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Abstract. The aim of these notes is to illustrate, largely by way of examples, how standard

ecological models can be put into an evolutionary perspective in order to gain insight in the

role of natural selection in shaping life history characteristics. We limit ourselves to phenotypic

evolution under clonal reproduction (that is, we simply ignore the importance of genes and sex).

Another basic assumption is that mutation occurs on a time scale which is long relative to the

time scale of convergence to an ecological attractor.

We begin by illustrating the idea of interaction via environmental variables through the ex-

ample of competition for substrate in the chemostat. In this context we explain the trait/strategy

substitution sequence, capturing how successful invaders/mutants outcompete the resident and

then become the new resident. We also introduce the PIP, the pairwise invasibility plot, as a

convenient graphical tool to study the adaptive dynamics of a one-dimensional trait.

We high-light the pessimization principle: if the environmental condition is one-dimensional,

mutation and natural selection inevitably lead to deterioration/Verelendung. We illuminate the

Tragedy of the Commons as well as evolutionary suicide and, while we’re about it, adaptive

dynamics as an added feature to a bifurcation diagram (with, possibly, AD-induced branch

switching).

Then we rewrite the invasion exponent as a function of resident and invader trait, define

the selection gradient and turn to the core of the theory: the classification of singular points

(where the selection gradient vanishes) in terms of ESS, CSS, mutual invasibility, converging

– and diverging dimorphisms and branching points. An extensive collection of allied examples

focuses on the timing of reproduction of semelparous organisms. We show how to analyse steady

states of structured population models, how fitness measures relate to the dimension of the

environmental condition and to the specific form of density dependence and we establish the

central role of the ideal free distribution (i.e., the principle of indifference). We also describe

the “resident strikes back” phenomenon. In the final section we very concisely sketch the wider

perspective, alternative theories and the agenda of AD.

An almost identical earlier version of these notes appeared in: Summer School on Mathemat-

ical Biology, A. Margheri, C. Rebelo, F. Zanolin (eds.), CIM, Lisboa, Portugal, 2002.

2000 Mathematics Subject Classification: 92D15, 92D25.
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1. The ecological feedback loop. The starting point for a physiologically structured

population model [6, 13, 15, 17, 18, 25, 28, 32, 58, 59, 66, 87] is a description of the life

history of individuals, focusing in particular on everything related to

• maturation,

• survival,

• reproduction.

So one investigates how mechanisms at the i-level (i for individual) generate phenomena

at the p-level (p for population). E.g., cannibalism may prevent extinction when adult

food is scarce [74, 86, 52] and variability in maturation delay, due to competition for food,

may generate p-fluctuations with a certain period [16, 14].

Nonlinearity, i.e., dependence among individuals, is incorporated in a two-step proce-

dure:

(i) Maturation, survival and reproduction may also depend on (relevant components

of the) environmental conditions, which are “defined” by the requirement that the in-

dividuals are independent from each other whenever these are prescribed, say as a

function of time. Examples are light intensity for plants, food concentration, predation

pressure (i.e., the predation component to the force of mortality) and force of infection.

(ii) In turn, the environmental conditions are determined by the individuals consti-

tuting the population(s), e.g. by shading, consumption, predation, making contacts at

which infective agents can be transmitted.

So interaction is not direct, but via environmental conditions. Or, in other words, the

deterministic dynamics of well-mixed populations is governed by a feedback loop at the

ecological time scale.

2. The evolutionary feedback loop. In p-models the i-life history is the key ingre-

dient. But how has it itself evolved? Did natural selection shape it? Can we understand

behavioural and physiological properties of individuals as the outcome of a process of

adaptation at the much longer evolutionary time scale?

A popular, but naive, view is that survival of the fittest leads to optimal adaptation to

the environment. In the preceding section we emphasized that the environment is (partly)

determined by ecological interaction, so, in a sense, it co-evolves. And this phenomenon

is at the heart of Adaptive Dynamics.

Unfortunately the fact, that the carrier of information in the process of inheritance,

DNA, has been identified, doesn’t make understanding natural selection simple. Selection

acts on phenotypes and the map genotype→phenotype is, in almost all cases, extremely

complicated and not understood at all. Moreover, sexual reproduction involves mating, a

possibly rather subtle process. But even if we restrict our attention to random mating the

map genotype×genotype→genotype is awfully more complicated than a simple Mendel

picture suggests, due to the subtleties of crossing over/recombination when several loci

are involved [2, 5, 11, 34, 88].

So approximations are called for (like when you do solid state physics and ignore that,

in principle, everything should follow from understanding elementary particles). In the
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framework of Quantitative Genetics these are based on things like many loci, additive

effects and Gaussian distributions. The alternative is to ignore genes and sex all together

and study phenotypic evolution. In other words, pretend that reproduction is clonal.

Variability is then generated by mutations, which are usually assumed to be rare (as well

as small).

The theory of phenotypic evolution comes in two brands. The earliest is based on direct

interaction and game theory, with evolutionary success being measured in terms of (an

often rather mysterious) pay off [63]. The second, Adaptive Dynamics, is only about 15

years old. It focuses on the effect of the ecological feedback loop and evolutionary success

hinges on the positivity of the long term p-growth rate of a mutant in the environmental

conditions set by the current resident.

3. Adaptive Dynamics step-by-step

Step 1. Single out a trait (or, in alternative denomination: a strategy repertoire), a

particular aspect of phenotype (e.g., the fraction of ingested energy which is scheduled

to reproduction). Here we shall restrict our attention to one-dimensional traits, meaning

those that can be represented by one real number.

Step 2. Imagine a monomorphic (for this particular trait) population, called the resi-

dent (the word “resident” is used both to denominate the population, the type of indi-

vidual and the trait value, depending on the context). Do invasibility analysis. That is,

imagine a mutant with a (slightly) different trait and find out whether it starts a growing

population (in the environmental conditions as set by the resident). This is a linear test

and therefore it is relatively easily carried out. In principle it is based on a deterministic

description of p-growth, but one can incorporate a branching process correction for the

possibility of extinction of the mutant even when it has the potential to grow.

Note: next to “invasibility” one sees also “invadibility”, “invadability” and “invasabil-

ity” and this author has never understood whether there is any difference in meaning;

could this be a case of neutral evolution?

Step 3. Investigate what will be the outcome of the competition between the resident

and a successful invader. Will the invader outcompete the resident and thus become

the new resident? Or will they coexist indefinitely (on the ecological time scale) and

thus constitute a dimorphic resident population? The answer to such questions requires

a nonlinear analysis. Unfortunately there are no generally applicable tools available

and only in very special cases can answers be rigorously justified. Yet there are certain

patterns that give confidence in conjectures for far more general cases [43, 56].

Step 4. On the basis of the information gained in steps 2 and 3, try to determine which

traits can enter the stage as successful mutants and, once on stage, are invulnerable

in the sense that no subsequent mutant can drive them to extinction. The key notion

here is that of unbeatable strategy [49] or ESS for Evolutionarily Stable Strategy

[62] which is a trait such that, when the vast majority of the individuals has it, no rare

mutant with a different trait can increase in numbers. However, as we shall explain below,

this property in effect characterizes a (monomorphic) Steady Strategy for the Adaptive



50 O. DIEKMANN

Dynamics which may be a repellor rather than an attractor, so the “Stable” is a bit of a

misnomer. The following two intuitive (rather than formal) examples underline that an

unbeatable strategy has, per se, nothing to do with optimality:

(i) In the UK driving to the left is unbeatable, yet in the rest of Europe driving

to the right is unbeatable. In other words, when there is no intrinsic advantage to any

strategy, it may be that the majority sets the rules.

(ii) From a biological point of view most males are a waste (just think about a harem!).

Yet a sex ratio of 1
2 is very common. Fisher [40, 9] gave the following explanation: every

child has both a father and a mother, so if the sex ratio is female biased, males get

more offspring than females. So if, in that situation, a mutant mother shifts her sex ratio

towards sons, she gets more grandchildren than the average female. Note that in this

example an intrinsically better trait is “beatable” because of a minority advantage.

4. Competition for food in the chemostat: a warming-up. The chemostat ([80],

see Figure 1) is a laboratory device to culture micro-organisms, like algae or bacteria.

In a vessel of volume V = 1 all they need to grow is provided in excess, except for one

substance (e.g., phosphate) which accordingly is called the limiting substrate or resource.

Its concentration is denoted by S. Fresh medium containing substrate with concentration

S0 is pumped into the vessel at rate D. At the same rate D fluid is pumped out, containing

substrate with concentration S (since the chemostat is continuously stirred) and micro-

organisms with concentration X.

V=

fresh medium continuously stirred
     culture vessel

S

D

S
X0

(vol/time)D

1

Fig. 1. The chemostat

Each micro-organism consumes substrate at a rate g which depends on the availabil-

ity S. Quite generally, g has the form depicted in Figure 2 (linear for low S, increasing,

saturating for large S; just as the output of a factory is proportional to the rate at

which raw material is provided when this rate is low, but is determined by the capac-

ity of the factory, not by the input, when this rate is high). Various submodels for the

short-time-scale consumption process such as the Holling time budget model (explained

in, e.g., [66] or the Michaelis-Menten enzyme reaction model (presented in, e.g., [79])

yield expressions for g of the form

g(S) =
aS

1 + a hS
(4.1)
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(  )

S

η
D

S

Y
Y=g S

Fig. 2. Graphical representation of the rate g at which a micro-organism consumes substrate.

The population of micro-organisms will steer S to S provided S < S0.

which are called a Monod, Michaelis-Menten or Holling type 2 function.

As an idealized description of reality we assume that the consumed substrate is im-

mediately transformed into new micro-organisms, with conversion efficiency η (when X

represents biomass/volume, this is not that strange an assumption!). The system of ordi-

nary differential equations (beware that the volume V of the vessel doesn’t appear since

we choose the unit of volume such that V = 1)

dS

dt
= DS0 −DS − g(S)X,

dX

dt
= −DX + η g(S)X,

(4.2)

reflects all these assumptions and tells us how S and X will change in the course of time by

inflow, outflow and consumption/division. From the point of view of the micro-organism,

the environmental condition is completely described by the substrate concentration S.

Our first task is to investigate the dynamical behaviour generated by (4.2).

Observation 1: The p-attractor is a steady state.

Argument: Since d
dt [S + 1

ηX] = D{S0 − [S + 1
ηX]} necessarily

S(t) +
1

η
X(t) → S0 for t→∞.

So the large time behaviour is governed by a one-dimensional problem and, therefore,

convergence to a limit must occur.

Observation 2: S settles at S, the level at which the p-growth rate of the micro-

organism equals zero, formally defined by the equation

g(S) =
D

η
(4.3)

provided S < S0.

Argument: The introduction of the micro-organism in an “empty” chemostat (i.e., when

(S,X) = (S0, 0)) leads to p-growth iff −D+ ηg(S0) > 0 which, given the monotonicity of

g, translates into S < S0 (see Figure 2). A steady-state with X 6= 0 should have S = S.

The corresponding value for X is found by solving DS0 −DS − g(S)X = 0 and so it is

positive iff S < S0.
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Now consider the conversion efficiency η as the trait of the micro-organism (please

stop a moment to test your biological intuition on a very simple question answered below:

how will η evolve by the combined action of mutation and natural selection?). When there

is a monomorphic resident with trait ηres, the environmental condition is, according to

the observations above, set at Sηres
(the quantity S depends on η and there is now a need

to express this explicitly in the notation). A mutant with trait ηinv will start a growing

population when

ηinv g(Sηres
) > D

(the deterministic certainty of this statement needs a stochastic correction, as either the

founder or all of its clan may be washed out before the clan is large enough for total

wash-out to become unlikely). If, on the other hand

ηinvg(Sηres
) < D

the clan is doomed to be washed out, i.e., to go extinct. We call the p-growth rate

ηinv g(Sηres
)−D

the invasion exponent and, also, the fitness of the mutant in the environmental condi-

tion set by the resident [67]. Since, by definition,

ηres g(Sηres
)−D = 0

we find that an invader is successful iff its trait-value is higher than that of the resident.

So the outcome of the linear invasibility test is that η will increase by natural selection

(as you had doubtlessly predicted).

Is the nonlinear competition such that a successful invader drives the resident to

extinction? In other words, does a successful invader become the new exclusive ruler of

the mini-world that the chemostat constitutes? The fact that mutual invasibility does

not occur (indeed, if η1 > η2 then type 1 individuals can invade in the environmental

conditions as set by a type 2 resident, but not vice versa) indicates that the answer

is “yes”. To decide whether it is “yes” indeed, we study the full nonlinear competition

system
dS

dt
= DS0 −DS − g(S)X −g(S)Y,

dX

dt
= −DX + ηres g(S)X,

dY

dt
= −DY +ηinv g(S)Y.

(4.4)

Since S(t) + 1
ηres

X(t) + 1
ηinv

Y (t) → S0 for t → ∞ we can restrict our attention to the

2-dimensional problem for X and Y with, in the differential equations S put equal to

S0 − 1
ηres

X − 1
ηinv

Y (see [80, 82] for careful justification).

The local invasibility analysis based on linearization yields the information depicted

in Figure 3. An internal (to the positive quadrant) steady state does not exist (indeed, it

would require that one quantity, S, is such that both the p-growth rate −D + ηres g(S)

of X and the p-growth rate −D + ηinv g(S) of Y are zero, which clearly is impossible if

ηinv 6= ηres). The Poincaré-Bendixson theory of planar dynamical systems then implies
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X

Y

Fig. 3. Graphical representation of (non)invasibility

that all orbits in the interior of the positive quadrant are attracted towards the stable

steady state at the Y -axis (to make the argument precise, one needs to check that all

orbits remain bounded; this is straightforward).

The conclusion is that a successful invasion generates a trait substitution: after a

period of competitive interaction the population becomes monomorphic again, but the

trait value of the resident has changed. Now assume time scale separation, in particular

that the period of competitive interaction is short relative to the long evolutionary time

scale determined by the mutation process. Then we can think of the trait substitution as

occurring more or less instantaneously. So then we may describe the changes in the trait

by the combined influence of mutation and natural selection as a trait substitution

sequence.

inv +

−

η

η

res

Fig. 4. Pairwise Invasibility Plot for unconstrained evolution of conversion efficiency

The information concerning the adaptive dynamics of the trait η can be conveniently

represented graphically in a so-called PIP, a Pairwise Invasibility Plot. See Figure 4.

At the 45o line ηinv = ηres there is, of course, neutrality. This line separates the + region

of (ηres, ηinv)-pairs with a successful invader from the − region of pairs such that the

invader fails. It is convenient to think of a monomorphic state for the adaptive dynamical

system as a point on the 45o line. A mutation then yields a jump to a point on the

vertical line with fixed ηres. When this point lies in the − region, we simply jump back

to the starting point so that, essentially, nothing has happened. Therefore we may as

well (and will indeed) simply ignore unsuccessful mutations. When, on the other hand,

the mutation yields a point in the + region, we need to do the nonlinear competition

analysis. In the present case we found that the successful invader takes over completely.

This “taking over” is represented by a horizontal move to the 45o line. Repeating the trait
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substitution again and again we generate a stair climbing evolution. The heights of the

steps are determined by the random mutation process, but the fact that η increases, rather

than decreases, is due to natural selection (here we take advantage of the one-dimensional

character of the trait: by the order structure of the real line, η can only evolve in two

directions, up or down; contrast this with the possibilities in Rn with n ≥ 2). It makes

sense to think of the steps as being rather small.

Thus far we pretended that there were no physiological costs whatsoever associated

with an increase of η. Next, let us complicate the matter by postulating a trade-off be-

tween the conversion efficiency η and the up-take efficiency h−1 featuring in the expression

(4.1) for g (note that limS→∞ g(S) = h−1 so that h−1 equals the maximal up-take rate).

The nature of the trade-off is presented in Figure 5 and its caption.

h

η

Fig. 5. Graphical representation of the way h increases when η increases, corresponding to a lim-

ited biochemical machinery, which can be either used for improving conversion or for improving

up-take, but not for both at the same time

η

S

S

η η ηmin max
^

0

Fig. 6. Only η-values in the interval (ηmin, ηmax) yield a viable population

When g is given by (4.1) we have explicitly

S =
1

a( ηD − h(η))
(4.5)

The graphical presentation in Figure 6 of the relation (4.5), with h as depicted in Figure 5,

tells us two things:

– the set of viable η values is a finite interval,

– with the exception of η̂, the η-value for which S achieves its minimum, each η-value

is paired to exactly one other η-value characterized by equality of the corresponding

S value.
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The second point implies that in the PIP there is, apart from the 45o line, a curve of

neutrality. This curve connects (ηres, ηinv)=(ηmin, ηmax) to (ηres, ηinv)=(ηmax, ηmin), inter-

sects the 45o line at η̂, the η-value at which S is minimal, is symmetric with respect to

reflection in the 45o line, i.e., with respect to interchanging ηres and ηinv, and so has a

tangent line with slope −1 at the intersection with the 45o line. Apart form the + and

_

_

^η η

inv

η

η

η

η

++

η

max

min

min max
res

Fig. 7. PIP in the case of η − h trade-off

− signs and the arrows along the 45o line, the features of the PIP in Figure 7 are just a

graphical presentation of these observations. It remains to justify the pattern of + and

− signs (the arrows just indicate that, given the sign pattern, the adaptive dynamics of

η are such that η increases when smaller than η̂ and decreases when larger than η̂). To

do so we observe that

(i) S 7→ aS
1+a hS is monotone increasing,

(ii) η
aSη

1+ah(η)Sη
= D so, in particular, independent of η,

(iii) the invasion exponent is ηinv
aSηres

1+a h(ηinv)Sηres

−D,

and from these observations conclude that Sηinv
< Sηres

implies success for the invader,

while the opposite inequality implies failure. On the other hand, we deduce from Figure 6

that Sηinv
< Sηres

for ηinv in between ηres and the point that is paired to ηres. Hence the

+ should be above the 45o line when ηres is less than the value η̂ at which S achieves

its minimum, and below the 45o line when ηres exceeds η̂. We now read off from the PIP

depicted in Figure 7 that:

(i) η̂ is a global ESS since the vertical line through η̂ is entirely in the − region,

(ii) the trait substitution sequence converges to η̂.

Apparently the coin of optimal adaptation to the environment has another side to it: by

the ecological feedback through consumption, the environment becomes ever more harsh,

i.e., Sη decreases to its minimum along the trait substitution sequence. This is sometimes

called a pessimization principle: mutation and natural selection lead to a deterioration

of the environmental condition, a Verelendung. We end up with the worst of all possible

environments. Reassuringly a crucial aspect is that in this example the environmental

condition is described by just one number, the steady state value of S (again it is the

order structure of R that limits the possibilities rather severely).
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5. The general features of pessimization. Suppose that a population of individuals

with trait x grows under constant environmental conditions, characterized by a variable

I, like

er(x,I)t

(in Section 4 we had the correspondence x ∼ η, I ∼ S and

r(x, I) = x
aI

1 + ah(x)I
−D ).

Now assume that both x and I are scalars, i.e., they are fully specified by one real

number. Also assume that r is monotone in I, say strictly increasing. The steady state

equation r(x, I) = 0 then has a unique (for given x) solution I = I(x). Assume that

the population dynamics (which we do not describe in detail, as only the growth rate

r figures in the rest of the argument) is such that the steady state is an attractor (or,

even, a global attractor; as a side-remark we mention that very often such assumptions

are not verified even when the population dynamics is actually specified in detail). The

monotonicity in I and the identity r(x, I(x)) = 0 imply that

sign r(y, I(x)) = sign (I(x)− I(y)).

So the linear invasibility test for a mutant with trait y in the environmental conditions

set by a resident with trait x

– predicts success if Ī(y) < Ī(x),

– guarantees failure if Ī(y) > Ī(x).

Now assume that successful invasion results in take-over, i.e., leads to the extinction of

the resident. Then the adaptive dynamics is described by a trait substitution sequence

and at every substitution the value of Ī necessarily decreases. Accordingly the sequence

leads to a trait x̂ at which x 7→ Ī(x) has a (local) minimum. Such a trait x̂ is automatically

a (local) ESS. See [70, 69, 29].

6. A manifestation of the Tragedy of the Commons. The example of Section 4

warns us against naive optimistic views about natural selection. The example of this

section (which was concocted by Kalle Parvinen, in response to provocative remarks by

the author) is even stronger in this respect: it shows how trait substitution may drive a

population to extinction. This phenomenon is called “evolutionary suicide” [38, 46, 48].

But the example has as an additional aim to demonstrate how adaptive dynamics

may be visualized by adding “arrows” to a bifurcation diagram.

Again we consider a resource-consumer model but this time the resource is self-

reproducing too. Moreover, an Allee effect is incorporated in the resource dynamics,

meaning that the resource is bound to go extinct once its density/concentration drops

below a certain threshold. The population dynamical system is generated by the differ-

ential equations

Ṡ= S

(
aS

1 + S
− b− cS

)
− θSX,

Ẋ= X(ηθS − µ).

(6.1)
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We consider the parameter θ as describing a trait of the consumer. Clearly mutants

with larger θ will invade successfully in the environmental conditions set by a resident

with smaller θ (no matter whether the environmental condition, i.e., S, is constant or

fluctuates; indeed, the per capita growth rate is a strictly increasing function of θ, for

every positive S). Moreover, the successful invader population will, for the same reason,

outcomplete the resident, so trait substitution will occur. In conclusion, the adaptive

dynamics of θ is strict increase.

It remains to investigate how the dynamics generated by (6.1) depends on θ. We

present the outcome of this investigation in the form of the bifurcation diagram in Fig-

ure 8.

X

2 θ θ
θ

θ1 θ 3 4

Fig. 8. Bifurcation diagram for (6.1). The adaptive dynamical increase of θ is indicated by the

arrows (but, admittedly, the arrow between 0 and θ1 is meaningless).

To understand this diagram, it is helpful to draw the phase plane of (6.1), and to

note that the vertical consumer isocline S = µ/ηθ shifts to the left whereas the resource

isocline X = 1
θ

(
aS

1+S −b−cS
)

only loses height, but does not shift, when θ increases (here

we presume that the S-axis is horizontal and the X-axis vertical, just as in Figure 9).

For 0 < θ < θ1 there is no internal steady state, the consumer goes extinct. For θ1 <

θ < θ2 there is a stable internal steady state. At θ = θ2 the vertical consumer isocline

intersects the resource isocline in the top. As θ passes θ2 a Hopf bifurcation occurs and

for θ > θ2 there is at first a stable limit cycle surrounding the now unstable internal

steady state.

S

X

Fig. 9. Phase plane of (6.1) for θ = θ3 at which there is a heteroclinic connection between the

two saddle-points at the S-axis
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As θ increases this limit cycle “grows” in amplitude, but much stronger in period,

until, for a critical parameter value called θ3, it “dies” in a heteroclinic cycle formed

by the piece of the S-axis in between the two saddle points and an internal orbit that

connects the upper saddle point to the lower one. For θ > θ3 the unstable manifold of

the upper saddle point “ends” in the origin (which is actually a stable steady state for

all θ). With the stable manifold of the lower saddle point as the only exception, all orbits

in the interior “end” in the origin. In other words, both the resource and the consumer

go extinct for θ > θ3.

res

+

−

θ

θ θ

extinction
inv

3

Fig. 10. PIP for (6.1) with consumer trait θ

The concomitant evolutionary suicide is depicted in both Figure 8 and Figure 10.

Connoisseurs will recognize the Tragedy of the Commons, which derives from the advan-

tage of being rare: you profit, but don’t pay the price (for a while, that is, not until you

are not rare any more; so it is a short term policy only).

One might indeed say that examples of this kind illustrate the need for having the

Law, as well as the police to enforce it.

In conclusion of this section we mention the work of Dercole, Ferrière & Rinaldi

[20], in which they find evolutionary cycling involving attractor switching by rigging

a bifurcation diagram as in Figure 11 with arrows indicating the direction of adaptive

parameter change.

θ

X

Fig. 11. Evolutionary cycling involving attractor switching, as found in [20]

Exercise 6.1. Cannibalism is both more common than most people are aware and less

prominent than an evolutionary biologist might expect at first [12, 19, 28, 52, 74, 86].

Here, to sharpen our intuition, we consider a very very caricatural model.

The equation
dx

dt
= rx− kx2 + (1− ε)kx2(6.2)
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describes a population which, in the absence of cannibalism, would grow exponentially

with rate r. The negative efect of cannibalism, the additional death rate, is incorporated

in the term −kx2. The positive effect, the production of offspring from energy obtained

by intraspecific predation, is represented by the term (1− ε)kx2. We assume 0 < ε < 1,

so there is a net loss. Accordingly cannibalism acts as a negative feedback mechanism

that regulates the population size. The parameter k describes the degree of cannibalistic

activity. It will be the trait under consideration.

(i) Check that (6.2) has the steady state x̄ = r
εk as a global attractor.

(ii) Explain the rationale underlying the equation

dy

dt
= ry − kresx̄y + (1− ε)kinvx̄y(6.3)

for the initial dynamics of an invader population.

(iii) Show that the invasion exponent equals

r
(1− ε)
ε

(
kinv

kres
− 1

)
(6.4)

and conclude that the invader will be successful if and only if kinv > kres.

(iv) Derive the system

dx

dt
= rx− k1x

2 − k2yx+ (1− ε)k1(x+ y)x,

dy

dt
= ry − k1xy − k2y

2 + (1− ε)k2(x+ y)y,

(6.5)

for the nonlinear interaction. Check that this is a Voltera-Lotka competition system

with, in case k2 > k1, the boundary steady state (x, y) =
(
0, r

εk2

)
as the global attractor.

Conclude that successful invasion results in trait substitution.

k

X

Fig. 12. Adaptive dynamics of cannibalistic activity and its impact on population size

(v) Relate the results (which are depicted in Figure 12) to:

(a) the Tragedy of the Commons,

(b) the Pessimization Principle of Section 5 (what quantity does correspond to I?),

(c) evolutionary suicide.

(vi) Why should we doubt the conclusion that cannibalism will increase in strength

for ever? Scrutinize the assumptions! Hints: (a) How would spatial structure affect the

probability to cannibalize your own offspring rather than that of a random conspecific? (b)

How would the ability to catch regular prey be affected if you keep hunting your own kind?
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7. The classification of singular points in PIP’s. We now interrupt the stream of

examples to present the main result of the theory developed so far. Here we are concerned

with a one-dimensional trait x undergoing small mutations on a long (relative to ecological

dynamics) time scale.

Above we have advocated the use of variables characterizing relevant aspects of the

environmental conditions as a key step in describing interaction. From the point of view

of modeling and interpretation this is indeed a good idea. But in this section we shall

suppress I in the notation and write the invasion exponent as sx(y), where x is the

trait of the resident and y the trait of the invader. This relates directly to PIP’s and it

is efficient: the essential structure is exposed first and detailed calculations for specific

models are postponed. The notation presupposes that the ecological attractor is unique

or, in case it is not, that we have additional information about the attractor concerned

(recall Figure 11 and see [43]).

The formal definition reads: the invasion exponent sx(y) is the long term population

growth rate of a mutant population with trait y under environmental conditions as set

by the resident population with trait x (these conditions can be steady, periodic or even

chaotic; clearly this distinction has influence on the ease with which sx(y) is computed,

but not on the classification!)

We note right away the two useful identities

∂s

∂x
+
∂s

∂y
= 0,(7.1)

∂2s

∂x2
+ 2

∂2s

∂x ∂y
+
∂2s

∂y2
= 0,(7.2)

which hold along the diagonal x = y and are straightforward consequences of the funda-

mental identity

sx(x) = 0(7.3)

which itself is a direct corollary of the definition of s.

The sign of the selection gradient
[
∂

∂y
sx(y)

]

y=x

tells us in which direction the trait will evolve from the current resident strategy x;

if the sign is positive the trait increases and if it is negative the trait decreases (here

we take for granted that successful invasion implies trait substitution; see [43, 56] for

conditions that yield a rigorous justification). A singular point x̄ is a trait value at

which the selection gradient vanishes, so where the first order test fails to tell us which

way natural selection will lead us. If s is smooth then, because of (7.3), it has the form

sx(y) = (x − y)Φ(x, y) and the selection gradient equals −Φ(x, x). Solving Φ(x, y) = 0

in the neighbourhood of the known solution (x, y) = (x̄, x̄) we find, generically, a second

curve on which sx(y) changes sign (the first being the 45o line y = x). Conversely, singular

points are geometrically found as intersections of such curves with the 45o line. Now, have

another look at Figure 7.
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We shall classify singular points on the basis of properties which are relevant for

the adaptive dynamics in their neighbourhood. We shall introduce these properties via

questions concerning the adaptive dynamics. Given a singular point x̄, we consider the

following four questions:

1. If the resident has strategy x̄, can invaders with nearby strategies be successful? If

the answer is “no”, we call x̄ a (local) ESS. As already explained in Section 3, an ESS is

simply a steady strategy, i.e., a steady state for the adaptive dynamics.

2. If the resident has a strategy x near x̄, will successful invaders be nearer to x̄? If the

answer is “yes”, we call x̄ a Convergence Stable Strategy (be careful: the abbreviation CSS

is used to denote a Continuously Stable Strategy, which is by definition a Convergence

Stable ESS; both names are awful, and comprehensible only in historical perspective:

the adjective “stable” was already (but unjustly!) incorporated in ESS). A Convergence

Stable Strategy is simply a (local) attractor for the adaptive dynamics, so could be

called an EAS for Evolutionarily Attracting Strategy.

3. Can x̄, as a mutant, invade successfully when a nearby strategy is the resident?

In other words, can x̄ be established in one go? (This question is not as relevant as the

other three, as it concerns a bit of a detail. By incorporating the question nevertheless

in the classification, the final result (see Figure 14) has a nice symmetric appearance. It

is probably fair to say that this appearance served as the main motivation to include the

question.)

4. Are there pairs of strategies x, y near x̄ such that both sx(y) > 0 and sy(x) > 0? If

the answer is “yes”, we say that mutual invasibility occurs. The consequence of mutual

invasibility is that a (so-called protected) dimorphism may arise, rather than that a

trait substitution happens. So we are led outside the monomorphic framework and we

have to extend the formalism. We return to this important point below.

A standard pattern in mathematics is that a classification involves derivatives of one

order higher than those underlying the definition of the objects to be classified (e.g., think

of zeros, extrema, bifurcation points; of course in special, degenerate, cases one needs to

compute still higher order derivatives to decide how an object fits in the classification).

Here we shall encounter exactly that pattern: the operational classification of singular

points is based on second order derivatives of s. The identity (7.2) tells us that two real

numbers fully specify the three second order derivatives. As such we choose

c11 =
∂2s

∂x2
and c22 =

∂2s

∂y2
(7.4)

(using, whenever needed, that c12 = c21 = − 1
2 (c11 + c22) where, of course, c12 = ∂2s

∂x ∂y

and c21 = ∂2s
∂y∂x ). Our aim is to divide the (c11, c22)-plane into regions according to the

type of a singular point, where “type” refers to the answers to the four questions listed

above.

It is always helpful if a geometric image can be associated with algebraic criteria. Here

the right image involves the angle that the tangent line to the second curve, along which

sx(y) vanishes, makes with the 45o line and, additionally, the + − sign pattern in the

four quadrants formed by the 45o line and the second curve. So in Figure 14 each region
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in the (c11, c22)-plane is equipped with a representative picture of the relevant structure:

the 45o line, the tangent line and the sign pattern (in fact in Figure 14 the mirror image

of this structure under reflection in the 45o line is presented as well, to facilitate reaching

conclusions concerning dimorphic dynamics). The fact that the classification involves only

visually recognizable properties is very helpful, in particular if a PIP is constructed by

way of numerical invasibility tests.

As it is traditional in PIP’s (see Figures 4, 7 and 10), we shall put the resident strategy

x along a horizontal axis and the invader strategy y along a vertical axis.

Question 1. In order for x̄ to be a (local) ESS, the vertical line through x̄ should lie

(locally) in the region where s < 0, so the function y 7→ sx̄(y) should have a (local)

maximum in y = x̄. The generic criterion for this to be the case is

c22 < 0(7.5)

(by “generic” we mean that we are aware of the fact that one could have, for instance,

c22 = 0, c222 = 0, c2222 < 0, but that we do not dwell upon such degenerate cases until

the need arises in the context of a special example). For completeness we observe that if

c22 > 0 then y 7→ sx̄(y) has a (local) minimum in y = x̄ and accordingly the trait can

move both ways if x̄ is the resident.

Question 2. In order for x̄ to be Convergence Stable the selection gradient should be

positive for x < x̄ and negative for x > x̄, so the derivative of the selection gradient

should, generically, be negative. So the generic criterion for Convergence Stability is

0 >

[
∂

∂x

([
∂

∂y
sx(y)

]

y=x

)]

x=x̄

=

[
∂2s

∂x∂y
+
∂2s

∂y2

]

y=x=x̄

= c12 + c22,

which, in view of (7.2), can be written as

c11 > c22.(7.6)

If the opposite inequality holds x̄ is a repellor for the adaptive dynamics: if the resident

has a strategy near x̄, successful invaders will be further away from x̄.

Question 3. In order for x̄ to invade successfully, as a mutant, nearby strategies when

these are resident, the horizontal line through x̄ should lie (locally) in the region where

s > 0, so the function x 7→ sx(x̄) should have a (local) minimum in x = x̄. The generic

criterion for this to be the case is

c11 > 0,(7.7)

If the opposite inequality holds, it is still possible that x̄ is CSS, i.e., both ESS and Con-

vergence Stable, but ever smaller mutations are required to end up, asymptotically, in x̄.

Question 4. Mutual invasibility requires that there are x, y (arbitrarily) close to x̄ such

that both sx(y) > 0 and sy(x) > 0. Interchanging x and y corresponds geometrically

to reflection in the 45o line. Therefore, mutual invasibility requires that the line making

an angle of −45o with the horizontal axis, so the line y = 2x̄ − x, lies (locally) in the

region where s > 0, i.e., the function x 7→ sx(2x̄ − x) should have a (local) minimum in
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x̄. This function has first derivative ∂s
∂x − ∂s

∂y and second derivative ∂2s
∂x2 − 2 ∂2s

∂x ∂y + ∂2s
∂y2 =

2( ∂
2s
∂x2 + ∂2s

∂y2 ). So the generic condition for mutual invasibility reads

c11 > −c22.(7.8)

It remains to investigate the consequences of mutual invasibility. If a successful mu-

tant cannot outcompete the resident once the resident is becoming rare, we must get

coexistence of two subpopulations with different traits. Or, in other words, the popu-

lation becomes dimorphic. But what happens next? The invasion exponent sx(y) is now

useless, as it presupposes a monomorphic resident. It has to be replaced by sx1, x2
(y),

where x1 and x2 specify the traits present in the resident population and y still refers to

a mutant (attentive readers will realize that this is not the end of the story and that a

polymorphic resident population may consist of many more subpopulations characterized

by a particular trait; see [68, 44, 45] for lots of information on bookkeeping and consis-

tency requirements). Clearly we should have sx1, x2
(x1) = 0 = sx1, x2

(x2). Continuity

considerations then suggest that y 7→ sx1, x2
(y) should have a maximum in between x1

and x2 if y 7→ sx̄(y) has a maximum in x̄ (and, similarly, with “maximum” replaced by

“minimum” twice; see Figure 13).

y y

y yx
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Fig. 13. Deformation of the graph of sx̄(y) into that of sx1, x2(y): the two generic possibilities

In the case of a maximum, a mutant needs to lie in between x1 and x2 in order

to be successful. Experience and plausibility arguments [68] both tell us that in such a

case either x1 or x2 (or even both) is outcompeted by the successful mutant. So, in case

the population stays dimorphic, the distance between the two traits narrows. Repeating

the story, we find that both traits move towards x̄. One speaks about a converging

dimorphism.

In the case of a minimum, a similar analysis demonstrates the diverging character

of the dimorphism (at least as long as both x1 and x2 are still near enough to x̄ for a

local analysis to be meaningful).
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Now note that the case of a maximum corresponds to x̄ being an ESS, i.e., c22 < 0

and that then the mutual invasibility condition c11 > −c22 entails that c11 > 0 so that

automatically the Convergence Stability condition c11 > c22 holds. We summarize our

conclusion for this case: if x̄ is CSS, i.e., both ESS and Convergence Stable, then mutual

invasibility leads to a converging dimorphism, so dimorphism is a temporary phase

in the adaptive approach of x̄.

If x̄ is an evolutionary repellor, it makes no sense to investigate what happens when

x̄ is approached monomorphically. In principle it could be that x̄, however, is approached

by way of a converging dimorphism. But above we found that this is actually impossible.

The remaining case of mutual invasibility, when x̄ is Convergence Stable but not ESS,

is very interesting: a trait substitution sequence can bring us to a neighbourhood of x̄ and

then the neighbourhood is left again by way of a diverging dimorphism. A singular

point x̄ such that c11 > c22 > 0 is called a branching point to indicate the not-just-

temporary change from monomorphism to dimorphism. After branching has occurred

one needs to base a study of the adaptive dynamics on sx1, x2
(y) etcetera (and, strictly

speaking, on nonlinear competition models with more than two “species”). See [68].

The distinction between converging and diverging dimorphisms brings a moralic mes-

sage to those who study the possibility of stable coexistence in models for the competition

between populations differing only in a particular trait: one should not lean back once

stable coexistence is found, but next check the character: is it converging or diverging?

Pugliese [75] did this for coexisting strains of an infectious organism and found that the

dimorphism was converging!

We have found four dividing lines for regions in the (c11, c22)-plane corresponding to

various types of singular points: c22 = 0, c11 = c22, c11 = 0, c11 = −c22. In Figure 14

we present the eight regions and draw in each of them a representative local mutual

invasibility plot (that is, a PIP with its mirror image under reflection in the diagonal

superimposed). The arrows indicate in which direction the trait(s) will move (along the

diagonal in case of monomorphism and away or towards the diagonal in case of dimor-

phism). To stress once more that an ESS is a steady state, but not necessarily an attractor,

we point at the region c11 < c22 < 0, where x̄ is indeed an ESS, but also a repellor for the

adaptive dynamics. Nowak & Sigmund [73, 53] have aptly called such a configuration a

“Garden of Eden”: the only way to get there is by creation and the slightest perturbation

that brings you out of this state triggers a gradual but inescapable expulsion.

Exercise 7.1. Reconsider the case sx(y) = r
(
y, Ī(x)

)
with one-dimensional I treated

in Section 5. First show that x̄ is a singular point if and only if dĪ
dx (x̄) = 0. Next show

that necessarily c22 = −c11 so that either x̄ is CSS as well as ESS (and a border line case

for mutual invasibility) or a non-steady and repelling state (which only has significance

as a “separatrix” for domains of attraction).

Exercise 7.2. The evolution of virulence is an intriguing topic. Moreover, it is of great

relevance for the quality of human life on earth [23]. A sound strategy is to start analysing

a deliberate oversimplification, delaying the consideration of subtle issues till after one

has fully understood the caricature. This exercise considers only the caricature, while
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Fig. 14. Classification of singular points. In the eight mutual invasibility plots, regions in which

either sx(y) or sy(x) is positive are shaded light grey (and readers are invited to sort out for

each such region which of the two is actually positive, accepting the authors apologies for the

lack of colours which would have made such an exercise superfluous), regions in which both are

positive are shaded dark grey and regions in which both are negative are white. Arrows indicate

the direction of adaptive dynamical trait change.

inviting the reader to consult [23, 75] for further inspiration, including a wealth of refer-

ences.

Concerning demography we assume that there is a constant population birth rate B

and that individuals live for an exponentially distributed, with parameter µ, period of

time. Let S denote the size of the subpopulation of susceptibles and I that of the sub-

population of infectious individuals. Assume that all newborns are susceptible. Assume

transmission occurs at per couple rate β (so, according to the Law of Mass Action). As-

sume that an infected individual is immediately infectious and that the infectious period

is exponentially distributed with parameter γ. In low spirits we assume that the infection

inevitably leads to death (this will facilitate the interpretation of the trade-off curve of

Figure 15; an alternative is to assume that at the end of the infectious period permanent

immunity sets in, while speculating about how the immune system will react to increased

reproduction of the agent within the host).

Together these assumptions lead to the system of two differential equations:

dS

dt
= B −µS − βSI,

dI

dt
= −µI + βSI − γI.

(7.9)

In the absence of the infection (i.e., for I = 0) S settles at B
µ . What happens if we

introduce an infected individual into such a “virgin” situation?
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If we introduce an infected individual in a population with susceptible subpopulation

size S it transmits, according to the model, the infection to, on average

R0(S) =
βS

γ + µ
(7.10)

individuals (indeed, the expected duration of its infectious period is 1
γ+µ and during this

period it transmits the infection at a rate βS). When the basic reproduction ratio

R0

(
B

µ

)
=

βB

µ(γ + µ)
(7.11)

exceeds one, the infection becomes endemic. In the endemic state the susceptible sub-

population settles necessarily at S̄ such that

R0(S̄) = 1(7.12)

so that explicitly we have

S̄ =
γ + µ

β
.(7.13)

Now assume that the strain of the infective agent is characterized by the parameters β

and γ, with β related to γ according to the trade-off curve depicted in Figure 15.

γ

β

Fig. 15. An increase in infectivity β can only be achieved at the expense of a shortening of the

infectious period

Finally, if you prefer to consider the case where individuals become immune at the end

of the infectious period, assume complete cross-immunity (i.e., having had an infection

with some strain yields complete immunity to infection with any other strain).

(i) Explain the rationale underlying Figure 15. (Hint: what effects can increased

reproduction within the host have?)

(ii) Show that

sx(y) = β(y)S̄x − µ− y.(7.14)

(iii) Draw the graph of γ 7→ S̄γ .

(iv) Construct the corresponding PIP.

(v) Do you find adaptive dynamics towards intermediate virulence? (How would you

interpret “virulence”? Do you find the result intuitively obvious in view of Figure 15?)

(vi) Do you find minimization of S̄γ and maximization of R0, γ(Bµ )? Did you guess

this beforehand?
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Exercise 7.3 (Predator mediated coexistence). Here is an exercise that I set out to

make myself, but that I failed to bring to a satisfactory end. I am inclined to blame lack

of time, but this may simply reflect unwarranted optimization of ego. Anyhow, it is a

reasonable problem that may, or may not, have a reasonable solution, so deserves to be

presented as a challenge.

We return to the consumer-substrate interaction in the chemostat as described in

Section 4, but introduce a predator that feeds on the consumer. The system (4.2) is

accordingly extended to a three-dimensional system. If, for simplicity, we take a linear

up-take rate g and, likewise, a linear functional response to prey concentration, this

system reads
dS

dt
= DS0 −DS −SX,

dX

dt
= −DX +ηSX −θXY,

dY

dt
= −DY +ξθXY,

(7.15)

(here X has been scaled to make the coefficient of SX in the equation for dS
dt equal to 1).

(i) Verify that S(t) + 1
ηX(t) + 1

ηξY (t)→ S0 for t→∞.

(ii) Repeat the analysis of Section 4 for the situation without a predator, but now

in the R0-spirit of the preceding Exercise 7.2. In particular, motivate the definition of

R0(S) =
ηS

D
(7.16)

and verify that the consumer will persist if and only if

R0(S0) > 1(7.17)

while, if it persists, it steers the substrate concentration to S̄ defined by

R0(S̄) = 1.(7.18)

Finally, compute S̄ and X̄ explicitly.

(iii) From the point of view of the predator, the environmental condition is fully

determined by the consumer concentration X. Explain the meaning of the definition

R̃0(X) =
ξθX

D
,(7.19)

the condition

R̃0(X̄) > 1(7.20)

and the characterization

R̃0(X̃) = 1.(7.21)

Compute X̃ explicitly.

(iv) With the level at which the consumer stabilizes being determined by predation,

the steady substrate level must be determined by putting the expression for dS
dt equal to

zero. Verify that this leads to

S̃ =
S0

1 + (ξθ)−1
.(7.22)
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(v) When the predator is present, (7.16) needs amendment, as then the environmen-

tal condition of the consumer is determined by the two quantities S and Y . Motivate

the definition

R0(S, Y ) =
ηS

D + θY
(7.23)

and solve the equation

R0(S̃, Y ) = 1.(7.24)

Call the solution Ỹ . Verify that (S̃, X̃, Ỹ ) is a steady state of the system (7.15).

This ends the ecological analysis. (Of course we should check that (S̃, X̃, Ỹ ) is an

attractor. All too often in an adaptive dynamics study this step is omitted. Since a

beginner’s guide should also expose the sins, we follow that reprehensible tradition. Let

it serve as an invitation to the next generation to do better.) Now assume that some

trait of the consumer may change by mutation and that this is expressed in a change of

the parameters η and θ. In particular, biochemical energy or machinery may be either

spended on improving feeding or on improving defence against predators. So if η increases,

so does θ: there is a trade-off. To be specific, consider θ as specifying the trait and assume

η = f(θ) with f describing the trade-off relation. We rewrite (7.23) as

R0(θ;S, Y ) =
f(θ)S

D + θY
.(7.25)

In earlier examples and in the theory of Section 7 we have based our evolutionary consi-

derations on the real time population growth rate

r(θ;S, Y ) = −D + f(θ)S − θY(7.26)

but the generation growth factor (7.25) carries exactly the same information:

sign r(θ;S, Y ) = sign lnR0(θ;S, Y ) = sign (R0(θ;S, Y )− 1)(7.27)

In this particular case (7.26) is easier to work with. (But in the next section we will

see that sometimes R0 is to be preferred.)

(vi) Show that singular points are characterized by the equation

f ′(θ)S̃θ − Ỹθ = 0(7.28)

and that, given a solution θ̄ of (7.28),

c22 = f ′′(θ̄)S̃θ̄,(7.29)

c11 = f(θ̄)

(
d2

dθ2
S̃θ

)

θ=θ̄

− θ̄
(
d2

dθ2
Ỹθ

)

θ=θ̄

.(7.30)

(vii) Now here, at last, comes the only difficult part of this exercise: establish con-

ditions on f such that a branching point exists (i.e., a solution θ̄ of (7.28) such that

c11 > c22 > 0, with c11 and c22 given by (7.30) and (7.29). The motivation for this

exercise derives from the ecological literature, where predator mediated coexistence is

found: for certain combinations (η1, θ1) and (η2, θ2) consumers of type 1 and type 2 can

coexist by virtue of mutual invasibility. The idea is that the better competitor for sub-

strate suffers more from the predator and that a perfect balance can be achieved. But

is this a converging or a diverging dimorphism? In the first case we should dismiss the
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phenomenon as being unimportant, in the second case we should take it serious. To you,

dear reader, the task to find out.

8. The timing of reproduction. A semelparous organism reproduces only once in its

life. Examples include many plants, pacific salmon, cicadas and other, so-called periodic

insects [3, 4]. If the life of any organism deserves to be called a cycle, it are these.

When every year brings only one reproduction opportunity, say in the spring, a “de-

cision” has to be made concerning either reproducing “now”, with the inevitable conse-

quence of death, or to delay reproduction another year, with the doubtful necessity of

having to survive the winter. In the caricatural spirit of these notes we shall investigate

how natural selection decides. The analysis allows us to demonstrate various methodolog-

ical points and to illustrate several general insights, related to the following questions:

– how to analyse (steady states of) structured population models?

– what difference can the dimension of the environmental interaction variable I make?

– how does adaptive dynamics relate to the optimization of a fitness measure?

– how important is the precise nature of density dependence?

– what is the ideal free distribution?

This section is inspired by, but differs substantially from, the paper [51]. We work on

a discrete time basis and assume a census is taken every spring, just before reproduction

takes place. We severely limit the spectrum of possible choices: a one year old individual

can reproduce or delay reproduction, but a two year old individual has to reproduce. In

other words, to be annual or to be biennial, that’s the question.

The two-dimensional system of recurrence relations

N1(t+ 1) = s0(γf1N1(t) + f2N2(t)),

N2(t+ 1) = s1(1− γ)N1(t),
(8.1)

describes this situation. Here Ni is the density of i-year old individuals, si are survival

probabilities and fi are fecundities. The parameter γ is the trait that is supposed to

be subject to natural selection and mutation. It is the probability that a one year old

individual will reproduce, so 0 ≤ γ ≤ 1 and γ = 1 describes an annual species while γ = 0

corresponds to a biennial species.

A schematic representation of the bookkeeping aspects of the model is provided in

Figure 16. Our analysis proceeds in steps. First we consider the linear model in which all

parameters are fixed. Next we consider nonlinear models in which the survival probabil-

ities si are density dependent. We look at three versions, two with a one-dimensional I

and one with a two-dimensional I. We detail how steady states can be determined (and

how the fact, that there is only one possible state-at-birth, makes this relatively simple).

Finally we investigate how γ will evolve. In the cases with one-dimensional I we find, as

we should, pessimization. But we show how a more optimistic reformulation takes the

form of the optimization of a fitness measure. We emphasize that it is the nonlinearity,

the way density dependence acts, that determines which fitness measure is appropriate

(thus echoing the main message of [70, 29]). Moreover, when I is higher-than-one di-

mensional the whole idea of a fitness measure is simply nonsense. We demonstrate how
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Fig. 16. The life cycle of a semelparous organism that can live for at most two years

natural selection may have an “equalizing” effect, in particular how at singular points

different pathways to reproduction should necessarily be equally attractive (this goes by

names like “the ideal free distribution” and “the marginal value theorem” but I like to

call it “the principle of indifference”).

8.1. Linear population dynamics. A newborn survives the first winter with probability

s0 and, when it delays reproduction, the second with probability s1. So it produces on

average

R0 = s0(γf1 + (1− γ)s1f2)(8.2)

offspring. So when we look at growth in generation perspective, we have an explicit

expression for the growth factor, the basic reproduction ratio R0.

The growth (or decline) in real time is described by the Leslie matrix

L =

(
γf1s0 f2s0

(1− γ)s1 0

)
.(8.3)

One finds the eigenvalues as roots of the characteristic equation

λ2 − γf1s0λ− (1− γ)f2s1s0 = 0.(8.4)

but, remarkably, the more informative way (in particular for the higher dimensional

analogue, which cannot be solved explicitly) of writing this equation is

1 =
γf1s0

λ
+

(1− γ)f2s1s0

λ2
.(8.5)

The point is that the right hand side equals R0 for λ = 1 and defines a monotone

decreasing function of real λ, which vanishes for λ→∞ while going to ∞ for λ ↓ 0. So it

follows at once (you are invited to draw some pictures yourself) that (8.5) has a unique

positive root, which we call λd, and that

sign (λd − 1) = sign (R0 − 1).(8.6)
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By either invoking the Perron-Frobenius theorem or by estimating the right hand side of

(8.5) for complex λ, one concludes that for γ > 0

|λ| < λd if λ is eigenvalue of L and λ 6= λd(8.7)

so that λd is indeed the dominant eigenvalue of L (whence the index d). But note that for

γ = 0 the second eigenvalue equals −λd and that then there are two reproductively iso-

lated year classes, those reproducing in odd years and those reproducing in even years. In

the jargon of positive matrices we say that L is irreducible but not primitive. In biological

terms we say that the population decomposes into two independent subpopulations.

The population will grow (assuming λd > 1) like

λtd = et lnλd(8.8)

in the course of time t, so with rate lnλd. The equality (8.6) shows that R0 and λd are

equivalent as indicators of population growth or decline.

When (8.7) is satisfied the population composition will, in the course of time, stabilize

and take the “shape” of the eigenvector corresponding to λd (that is, the ratio of the

sizes of the various age groups resembles more and more the ratio of the corresponding

components of the dominant eigenvector). The second component of the identity LN =

λdN reads s1(1− γ)N1 = λdN2 so the vector
(

λd

s1(1− γ)

)
(8.9)

is such an eigenvector.

In the present case we can of course find an explicit expression for λd by solving (8.4).

However, in general this is impossible and one has to rely on the qualitative arguments

concerning (8.5) (or, equivalently, the theory of positive matrices and positive operators)

to establish the existence and uniqueness of λd such that (8.7) holds. In contrast, the

formula (8.2) for R0 can be extended easily to Leslie matrices of arbitrary dimension.

8.2. Nonlinear population dynamics. There are various ways in which feedback may act.

Here we restrict to density dependent survival, assuming the fecundities f0 and f1 are not

affected by density. But even then there is a host of possibilities. We classify according to

the number of components of I and present two examples with dim I = 1 and one with

dim I = 2. Moreover, we restrict our attention to steady states and, objectionable as it

may be, do not check whether these steady states are indeed attractors for the population

dynamics (readers are invited/encouraged to be more scrupulous).

If I is a scalar, the first step is to determine the steady state value Ī by solving the

equation

R0(I) = 1.(8.10)

In the second step one employs (8.9) for λd = 1 (since R0 = 1) to conclude that the

steady population state has the form

c

(
1

s1(1− γ)

)
(8.11)
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with c still to be determined. The scalar c is then determined by consistency: if (8.11) is

substituted in the expression for I, the outcome should be Ī.

We now illustrate this systematic general procedure by way of two concrete examples.

8.2.A.1. Nursery competition. Assume s0 = s0(I) with

I = γf1N1 + f2N2(8.12)

(cf. Figure 16) and s0 a decreasing function with s0(0) = p and s0(I) ↓ 0 for I → ∞.

Provided R0(0) = p(γf1 + (1− γ)s1f2) > 1 the equation (8.10) has a unique solution Ī.

The unknown c in (8.11) is determined from

Ī = c(γf1 + (1− γ)s1f2)(8.13)

and hence can be computed explicitly (in terms of model parameters and the only

implicitly known Ī). Presumably the steady state is stable in the Beverton-Holt case

s0(I) = p(1 + qI)−1 but it is bound to be unstable for a non-negligible parameter range

in the Ricker case s0(I) = p exp(−qI). As mentioned above, we do not attempt to deter-

mine (or even just delineate) this parameter range.

8.2.A.2. Uniform winter competition. Assume both s0 and s1 depend on I and, in fact,

in exactly the same manner, i.e., s0(I) = s1(I) = s(I) with s a decreasing function.

Assume that I is the density of those that overwinter, i.e.,

I = γf1N1 + f2N2 + (1− γ)N1.(8.14)

Again monotonicity arguments show that (8.10) has a unique positive solution Ī provided

R0(0) > 1 and R0(∞) < 1, while substitution of (8.11) into (8.14) for I = Ī yields the

“explicit” expression

c =
Ī

γf1 + f2(1− γ)s(Ī) + 1− γ .(8.15)

As a minor side-remark we mention that the structure of the model remains exactly the

same if we allow s0 and s1 to differ by a fixed (i.e., I-independent) factor and if we

introduce fixed weight factors for the terms γf1N1 + f2N2, corresponding to newborns,

and (1− γ)N1, corresponding to one-year-old individuals, in the expression (8.14) for I.

8.2.B. Age-specific winter competition. Assume that both s0 and s1 are under the influ-

ence of population density, but that s0 is affected only by the density of young of the year,

while s1 is determined by competition of overwintering one-year-old individuals among

themselves. We then put

I1 = γf1N1 + f2N2, I2 = (1− γ)N1,(8.16)

and let s0 depend, in a monotone decreasing manner, on I1 and s1, in a similar monotone

way, on I2. The key difference is that now the equation (8.10) is one equation in two

unknowns. As a consequence the determination of Ī and c has to proceed by analysing a

fully coupled problem (while before we had a one-way coupling only: the equation for c

involved Ī, but the one for Ī was independent of c).

This problem is (8.19) below. It is obtained by combining (8.2)-(8.10) and (8.11)-

(8.16). But first we digress on the general structure.
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In [28] ] it is shown how the steady state problem for a general class of physiologically

structured population models can be brought into the form

L(I)b = b, I = G(I)b,(8.17)

where b is the vector (assuming there are at most finitely many states-at-birth possible) of

steady birth rates and I is the vector (assuming there are finitely many components only)

of steady environmental interaction variables. Discretization (of states-at-birth and of en-

vironmental conditions) may be needed as a preparatory step to achieve the finiteness.

The matrices L(I) and G(I) can be constructed numerically by solving ordinary differen-

tial equations describing the maturation, survival and reproduction of individuals, given

the environmental conditions, see [58]. Note that the problem is linear in b. The basic

reproduction ratio R0(I) is by definition the dominant eigenvalue of the positive matrix

L(I). Since the interpretation requires b to be positive, one can rewrite L(I)b = b in the

form R0(I) = 1 and b = cb0(I) where b0(I) is a, conveniently normalized, eigenvector of

L(I) corresponding to R0(I). Thus (8.17) becomes

R0(I) = 1, I = cH(I),(8.18)

where H(I) = G(I)b0(I). These are dim I+1 equations in as many unknowns. Whenever

all individuals are born with the same state-at-birth, the problem (8.17) has the structure

(8.18) right from the start, as then b as well as L(I) are scalars (while G(I) has the

dimension of I).

In the case of the present example (8.18) takes the form

s0(I1){γf1 + (1− γ)s1(I2)f2} = 1,

I1 = c(γf1 + (1− γ)s1(I2)f2),

I2 = c(1− γ),

(8.19)

which are three equations in the three unknowns I1, I2 and c. It is easy enough to reduce

the system to one equation in one unknown, but, as our main interest is in adaptive

dynamics, the characterization of steady states by (8.19) suffices.

8.3. Adaptive dynamics of γ. A special feature of the model is that the growth indicator

R0 is linear in the trait γ, cf. (8.2). As a consequence the selection gradient, when

computed in terms of R0 rather than λd, does not depend on γ explicitly. This selection

gradient equals
∂R0

∂γ
(I, γ)

∣∣∣∣
I=Ī(γ)

= s0(f1 − s1f2),(8.20)

where at the right hand side we did not yet express in the notation that s0 and s1 depend

on Ī(γ), since the way they do differs a bit from example to example. The two terms in

(8.20) correspond to the two “pathways” to reproduction and the fact that one goes at

the expense of the other is reflected in the opposite signs. We now consider the three

examples in turn.

8.3.A.1. Nursery competition. When only s0 depends on I the basic reproduction ratio

factorizes in the product of a function of I and a function of γ

R0(γ, I) = s0(I)ρ(γ)(8.21)
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with

ρ(γ) := γf1 + (1− γ)s1f2.(8.22)

The steady state equation R0 = 1, cf. (8.10), then implies that

s0(Īγ) =
1

ρ(γ)
.(8.23)

Consequently we have that

R0

(
γinv, Īγres

)
=
s0

(
Īγres

)

s0

(
Īγinv

) =
ρ(γinv)

ρ(γres)
(8.24)

and the pessimization principle, that s0(I) is minimized in the course of the adaptive

dynamics, allows the equivalent reformulation that ρ(γ) is maximized.

Much of the standard literature on evolutionary ecology, such as [77, 10, 81], intro-

duces an ad-hoc version of this result: one declares R0 to be a fitness measure which

is maximized by evolution. Even experts have been puzzled by the paradoxical nature

of this formulation: how can a quantity be maximized that, in steady state, has to be

equal to one? The unambiguous and careful adaptive dynamics analysis, based on the

fundamental notion of invasibility, clarifies the situation at once: whenever R0 can be

factorized as in (8.21), the factor ρ, which tells us how R0 depends on the trait, will be

maximized (with the inevitable consequence that the second factor, which tells us how R0

depends on the environmental conditions, will be minimized, since the product is fixed

at the value 1). One lesson to be learned is that notation is extremely important: if one

always just writes R0, without indicating either the trait or the steady environmental

conditions that should be specified, it is impossible to formulate (8.24) and confusion is

the inescapable result.

We present the conclusion for model A.1 in Figure 17.

+

+

−

−

21 1  f  > s  f   f  < s  f1 2 2

Fig. 17. The two possible PIP’s for the nursery competition model A.1. In the evolutionary end

the species will either be a strict annual (left) or a strict biennial (right) reproducer.

8.3.A.2. Uniform winter competition. The key point of this example is that now

the quantity λd factorizes into the product of an I-dependent factor and a γ-dependent

factor. To see this, we write the characteristic equation (8.5) as

1 =
s(I)

λ
γf1 +

(
s(I)

λ

)2

(1− γ)f2(8.25)

and define σ = σ(γ) to be the unique positive root of the equation
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1 =
γf1

σ
+

(1− γ)f2

σ2
.(8.26)

It follows that

λd(γ, I) = s(I)σ(γ)(8.27)

and that adaptive dynamics corresponds to the maximization of σ(γ) and, simultaneous-

ly/equivalently, to the minimization of s(I). (Indeed, just note that

λd(γinv, Īγres
) =

s(Īγres
)

s(Īγinv
)

=
σ(γinv)

σ(γres)
(8.28)

and use that necessarily σ(γinv)/σ(γres) < 1, for γinv 6= γres, if γres is such that σ has

a strict maximum for that value of γ). For this result too there is a much used ad hoc

version in the standard literature on evolutionary ecology. We emphasize that the key

point is the factorization (8.27), but that it is irrelevant whether or not we have an

explicit expression for σ(γ) (here we can obtain such an expression by solving (8.26), but

in higher dimensional analogues we will not be able to do so). By noting that σ(1) = f1,

σ(0) =
√
f2, and by excluding the possibility that σ′(γ) = 0 (or, in other words, by

showing that σ is monotone) one finds the conclusion for model A.2 as presented in

Figure 18.

+

− +

: biennial

−

1  f  >   f  2 1  f  <   f  2: annual

Fig. 18. The two possible PIP’s for the uniform winter competition model A.2. Again we find that

in the evolutionary end the species will either be a strict annual or a strict biennial reproducer.

But note that the criterion used to decide which will be the case differs from that obtained for

model A.1.

The conclusion of part A is that a strict dichotomy exists: either the species becomes

an annual reproducer or it becomes a biennial reproducer. However, the outcome does

depend on the precise way in which density dependence acts: if either
√
f2 < f1 < s1(0)f2

or s1(0)f2 < f1 <
√
f2 the two versions of density dependence (which are by far not the

only conceivable ones) give different predictions. As often population biologists do not

know very well how density dependence acts, they want results which are independent

of density dependence. The examples above show that this is an illusion. To pretend

that one can get conclusions by “choosing” a fitness measure is ostrich policy, as in

fact this boils down to an implicit choice for the mechanism of density dependence. The

two examples were concocted such that either R0 or λd could be factorized, but this

was mainly done to establish the connection with the ad hoc methods in the standard

literature on evolutionary ecology. The key feature which entails a pessimisation/optimi-

sation principle is the one-dimensionality of I. So let us now turn to the example where

this is violated.
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8.3.B. Age-specific winter competition. Repeating the expression (8.20) for the selection

gradient here in the form

∂R0

∂γ
(I, γ)

∣∣∣∣
I=Ī(γ)

= s0(Ī1,γ)
(
f1 − s1(Ī2,γ)f2

)
(8.29)

we see that, even though the right hand side doesn’t depend on γ explicitly, there is a

possibility for an internal (i.e, γ 6= 0, 1) singular point, since it may happen that for some

γ we have the identity

s1(Ī2,γ)f2 = f1,(8.30)

meaning that the two different reproduction pathways are precisely equally profitable.

In such a rather special situation all γ actually perform equally well (see (8.2) and note

that the right hand side is independent of γ; so if you try to measure in this situation

the selection pressure on γ you don’t find any!). (Attentive readers may wonder why we

skipped the possibility s(Ī)f2 = f1 in model A.2? Perhaps they then now realize that it

yields exactly the borderline case separating the two generic cases depicted in Figure 18

from one another.)

In evolutionary ecology it happens rather often that a population of individuals tunes

the environmental conditions such that the various options that are open to the indi-

viduals become equally attractive. The name “ideal free distribution” is used to denote

this phenomenon [57]. The “principle of indifference” is an alternative denomination that

seems to capture the key point rather well. In economy, and consequently in optimal

foraging theory and other areas of behavioural ecology, one uses the name “marginal

value theorem” to denote that an optimum is to be found there where infinitesimal

re-allocations don’t make any difference.

Well, but does a singular point characterized by (8.30) indeed exist? If so, is it unique?

The inequality

s1(0)f2 > f1 > 1(8.31)

clearly is a necessary condition on the model ingredients in order that a solution of (8.30)

exists, so we assume it is satisfied. The three step procedure

– solve Ī2 from f2s1(Ī2) = f1

– solve Ī1 from f1s0(Ī1) = 1

– define

(8.32) γ̄ = 1− f1Ī2
Ī1

and check that 0 < γ̄ < 1

yields the answer to the two questions, as we now explain. The first step guarantees that

the condition (8.30) for a singular point is satisfied. The second step guarantees that

R0 = 1 (given that (8.30) holds). In the third step the feedback condition Ī = cH(Ī) (see

(8.18)) is considered but now, since Ī is already determined, as two equations in the two

unknowns c and γ (note that H depends on γ, even though this isn’t expressed in the

notation). Written out in full the feedback condition reads

Ī1 = c
(
f1γ + f2(1− γ)s1(Ī2)

)
= cf1, Ī2 = c(1− γ),(8.33)
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where we have used (8.30) to simplify the right hand side of the first equation. Eliminating

c and solving for γ we obtain (8.32).

As the procedure is in terms of conditions which are not only sufficient but also

necessary and as it yields at most one γ, the uniqueness question is settled. The condition

0 < γ̄ < 1 amounts to the inequality

f1Ī2 < Ī1,(8.34)

which can be checked once steps 1 and 2 are executed.

The condition s1(0)f2 > f1, which is part of (8.31), is the condition that the selection

gradient (8.29) is negative in γ = 1 or, in other words, that the “annual” strategy is

a repellor for the adaptive dynamics. Likewise (8.34) is the condition that the selection

gradient (8.29) is positive in γ = 0 or, in other words, that the “biennial” strategy is a

repellor as well. The simplest arguments to substantiate this last claim is an indirect one

based on the intermediate value theorem: as the selection gradient can change sign in the

interval (0, 1) at most once, its sign at the end points γ = 0 and γ = 1 is opposite if and

only if it changes sign.

So if γ̄ exists (i.e., if (8.34) holds) it must be Convergence Stable! As already noted

in the beginning of Subsection 8.3, the selection gradient does not depend explicitly on

the trait γ, since R0 is linear in γ. Accordingly

c22 =
∂2R0

∂γ2
inv

= 0

and we have a borderline case between a converging (to ESS) and a diverging (away from

a branching point) dimorphism.
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Fig. 19. The three possible PIP’s in the case of age-specific winter competition. It is still possible

that either the strict annual (left picture) or the strict biennial (right picture) outcompetes all

other strategies, but, as the middle picture shows, it is now also possible to have an intermediate

CSS.

The linearity in γ implies that c22 = 0 is a local reflection of a global phenomenon,

the neutrality of all γ when the resident has trait γ̄. In the middle PIP of Figure 19, this

manifests itself in the vertical straight line at which the invasion exponent changes sign.

But it presents an enigmatic feature: the mutual invasibility near γ̄ yields a protected

dimorphism for which our first order analysis does not establish whether it is converging

or diverging!!! Readers are now invited to venture a guess as to what will happen when
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γ, by a sequence of trait substitutions, comes close to γ̄. (Please formulate your guess

explicitly before reading on.)

Consider a dimorphic population consisting of individuals with trait γ1 and individuals

with trait γ2. Assume that both I1 and I2 settle at constant values. Then these should

be such that both the R0 for the γ1-subpopulation and the one for the γ2-subpopulation

are equal to one. Since, for given I1 and I2, R0 is a linear function of γ, this can only

happen if R0 is constant as a function of γ and this, in turn, can only happen if I2 is

such that (8.30) holds. In order for the constant value to be equal to one we next should

choose I1 such that f1S0(I1) = 1. In summary, I1 and I2 should be exactly the Ī1 and Ī2
obtained in the first two steps of our earlier procedure. It is only in the third step that

the dimorphic case differs from the monomorphic case.

In the dimorphic case the feedback condition involves two constants, c1 and c2, mea-

suring the size of the corresponding subpopulations. (So whereas before we used the

feedback condition to determine c and γ, we now have fixed γ1 and γ2 beforehand, but

use the two feedback relations to determine the two-dimensional c.) Using for each sub-

population the stable distribution (8.11) we find that the feedback conditions are

Ī1 = f1γ1c1 + f2(1− γ1)s1c1 + f1γ2c2 + f2(1− γ2)s1c2 = f1c1 + f1c2,

Ī2 = (1− γ1)c1 + (1− γ2)c2,
(8.35)

where we suppressed the dependence of s1 on Ī2 in the notation and where we used that,

according to (8.30), f2s1 = f1, to simplify the first equation. The solution of this linear

system reads (
c1
c2

)
=

1

f1(γ1 − γ2)

(
(1− γ2)Ī1 − f1Ī2
−(1− γ1)Ī1 + f1Ī2

)
(8.36)

but note that, in order for the explicit expression to be biologically meaningful, the ci
thus defined must be positive! Recalling (8.32) we see that this requirement is fulfilled if

and only if γ1 and γ2 lie at opposite sides of γ̄. We conclude that a dimorphic population

with such a combination of traits can set the environmental conditions in exactly the same

way as a monomorphic γ̄ population (due to the linearity in γ the appropriate mixture

of γ1 and γ2 subpopulations is, when measured in terms of the environmental conditions

they generate, the same as a γ̄ population). Once these environmental conditions are

set, there is complete neutrality: all γ perform equally well. So, although drift may still

occur, there are no further trait substitutions. Assuming that the dimorphic steady state

determined above is indeed an attractor for the dimorphic population dynamics, we

conclude that, once trait substitutions have brought γ close enough to γ̄ for the other

side of γ̄ to be within mutational reach, it depends on mutational chance effects whether

the trait moves on towards γ̄: as soon as a mutant “at the other side of γ̄” is generated,

no further adaptations occur and the population stays dimorphic (here we adhere to the

deterministic view based on extremely large population size, i.e., we ignore drift due to

demographic stochasticity).

The conclusion of part B is that the spectrum of possibilities widens when the di-

mension of the environmental condition, as far as it is under the influence of population

density by feedback, exceeds one. Even though R0 is still monotone as a function of each
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of the components of I separately, there is no pessimization principle. Instead one should

use the principle of indifference as a guiding principle for the search for singular points

(note of caution: the linearity in γ makes our example misleadingly simple; in general

one should look for environmental conditions and a trait value as a solution of a coupled

system of equations and the indifference refers to infinitesimal changes in the trait only).

This reinforces what we said before: the precise form in which density dependence acts

is of crucial importance for evolutionary considerations!

8.4. The “resident strikes back” phenomenon. So far we have concentrated on competi-

tion under constant (in time) conditions. It is important to realize that, when environ-

mental conditions fluctuate, strategies may be superior that are inferior under constant

conditions. This relates to bet hedging. An illustrative example is that seeds of many

plants delay germination with non-negligible probability, thus forming a seed bank as

a kind of insurance against the bad luck of a year with disastrous weather conditions.

Optimal bet hedging under stochastic environmental conditions is a subtle issue [83, 85].

Here we are concerned with fluctuations that are due to density dependence and

that have a predictable rhythm. As we work in discrete time, the ensueing periodic

environmental condition is still finite dimensional (i.e., completely described by finitely

many real numbers). Accordingly it is still easy to compute an invasion exponent.

But a subtle point is that, as observed in Subsection 8.1, a strictly biennial population

splits into two reproductively isolated year classes, those reproducing in odd years and

those reproducing in even years. Under constant conditions both grow (or decline) at

the same rate. But what if the conditions vary periodically? In particular, what if the

greatest common divisor of the period of the environmental fluctuations and the length

of the life cycle (so two in the biennial case) exceeds one? Then the world as experienced

by the various year classes may be quite different. Some may systematically hit the good

conditions, while others may be pursued by bad luck. As a consequence, the invasion

exponent is year class specific (or, if you prefer, multivalued).

A striking manifestation of this phenomenon occurs if we consider nursery competition

between an annual (γ = 1) and a biennial (γ = 0). Suppose the annual is the resident and

assume s0 is such that the size of its cohorts oscillate with period two (for instance, take

the Ricker function s0(I) = exp(−I) then, upon increasing f1, the steady state will lose

its stability by a period doubling bifurcation and for a substantial window of f1 values

the population dynamical attractor will be a two-cycle). Suppose s0 has a high value in

even years and a low value in odd years, then we might call even years good and odd

years bad. Consequently the biennial year class that resides in the nursery in even years

experiences the world as obliging, while the other year class, in contrast, experiences the

world as harsh. A first result is the possibility of “resonance mediated coexistence” of

the annual with the even year class of the biennial, under parameter conditions such that

the annual would outcompete the biennial in a steady world. But a second result is more

striking: if one increases the competitive strength of the biennial, it may happen that

the even year class of the biennial, after successful invasion, pesters the annual so much

that for it the odd years become the better years. Thus the biennial triggers a phase

shift, which brings about its own ruin, as the systematic advantage of the past turns



80 O. DIEKMANN

into a systematic disadvantage of the future. The success is transitory, rise is followed

by downfall, as the resident strikes back by shifting the phase of the feedback generated

oscillation in the environmental conditions.

The technical underpinning of the verbal description above is in the paper [72] (also

see [71]). It involves the system

N(t+ 2) = s0(I(t+ 1))f1s0(f1N(t))f1N(t),

M(t+ 2)= s0(I(t+ 1))f2s1M(t),

I(t+ 1) = f1s0(f1N(t))f1N(t) + f2s1M(t),

(8.37)

which describes transitions in the annual cohort N and the cohort M of one biennial

year class, when we step two years ahead in time. The transition from coexistence to the

“resident strikes back” situation is by way of an extremely small parameter window of

heteroclinic tangle dynamics. If we look at the “resident strides back” situation in R3, i.e.,

if we include the other biennial year class in our analysis, there is a stable heteroclinic

cycle at the boundary of the positive cone. Numerically this cycle appears to be the

ω-limit set for all orbits that start in the interior of the cone.

This subsection is a bit of a side-slip. It exposes the importance of resonance and

phase for the value of the invasion exponent in case of periodic environmental conditions,

especially when the life of the organism considered is itself almost literally a cycle. It

shows, by way of example, that a successfully invading mutant may induce an attractor

shift of the resident and perish as a result. So it serves as a warning sign: that successful

invasion implies either take over or dimorphism is not a hard and fast rule! And, admit-

tedly, the aim of this subsection is also to draw attention to a neat dynamical system,

viz. the one generated by (8.37) and its extension to R3.

9. Concluding remarks (including a glance at the agenda of the advanced).

Ever since Darwin scientists have aimed to describe, investigate and understand how the

biological world was shaped by natural selection. Given the fact that the maps

genotype −→ phenotype

and
genotype× genotype −→ genotype

(describing the sexual reproduction of diploid organisms) are extremely complicated, it

is rarely possible to take a fundamental point of view and study evolution at the level of

DNA. So simplifying assumptions are called for. But what course to pursue?

The approach of quantitative genetics is to simplify both the description of genotype

and the two maps above. A more drastic approach is to give up on genotype and sexual

reproduction completely and to concentrate on the evolution of phenotype. This forces

one to pretend that reproduction is clonal. As a consequence, variation among individ-

uals derives only from mutations (and within the framework these have to be described

phenomenologically).

Models of phenotypic evolution come in (at least) two versions:

– those inspired by game theory [63, 64],

– those superimposed on (competitive) population dynamics.
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The first type focuses on behavioural traits affecting direct interaction. One specifies a

trait specific pay-off for two contestants (so the pay-off also depends on the trait of the

opponent) and next computes a population average over possible opponents to determine

how well a type is doing, given a population composition. Next one postulates that the

frequencies (i.e., the relative subpopulation sizes) change according to the relative values

of these overall pay-offs or, as it is called, one assumes replicator dynamics. Reassuringly

one finds a nice correspondence between the notion of ESS and asymptotic stability in

the setting of replicator dynamics. See [53].

As many life history features relate to indirect interaction, via the environmental

condition, there is a need for a complementary approach. As we have explained at length

above, this is exactly what Adaptive Dynamics, with its focus on the ecological feedback

loop, is all about.

The main achievement of Adaptive Dynamics so far is the classification of singular

points for one-dimensional traits, illuminating the CSS property and the possibility of

branching [44, 45, 68]. In steady progress are items like:

– AD as an added feature to a bifurcation diagram [20],

– multi-dimensional traits,

– when is mutation structure irrelevant for dynamics? [27, 60, 61],

– co-evolution [22],

– putting genetics underneath [21, 33, 35, 41, 50, 61, 27, 88],

– does branching lead to speciation? [21, 33, 41],

– bifurcation theory of singular points [54],

– the canonical (selection gradient) equation [7, 53, 22],

– Lotka-Volterra competition and normal forms [55].

Moreover, increasingly AD is used as an instrument to investigate a specific topic in

evolutionary ecology, such as, e.g., the evolution of virulence in the context of host-

pathogen interaction [23, 75], seed size [42] and resource use [78]. A striking feature of

such investigations is that, perhaps unavoidably, it is very much a matter of choice (so,

of taste) what aspects of the phenotype are considered fixed/given and which are subject

to mutation and selection.

In mathematical population dynamics the notions of permanence and persistence

have received a lot of attention the last 10-20 years [53]. For AD a key component is

what one might call guaranteed non-persistence: give conditions on the structure of the

population dynamical equations that guarantee that a successful invader outcompetes

the resident in the sense of driving it to extinction (i.e., supplement the “no mutual

invasibility” condition with global conditions such that together they suffice to imply

trait substitution). In my opinion this is a major open problem of a relatively well-defined

mathematical kind [43, 56].

At the biological side, a major challenge is to reconcile the tendency of ecological

models to lead to competitive exclusion with the overwhelming diversity in the real

world. Does evolution have a tendency to increase the number of components of I and/or

the complexity of the time dependence of I? Is there, perhaps, positive feedback between

the complexity/dimension of the phenotype and the complexity/dimension of I?
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In these notes I have concentrated on

– concepts,

– motivation,

– classification: the catalogue,

– simple models that can be analysed by pen and paper,

and I have completely neglected

– the toolbox of numerical methods,

– ecologically relevant but rather complicated examples.

The purpose has been to provide the interested outsider, the beginner, with a starting

point. If such readers are now motivated to dive into the literature, the notes have served

their purpose. A list of AD papers, with some annotations, can be found at

http://users.utu.fi/evakis/ad lit.htm

(Also see the pdf files of overheads of lectures by Kisdi and by Metz). Lots of (p)reprints

and other info can be found at the web site of the IIASA AD Network:

www.iiasa.ac.at/Research/ADN
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