other hand, reinterpreting the integral term in the above expression in terms of

the immature population, one can see that this term provides (after division by exp(γt))

the population of immatures, that is to say,

xi(t) = α

∫ t

r(t)

exp(γ(s− t))xm(s) ds).

As a side remark, we can see that positivity of xi is an immediate consequence of the

same property for xm. Such a relationship can be found also in the model with constant

delay, but it does not hold in the intermediate model. If we now look at the function r(t),

differentiating equation (48) with respect to time yields

r′(t)[1 + τ ′(z(r(t)))z′(r(t))] = 1.

The above formula indicates that r′(t) can only change signs near values of time where

it is unbounded. If, on the other hand, we assume that the initial value of the function

z(t) is suitably small, then we will have r′(t) > 0 on an interval past t = 0. If we make

such an assumption, we will have

xm
′(t) ≥ −f(xm(t))xm(t)

in this interval, which ensures that xm(t) remains non-negative on the interval. In [22],

the following result is proved:

Proposition 6. Consider system (49) under the above mentioned conditions on the func-

tions defining the system, and assume moreover that |τ ′|∞ ≤ C, where C > 0 is some

constant which depends on the coefficients of the system.

Let (ϕ, ψ) be a pair of non-negative continuous functions defined on [−τM , 0], and

assume that the norms |ϕ|∞, |ϕ′|∞ and |ψ|∞ satisfy suitable smallness conditions deter-

mined solely in terms of the coefficients of the system. Then the Cauchy problem defined

by (49) with (ϕ, ψ) as initial values has one and only one solution, defined and continuous

on the whole positive axis. Moreover, the solution is non-negative, uniformly bounded and

of class C1.

Our main interest in the sequel is in the stability properties of equilibria and possible

bifurcations. We will also stress the way this depends on the delay.

4.3.1. Steady-state solutions. Setting x′m(t) = z′(t) = 0 in (49) we get
{−γz∗ + x∗m[(α+ γ)− f(x∗m)] = 0,

x∗m[αe−γτ(z∗) − f(x∗m)] = 0,

from which it is clear that there exists a trivial equilibrium. In [22] it is shown that (0, 0)

is a saddle point and all non-zero solutions are bounded away from zero, that is, there

exists δ > 0 such that liminft→+∞xm(t) ≥ δ.
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Non-trivial equilibria E∗ = (z∗, x∗m) are solutions of the following system:



f(x∗m) = αe−γτ(z∗),

x∗m =
γz∗

γ + α(1− e−γτ(z∗))
.

Such equilibria exist and satisfy z∗ > x∗m > 0. Existence and conditions for uniqueness

are given in [22]. In the sequel we assume that these conditions hold.

4.3.2. Linearized stability. We assume that the conditions for uniqueness of a positive

equilibrium are satisfied. We shall examine the local stability of the non-trivial equilibrium

E∗. For this purpose, the standard approach is to analyze the stability of the linearized

equations about equilibrium (see [19], [23], [24], [26], [33]).

To get the variational system of (49) about E∗ we consider solutions which are small

perturbations of the equilibrium,

z(t) := z∗ + y1(t), xm(t) := x∗m + y2(t).

Straightforward calculations lead us to the following system:
(
y1
′(t)

y2
′(t)

)
+

(
0 0

G1 0

)(
y′1(t− τ∗)
y′2(t− τ∗)

)
=

(
F1 F2

0 G2

)(
y1(t)

y2(t)

)
(50)

+

(
0 0

G3 G4

)(
y1(t− τ∗)
y2(t− τ∗)

)

with 



F1 = −γ,
F2 = α+ γ − (f∗ + f ′∗x∗m),

G1 = αx∗me
−γτ∗τ ′(z∗) = x∗mf

∗τ ′(z∗),
G2 = −(f∗ + f ′∗x∗m),

G3 = −γG1,

G4 = αe−γτ
∗

= f∗

(51)

where we have introduced the notations

τ∗ := τ(z∗), f∗ := f(x∗m), f ′
∗

:= f ′(x∗m).

We seek a solution of (50) of the form y1(t) = ueλt, y2(t) = veλt, which leads to the

following characteristic equation in λ:

P (λ) +Q(λ)e−λτ
∗

= 0(52)

where {
P (λ) = λ2 − λ(F1 +G2) + F1G2,

Q(λ) = λ(F2G1 −G4) + F1G4 − F2G3.

4.3.3. Non-state dependent delay implies stability. In system (49), if the maturation time

is constant, then E∗ is locally asymptotically stable.

In order to prove this assertion, let us consider τ(z) = τ̃ constant in system (49), so

that τ ′(z∗) = 0. Then we get the following characteristic equation:

(λ+ γ)(λ+ f∗ + f ′
∗
x∗m − f∗e−λτ̃ ) = 0.
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Therefore λ = −γ < 0 is an eigenvalue always negative. The proof is finished if we can

show that every root of the equation

λ+ f∗ + f ′
∗
x∗m − f∗e−λτ̃ = 0

has a negative real part.

Setting λ = µ+ iν, we get the following equation for the real part µ:

µ+ f ′
∗
x∗m = −f∗(1− e−µτ̃ cos ντ̃).

The assumption µ ≥ 0 yields that µ + f ′∗x∗m ≤ 0, so µ < −f ′∗x∗m < 0, which is a

contradiction.

Following the same procedure as in [1], [33], it can be shown that E∗ is also globally

asymptotically stable if the delay τ is constant.

It should be noticed that the local result about stability remains valid if the delay is

state-dependent with τ ′(z∗) = 0.

4.3.4. Stability and loss of stability. Here, we consider the issues of stability changes

for the equilibrium E∗ as the delay is increased, bearing in mind that the roots of the

characteristic equation (52) are functions of delays.

To this end, suppose that τ = τ(z) is not constant and τ ′(z∗) 6= 0. In the sequel, we

take τ ′(z∗) = 1, which can always be achieved through normalization.

We fix x∗m , therefore also the values of f∗ and f ′∗ and we let τ∗ = (1/γ) ln(α/f∗)
vary as a result of α being increased. Since the characteristic equation (52) is a quasipoly-

nomial, if there exists a transition from stability to instability it must correspond to a

purely imaginary root λ = iν 6= 0.

In particular, ν should be a real root of the algebraic equation

|P (iν)| = |Q(iν)| ⇔ ν4 +Aν2 +B = 0(53)

with {
A = F 2

1 +G2
2 − (F2G1 −G4)2,

B = F 2
1G

2
2 − (F2G3 − F1G4)2.

Existence of non-zero real solutions ν± > 0 for equation (53) is implied by the following

conditions:

a) If B < 0, then there is one and only one positive solution ν+ > 0.

b) If B > 0 and A < 0 such that A2 > 4B, then there are exactly two positive

solutions ν+ > ν− > 0, where

ν+
2 =
−A+

√
A2 − 4B

2
, ν−

2 =
−A−

√
A2 − 4B

2
.(54)

c) Otherwise, that is, if B > 0 and A > 0 or A < 0 such that A2 < 4B, then equation

(53) has no real solution.

Let us notice that, taking the values given in (51) for Fi, i = 1, 2 and for Gi, i =

1, 2, 3, 4, we can write the coefficients A, B as
{
A = γ2 + (f∗ + f ′∗x∗m)2 − f∗2[(α+ γ − f∗ − f ′∗x∗m)x∗m − 1]2,

B = γ2(f∗ + f ′∗x∗m)2 − γ2f∗2[(α+ γ − f∗ − f ′∗x∗m)x∗m + 1]2.
(55)
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Therefore

lim
α→+∞

B = −∞

and then, for each α > 0 big enough, we can assure the existence of a unique real positive

solution of equation (53), ν+(α) > 0.

Now we have to show that these roots provide purely imaginary solutions λ(α) =

iν+(α) of the characteristic equation (52):

e−iν+(α)τ∗(α) =
P (iν+(α))

Q(iν+(α))
.

A straightforward calculation gives the following asymptotic expression for ν+(α):

ν+(α) ∼ x∗mf∗α (α→ +∞)

which provides

lim
α→+∞

P (iν+(α))

Q(iν+(α))
= i

and also

lim
α→+∞

τ∗(α) = lim
α→+∞

1

γ
log

α

f∗
= +∞.

Equation for ν+(α) can be written as

eiθ+(α) = R+(α)

where

θ+(α) = ν+(α)τ∗(α), R+(α) =
P (iν+(α))

Q(iν+(α))

so that θ+ is an increasing continuous function for α > 0 large enough, such that,

limα→+∞ θ+(α) = +∞ and R+ is a continuous function for α > 0 big enough, such that

|R+(α)| = 1 and limα→+∞R+(α) = i. Then we can choose a continuous argument func-

tion ArgR+(α) such that R+(α) = exp(iArgR+(α)) with limα→+∞ArgR+(α) = π/2.

Therefore θ+(α) − ArgR+(α) is an increasing continuous function for α > 0 large

enough, from which we can assure the existence of an infinite family of real values {αk},
k ≥ k0 > 0, k integer, such that

θ+(αk)−ArgR+(αk) =
π

2
+ 2kπ.

This implies the existence of an infinite family of purely imaginary roots λk = iν+(αk)

of the characteristic equation (52).

Henceforth, stability changes occur if some eigenvalues cross the imaginary axis as α

increases. That is, the quantity of interest is the sign of

d

dα
(Reλ(α))λ=iν+(α).

An implicit differentiation in the characteristic equation (52) yields

λ′α(α) =
P (∂Q/∂α)−Q(∂P/∂α)− λ(τ ∗)′αPQ
Q(∂P/∂λ)− P (∂Q/∂λ) + τ ∗PQ

=
(λG1 −G3)P − (λ/γα)PQ

(2λ− F1 −G2)Q− (F2G1 −G4)P + τ∗PQ

where (u)′α means differentiation with respect to α.
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A somewhat simple but lengthy calculation yields asymptotically as α→ +∞:

λ′α(iν+(α)) ∼ x∗mf
∗(f∗x∗mα+ iγ)

γ + iαx∗mf∗ logα

so that

Sign (Reλ′α(iν+)) = Sign (αγx∗2mf
∗2(1 + logα)) > 0 (α→ +∞).

4.3.5. Conclusion of the section. We have considered three models of the same pop-

ulation dynamics, the first one with a constant delay, the second one with a simple

state-dependent delay and the third one with a delayed state-dependent delay. The re-

sults are as follows:

1. With a constant delay, we have that any non-trivial equilibrium, when it exists, is

locally asymptotically stable and there is no change in the stability.

2. With a delay of the type τ = τ(z(t)), there is no change in stability either. This is

the result found by W. Aiello, H. Freedman and J. Wu ([2]).

3. With a delay of the type τ = τ(z(r(t))), conditions for a Hopf bifurcation to take

place are met: we found an infinite family of values of the parameter α at which

the characteristic equation has imaginary roots.

In terms of modeling, the above results show a striking contrast between the case of

constant or ordinary state-dependent delay and what we called a delayed state-dependent

delay. This tells us notably that not all models of delays are equal, and that choosing a

wrong model of delay may be misleading.

Our analysis is only partial: we did not conclude that a bifurcation is indeed taking

place. As far as we know, no Hopf bifurcation theorem for such equations is currently

to be found in the literature. It should be also noticed that, in fact, linearization has

been a problem in the case of state-dependent delay differential equations (see [16]).

Some results have recently been obtained by O. Arino and E. Sánchez ([8]), for a class of

state-dependent delay equations including the one presented here, namely, an extension

of the saddle-point theorem and the center manifold theorem to such equations.

5. General conclusion. The examples discussed in this work illustrate the effect of de-

lay on oscillations and stability. They show that this effect is rather more complex than

it was initially thought: the old dogma according to which increasing the delay results

in increased unstable oscillations does not seem to be generally true. A typical situa-

tion where it holds is the logistic delay differential equation. The characteristic equation

associated with the logistic equation, which is of the form

exp(−λτ) = F (λ),

with the function α 7→ |F (iα)|, α ∈ R, increasing. For the logistic equation, it can be seen

that the derivative is positive at every α. From the monotonicity, it can be concluded

that each time a root crosses the imaginary axis, it does it from left to right as the

delay increases. It is also immediate to see that, under the assumption of monotonicity,

the modulus of the imaginary root is increasing to +∞ as the delay approaches +∞,

which indicates faster and faster oscillations. Phrased in terms of stability, the dogma
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tells us that stability will be lost for delay large enough and will not be recovered. This

is precisely stated in Theorem 5 for logistic-like equations.

Even a simple second order scalar delay differential equation may make the dogma

fail, although it will hold in this case for large values of the delay. It is even more so

for delay equations where the equilibrium depends on the delay, which is the case in the

classes of equations considered in Section 3 as well as the model dealt with in Section 4.

In such cases, the characteristic equation is of the form

exp(−λτ) = F (λ, τ).

Let us mention that a systematic study of characteristic equations of this type has been

undertaken by E. Beretta and Y. Kuang in [11].

In all the examples but one considered in this work, the property of instability induced

by the delay holds at least for large delay. The exception is the example provided by J.

Cushing, where stability is recovered for large delay. This sets an open issue: is it possible

to find general conditions for instability or, on the contrary, stability, to hold for large

delay? More importantly, is it possible to relate such properties as stability switches to

inner mechanisms of the modeled population dynamics? The work done by W. Gurney,

R. Nisbet and coworkers (see ([27], [31]) is a step in this direction.
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