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Abstract. The semilinear Cauchy problem

(1) u′(t) = Au(t) +G(u(t)), u(0) = x ∈ D(A),

with a Hille-Yosida operator A and a nonlinear operator G : D(A)→ X is considered under the

assumption that

‖G(x)−G(y)‖ ≤ ‖B(x− y)‖ ∀x, y ∈ D(A)

with some linear B : D(A)→ X,

B(λ−A)−1x = λ

∫ ∞

0

e−λtV (s)xds,

where V is of suitable small strong variation on some interval [0, ε). We will prove the existence

of a semiflow on [0,∞)×D(A) that provides Friedrichs solutions in L1 for (1). If X is a Banach

lattice, we replace the condition above by

|G(x)−G(y)| ≤ Bv whenever x, y, v ∈ D(A), |x− y| ≤ v,
with B being positive. We illustrate our results by applications to age-structured population

models.

1. Introduction. Let A be a Hille-Yosida operator in a Banach space X, i.e., after

equivalent renormalization and an identity shift, an m-dissipative linear operator. Equiv-

alently it is the generator of a locally Lipschitz continuous integrated semigroup S. The

part A0 of A in D(A) generates a C0-semigroup Ṡ which is the strong derivative of S.

We will consider perturbations A+G with nonlinear operators G that are Lipschitz

continuous with respect to A in various ways which we will make precise later, and

show that the solutions of the associated Cauchy problem induce a continuous semiflow
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(nonlinear semigroup) on D(A). This will generalize results that have been obtained for

the following three scenarios:

• G satisfies a Lipschitz condition on D(A) [30, 11, 21],

• A is densely defined and G a linear operator of Miyadera-Voigt type [22, 35],

• X is an abstract L space and G a positive linear operator on D(A) [36, 32].

Our approach does not cover the case that A is m-dissipative, D(A) is dense, G is

continuous, D(G) = X, and G continuous and dissipative [38].

For the sake of exposition let us assume that A is the generator of a C0 semigroup T0.

The nonlinear nature of the perturbation does not allow the use of Dyson-Phillips series

like in [35] in constructing the semiflow Θ,

Θ(t, x) = T0(t)x+

∫ t

0

T0(s)G(Θ(t− s, x))ds.

Banach’s fixed point theorem will be the basic tool of this paper, but it will not be applied

to the previous integral equation, but to

(2) v(t) = G

(
T0(t)x+

∫ t

0

T0(s)v(t− s)ds
)
,

and Θ is obtained via

Θ(t, x) = T0(t)x+

∫ t

0

T0(s)v(t− s)ds.

Actually we do not solve (2), but something more complicated. For x ∈ D(A), u(t) =

Θ(t, x) is the solution of the Cauchy problem

(3) u′ = Au+G ◦ u, t > 0, u(0) = x

in a generalized integral sense which we will explain later (Section 2) and in an L1-

Friedrichs sense:

(L1-F) u : [0,∞) → D(A) is continuous, u(0) = x, and there exists a sequence of

continuously differentiable functions (uj) with values in D(A) such that Auj is continuous

and

(4)

uj → u, j →∞, uniformly on [0, T ]

(u′j −Auj) and (G ◦ uj) converge in L1([0, T ], X)

limj→∞(u′j −Auj) = limj→∞G ◦ uj



 ∀T > 0.

We are going to carry out this program in detail in two situations. In either scenario,

we will consider nonlinearities that are Lipschitz continuous relatively to A in a global

sense. While this can be an unpleasant restriction in some applications, it makes the

semiflow satisfy an exponential Lipschitz condition in the state variable:

(5) ‖Θ(t, x)−Θ(t, x̃)‖ ≤ Neθt‖x− x̃‖ ∀t ≥ 0, x, x̃ ∈ D(A),

with constants θ ∈ R, N ≥ 1.

First, in the general case that X is a Banach space (Section 5), we consider a nonlinear

operator G : D(A)→ X such that

‖G(x)−G(y)‖ ≤ ‖B(x− y)‖ ∀x, y ∈ D(A)
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for some linear operator B : D(A)→ Y into a Banach space Y such that

B

∫ t

0

T0(s)xds = V (t)x, x ∈ X,

where V is an operator family of suitable small strong variation on some interval [0, ε].

As a special case we obtain the following nonlinear Miyadera-Voigt type result (see

Section 6 for a more general and detailed result).

Theorem 1. Let A be the generator of a C0-semigroup T0 on a Banach space X. Con-

sider a Banach space Y , a dense subspace D of X and maps G0 : D → X, B0 : D → Y ,

B0 linear, such that

‖G0(x)−G0(y)‖ ≤ ‖B0(x− y)‖ ∀x, y ∈ D,
and the following conditions are satisfied:

1. D ⊆ D(A), T0(t)D ⊆ D, and the function B0T0(·)x is continuous for all x ∈ D.

2. There are α, λ > 0 and γ ∈ (0, 1) such that
∫ α

0

e−λt‖B0T0(t)x‖dt ≤ γ ‖x‖ ∀x ∈ D.

Then there is a unique A-continuous extension G : D(A) → X of G0 and a unique

continuous semiflow Θ on X which satisfies the exponential Lipschitz condition (5) such

that, for each x ∈ X, u(t) = Θ(t, x) uniquely solves the Cauchy-problem (3) in the

Friedrichs sense (L1-F).

In a second scenario, we concentrate on the Banach lattice case and a resolvent positive

Hille-Yosida operator A. As illustration we present a result for the case that X is an

abstract L space. For a general Banach lattice our assumptions become more involved

(Section 7).

Theorem 2. Let A be a resolvent positive Hille-Yosida operator in the abstract L-space

X. Consider a nonlinear G : D(A)→ X and a linear positive B : D(A)→ X such that

|G(x)−G(y)| ≤ Bv whenever x, y, v ∈ D(A), |x− y| ≤ v,
and the spectral radius of B(λ−A)−1 is smaller than 1 for some λ > s(A).

Then there is a unique continuous semiflow Θ on D(A) which satisfies the exponential

Lipschitz condition (5) such that, for each x ∈ D(A), u(t) = Θ(t, x) uniquely solves the

Cauchy-problem (3) in the Friedrichs sense (L1-F).

Moreover, if G is positive, so is Θ; more precisely: If G maps D(A) ∩X+ into X+,

then Θ(t, ·) maps D(A) ∩X+ into itself.

The exponential estimate (5) is reminiscent of the Crandall-Liggett theorem [9] and

its extensions (see [6] and the references there) such that one might wonder whether

Theorem 1 and 2 could be obtained therefrom. However, even for linear G, it has not

been possible to show directly that A+G is a Hille-Yosida operator, and the respective

results were obtained by constructing the (integrated) semigroup [35, 32].

We will not be able to write the nonlinear integral equation (2) in this strict form for

the simple reason that, in general, the expression in (·) is not an element of D(A). We



90 H. R. THIEME AND H. VOSSELER

will rather work with fixed points of the following operator.

Ψx(v)(t) = lim
h→0

G

(
1

h
[S(t+ h)x− S(t)x] +

1

h
[(S ∗ v)(t+ h)− (S ∗ v)(t)]

)
,

(S ∗ v)(t) =

∫ t

0

S(r)v(t− r)dr,
(6)

where the convergence is required to hold in the L1-sense and S is the integrated semi-

group generated by A. In Section 2, we give abstract conditions under which the operator

Ψx is well defined and has fixed points which we relate to Friedrichs solutions and inte-

gral solutions of the semilinear Cauchy problem (3). They will be connected to the results

presented above by Stieltjes convolutions (Section 3) and cumulative outputs (Section 4).

Once it is known that the generalized solutions of the Cauchy problem induce a

semiflow, the powerful theory of dynamical system is available to study their qualitative

behavior ([15, 27], e.g.).

In Section 8, we apply our results to age-structured population models where the

births rate does not continuously depend on the population age density.

While, for the ease of exposition, we have restricted this paper to time-autonomous

perturbations A+G, generalizations to non-autonomous semilinear perturbations A+G(t)

seem to be straightforward. Of course, the semiflow in (5) will be non-autonomous as well,

a nonlinear evolutionary system, and a suitable generalization of the exponential Lipschitz

condition will only hold for all times if the Lipschitz conditions for G(t) will be uniform

for all t ≥ 0.

2. Nonlinear perturbations in Banach spaces. Let X be a Banach space and A a

Hille-Yosida operator in X, i.e., A is a linear closed operator such that the resolvent set

ρ(A) of A contains an infinite interval (ω,∞) and there exists some M ≥ 1 such that

‖(λ−A)−n‖ ≤M(λ− ω)−n ∀λ > ω, n ∈ N.

Equivalently [2, 17, 1], A generates an integrated semigroup S(t), t ≥ 0, such that

‖S(t)− S(r)‖ ≤M
∫ t

r

eωsds.

In general, an integrated semigroup is a strongly continuous family S of bounded

linear operators S(t), t ≥ 0, that satisfies S(0) = 0 and the functional equation

S(t)S(r) =

∫ r+t

0

S(s)ds−
∫ t

0

S(s)ds−
∫ r

0

S(s)ds, t, r ≥ 0,

strongly. The fact that A generates S can be either expressed as

(7) x ∈ D(A), y = Ax ⇔ S(t)x− tx =

∫ t

0

S(r)ydr ∀t ≥ 0,

[29] or, if S is exponentially bounded, equivalently in terms of Laplace transforms as

(8) (λ−A)−1 = λ

∫ ∞

0

e−λtS(t)dt, λ > ω,

[2, 17, 23, 1]. If A is a Hille-Yosida operator, then S(t)x is strongly differentiable in t ≥ 0

if and only if x ∈ D(A). In this case, Ṡ(t)x := d
dtS(t)x is a C0-semigroup on D(A) which
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is generated by the part of A in D(A). The following result in [17] is one of the linear

foundations for our nonlinear considerations.

Theorem 3. Let f ∈ L1([0, T ], X). Define

(S ∗ f)(t) =

∫ t

0

S(r)f(t− r)dr, t ≥ 0.

Then S ∗ f is continuously differentiable, takes its values in D(A) with A(S ∗ f)(t) being

a continuous function in t ≥ 0, and u = (S ∗ f)′ is the unique solution of

(9) u(t) = A

∫ t

0

u(s)ds+

∫ t

0

f(s)ds, t ∈ [0, T ].

Finally

‖(S ∗ f)′(t)‖ ≤M
∫ t

0

eωr‖f(t− r)‖dr ∀t ∈ [0, T ].

The result that (9) has a unique solution which satisfies the estimate in Theorem 3

has already been obtained in [10].

In the following we will write

S � f := (S ∗ f)′.

After this linear prelude, let Z be a closed subspace of X and

G : D(A)→ Z

be A-continuous, i.e., if XA denotes D(A) equipped with the graph norm, ‖x‖A = ‖x‖+

‖Ax‖, then G : XA → Z is continuous. We consider the semilinear Cauchy problem

(10) u′(t) = (A+G)u(t), u(0) = x ∈ D(A).

We will use two closely connected concepts of solving (10) in a generalized sense. Up

to slight modifications, they can be found in [10] and [5].

Definition 1. Let T > 0. A continuous function u : [0, T ] → X with u(0) = x is

called a Friedrichs solution or an F -solution in L1 of (10) on [0, T ] if there are functions

uj ∈ C1([0, T ], X) ∩ C([0, T ], XA) such that (Guj)j∈N converges in L1([0, T ], X) and

uj → u, j →∞, uniformly on [0, T ],

(u′j − Auj) and (G ◦ uj) converge in L1([0, T ], X),

lim
j→∞

(u′j −Auj) = lim
j→∞

G ◦ uj .

The second notion is a modification of the concept of integral solution.

Definition 2. A continuous function u : [0, T ]→ X is called an I-solution of (10) if u can

be continuously extended to some interval [0, T + ε], ε > 0, such that
∫ t

0
u(s)ds ∈ D(A)

for all t ∈ [0, T + ε], G( 1
h

∫ t+h
t

u(s)ds) converges in L1([0, T ];X) as h→ 0, and

(11) u(t) = x+A

∫ t

0

u(s)ds+ lim
h→0

∫ t

0

G

(
1

h

∫ s+h

s

u(r)dr

)
ds ∀t ∈ [0, T ].

We establish a first relation between the two solution concepts.

Lemma 4. If 0 < T1 < T2, then any I-solution on [0, T2] is an F -solution in L1 on [0, T1].
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Proof. Let u be an I-solution on [0, T2]. Set

v(t) = lim
h→∞

G

(
1

h

∫ t+h

t

u(s)ds

)
, t ∈ [0, T2],

with convergence holding in L1([0, T2];Z). Then

u(t) = x+A

∫ t

0

u(s)ds+

∫ t

0

v(s)ds ∀t ∈ [0, T2].

Define

uj(t) = j

∫ t+ 1
j

t

u(s)ds, vj(t) = j

∫ t+ 1
j

t

v(s)ds, t ∈ [0, T1].

Then uj → u in C([0, T1];X) and vj → v in L1([0, T1];Z). Further v = limj→∞G ◦ uj in

L1([0, T1];X). Finally

u′j(t) = j

(
u

(
t+

1

j

)
− u(t)

)
= Auj(t) + vj(t),

so

u′j(t)−Auj(t) = vj(t)→ v(t)← G(uj(t))

in L1([0, T1];Z).

Theorem 3 suggests looking for I-solutions of (10) as solutions of the integral equation

u(t) = Ṡ(t)x+ lim
h→0

d

dt

∫ t

0

S(s)G

(
1

h

∫ t−s+h

t−s
u(r)dr

)
ds,

where S is the integrated semigroup generated by A. Therefore the following mapping

Ψ from D(A) × L1([0, T ], Z) to L1([0, T ], Z) will play an important role whenever it is

well-defined,

(12) Ψ(x, v)(t) = lim
h→0

G

(
1

h

∫ t+h

t

Ṡ(s)xds+
1

h

∫ t+h

t

(S � v)(s)ds

)
.

The convergence is required to be in L1([0, T ], Z) and to be independent of how v

is extended outside of [0, T ]. Notice that this is the same map as in (6). We have the

following fundamental result.

Proposition 5. Assume the operator Ψ in (12) is well-defined and let T > 0, x ∈
D(A), Ψx = Ψ(x, ·). Then there is a one-to-one correspondence between fixed points of

Ψx and I-solutions. More precisely, the following two relations hold:

(1) If vx is a fixed point of Ψx in L1([0, T ], Z) and is extended by 0 outside of [0, T ],

then u = Ṡ(·)x+ S � vx is an I-solution on [0, T ].

(2) If u is an I-solution of [0, T ], then

v(t) = L1- lim
h→0

G

(
1

h

∫ t+h

t

u(s)ds

)

is a fixed point of Ψx in L1([0, T ], Z) and u = Ṡ(·)x+ S � v.
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Proof. (1) Let vx be a fixed point of Ψx and set u = Ṡ(·)x + S � vx. Extend vx by 0

outside of [0, T ]. By definition of Ψ, vx(t) = limh→0 G( 1
h

∫ t+h
t

u(r)dr). u is an I-solution

by Theorem 3.

(2) Let u be an I-solution of (10), i.e., satisfy (11) or rather all of Definition 2. Define

v as stated in the theorem, then u(t) = Ṡ(t)x + (S � v)(t) for t ∈ [0, T ] by Theorem 3.

Since, by assumption, Ψ is well-defined and independent of how v is extended, v is a fixed

point of Ψx.

Proposition 5 suggests looking for conditions which make the operator Ψ given by (12)

well defined. The following subspace E of D(A) × L1([0, T ];Z) will play an important

role.

By definition, E consists of those pairs (x, v) such that

(13)





x ∈ D(A), v ∈ L1([0, T ], Z),

Ṡ(t)x+ (S � v)(t) ∈ D(A) ∀t ∈ [0, T ],

A
(
Ṡ(t)x+ (S � v)(t)

)
is a continuous function of t ∈ [0, T ].

Since G : D(A)→ Z is A-continuous,

(14) Ψ0(x, v)(t) = G
(
Ṡ(t)x+ (S � v)(t)

)

defines a map Ψ0 from E to C([0, T ];Z) ⊆ L1([0, T ];Z). Notice that the argument of G

is in D(A) and is a continuous function of t in the graph norm of A.

Proposition 6. Let G : D(A) → Z be A-continuous and E be the subspace defined in

(13). Assume that Ψ0 can be extended to a continuous map Ψ from D(A)×L1([0, T ];Z)

to L1([0, T ];Z). Then Ψ satisfies (12).

Proof. Set

wh(t) =
1

h
(S(t+ h)− S(t))x+

1

h

∫ t+h

t

(S � v)(s)ds.

Here we have extended v beyond T in an arbitrary way such that v ∈ L1([0, T + ε], X)

for some ε > 0. By Theorem 3, wh(t) ∈ D(A), and

Awh(t) =
1

h
(Ṡ(t+ h)− Ṡ(t))x+

1

h

(
(S � v)(t+ h)− (S � v)(t)

)
− 1

h

∫ t+h

t

v(s)ds

is a continuous function of t ∈ [0, T ]. Moreover

wh(t) =
1

h
Ṡ(t)S(h)x+

1

h
((S ∗ v)(t+ h)− (S ∗ v)(t))

=
1

h
Ṡ(t)S(h)x+

1

h

∫ t

0

S(s)(v(t+ h− s)− v(t− s))ds

+
1

h

∫ t+h

t

S(s)v(t+ h− s)ds

=
1

h
Ṡ(t)S(h)x+

1

h

∫ t

0

S(s)
d

dt

(∫ t+h−s

t−s
v(r)dr

)
ds

+
1

h

∫ h

0

S(t+ s)v(h− s)ds
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=
1

h
Ṡ(t)S(h)x+

d

dt

∫ t

0

S(s)

(
1

h

∫ t+h−s

t−s
v(r)dr

)
ds

+
1

h

∫ h

0

(S(t+ s)− S(t))v(h− s)ds

= Ṡ(t)xh + (S � vh)(t)

with

xh =
1

h
S(h)x+

1

h

∫ h

0

S(s)v(h− s)ds, vh(t) =
1

h

∫ t+h

t

v(r)dr.

Since wh(t) ∈ D(A) and Awh(t) is continuous in t, by (13),

(xh, vh) ∈ E and G(wh(t)) = Ψ0 (xh, vh) (t).

As xh → x and vh → v in L1([0, T ], Z) as h→ 0 and Ψ is the continuous extension of Ψ0

by assumption, we have

Ψ(x, v) = lim
h→0

G ◦ wh in L1([0, T ];Z).

Proposition 7. Suppose that T > 0 and the assumptions of Proposition 6 hold. If u is

an F -solution of (9) on [0, T ], then u = Ṡ(·)x+ S � v with a fixed point v of Ψx and u is

an I-solution of (9).

Proof. Let u be an F -solution in L1. Then we find uj ∈ C1([0, T ], X)∩ C([0, T ], XA),

wj ∈ L1([0, T ], X) such that (Guj)j∈N converges in L1([0, T ], X) and

lim
j→∞

‖uj − u‖ = 0,

lim
j→∞

‖wj‖1 = 0

and

u′j = Auj +G ◦ uj + wj .

We set vj := G ◦ uj . By Theorem 3,

(15) uj = Ṡ(·)uj(0) + S � (G ◦ uj + wj) = Ṡ(·)uj(0) + S � vj + S � wj .
Since uj ∈ C([0, T ], XA), (uj(0), vj + wj) is an element of E by (13), and we have the

following representation of vj ,

vj = G ◦ (Ṡ(·)uj(0) + S � vj + S � wj) = Ψ0(uj(0), vj + wj).

Since Ψ is continuous and uj(0)→ u(0), (vj + wj)→ v in L1, we have

Ψ(u(0), v) = lim
j→∞

Ψ0(uj(0), vj + wj) = lim
j→∞

vj = v

in L1([0, T ], X) and v is a fixed point of Ψx, x = u(0). Furthermore, by (15),

(16) u(t) = limj→∞ uj(t) = limj→∞ Ṡ(·)uj(0) + (S � vj)(t) + (S � wj)(t)
= Ṡ(·)u(0) + S � v.

Then u is an I-solution by Proposition 5, Part 1.
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Once we have found the unique fixed point vx of Ψx in L1([0, T ], Z), motivated by

Propositions 6 and 7, we define

(17) Θ(t, x) = Ṡ(t)x+ (S � vx)(t).

Theorem 8. Let T > 0 and assume that L1([0, T ], Z) can equivalently be renormalized

such that

‖Ψ0(x, v)−Ψ0(y, w)‖ ≤ K1‖x− y‖+K2‖v − w‖ ∀(x, v), (y, w) ∈ E,

where K1 > 0 and K2 ∈ (0, 1).

Then there exists a continuous semiflow Θ on [0,∞)×D(A) such that the exponential

Lipschitz condition (5) is satisfied and u(t) = Θ(t, x) are the unique I-solutions and the

unique F -solutions of (10) on every finite interval [0, τ ].

Proof. Since E contains the dense subspace D(A0)×C∞0 ((0, T );Z) of the Banach space

D(A) × L1([0, T ];Z), Ψ0 has a Lipschitz extension Ψ to the latter space with the same

Lipschitz constants.

Ψ is a uniform contraction on D(A)× L1([0, T ];Z) and, by the parameter version of

Banach’s fixed point theorem, there are unique fixed points vx of the mappings Ψx for

all x ∈ D(A) and the dependence of the vx on x is Lipschitz continuous on [0, T ] (see e.g.

the proof of [8], Th. 2.2),

‖vx − vy‖1 ≤ C‖x− y‖ ∀x, y ∈ D(A),

with a suitable constant C > 0. We define Θ as in (17). By Theorem 3, for 0 < t ≤ T ,

‖Θ(t, x)−Θ(t, y)‖ ≤ sup
s∈[0,T ]

‖Ṡ(s)‖‖x− y‖+ ‖S � (vx − vy)‖

≤ Meω+T (‖x− y‖+ ‖vx − vy‖1) ≤ K‖x− y‖,

where K = Meω+T (1 +C) and ω+ = max{ω, 0} is the positive part of ω. From Proposi-

tions 5 and 6 we know that Θ(·, x) is the unique I-solution of (10).

The semiflow property follows from the fact that u = Θ(·, x) is also the unique F -

solution of (10). See Lemma 4 and Lemma 7. Notice that ũ(t) = Θ(t + s, x) is the F

solution of (10) with initial value ũ(0) = Θ(s, x), so Θ(t+ s, x) = Θ(t,Θ(s, x)).

The semiflow Θ can be extended to [0, 2T ] in the standard way: Let t = s+r ∈ (T, 2T ]

with r, s ∈ [0, T ]. Set Θ(t, x) = Θ(r,Θ(s, x)). The semiflow property on [0, T ] guarantees

that this definition is independent of the choice of r and s and readily extends to [0, 2T ].

It also implies that Θ(·, x) is an I-solution on [0, 2T ],

Θ(T + t, x)− x = Θ(t,Θ(T, x))− x

= Θ(T, x)− x+A

∫ t

0

Θ(s,Θ(T, x))ds

+ lim
h↘0

∫ t

0

G

(
1

h

∫ s+h

s

Θ(r,Θ(T, x))dr

)
ds



96 H. R. THIEME AND H. VOSSELER

= A

∫ T

0

Θ(s, x)ds+ lim
h↘0

∫ T

0

G

(
1

h

∫ s+h

s

Θ(r, x)dr

)
ds

+A

∫ t

0

Θ(s+ T, x)ds+ lim
h↘0

∫ t

0

G

(
1

h

∫ s+h

s

Θ(r + T, x)dr

)
ds

= A

∫ T+t

0

Θ(s, x)ds+ lim
h↘0

∫ T+t

0

G

(
1

h

∫ s+h

s

Θ(r, x)dr

)
ds,

and the limit exists in L1. The Lipschitz continuity of Θ(t, x) in x easily extends to [T, 2T ]

with the Lipschitz constant K2. Continuing this way we can extend the semiflow to [0,∞)

with

‖Θ(t, x)−Θ(t, y)‖ ≤ Kn‖x− y‖ ∀t ∈ [(n− 1)T, nT ), n ∈ N.

The exponential Lipschitz condition (5) is satisfied with N = K, θ = lnK
T .

Corollary 9. Let T > 0 and assume that L1([0, T ], Z) can equivalently be renormalized

such that

(18) ‖Ψ0(x, v)−Ψ0(y, w)‖ ≤ K1‖x− y‖+K2‖v − w‖ ∀(x, v), (y, w) ∈ E,
where K1,K2 > 0. Then Ψ0 has an extension Ψ satisfying the analogous inequality on

D(A)× L1([0, T ], X) .

Further assume that there exist n ∈ N and ε ∈ (0, 1) such that for Ψx = Ψ(x, ·),

‖Ψn
x(v)−Ψn

x(w)‖ ≤ ε‖v − w‖ ∀v, w ∈ L1([0, T ], Z), x ∈ D(A).

Then there is a unique continuous semiflow Θ on [0,∞)×D(A) such that the exponential

Lipschitz condition (5) is satisfied and u(t) = Θ(t, x) are the unique I-solutions and the

unique F -solutions of (10) on every finite interval [0, τ ].

Proof. By assumption, with Ψx := Ψ(x, ·), Ψn
x is a strict contraction on the Banach space

L1([0, T ], Z) and so has a unique fixed point vx. Since Ψx(vx) is also a fixed point of Ψn
x ,

Ψx(vx) = vx. Since every fixed point of Ψx is also a fixed point of Ψn
x , vx is the unique

fixed point of Ψx. For all x, y ∈ D(A),

‖vx − vy‖ = ‖Ψn
x(vx)−Ψn

y (vy)‖
≤ ‖Ψn

x(vx)−Ψn
x(vy)‖+ ‖Ψn

x(vy)−Ψn
y (vy)‖

≤ ‖vx − vy‖ ε+Kn‖x− y‖,
for some constant Kn > 0. Reorganizing this inequality,

‖vx − vy‖ ≤ (1− ε)−1Kn‖x− y‖.
The remaining part of the corollary follows as in Theorem 8.

For cases in which the estimate in Theorem 8 is difficult to check directly, we offer

the following version which will be used in the Banach lattice case. Let φ : R → [0,∞)

be a continuous non-negative function with compact support and
∫
R
φ(s)ds = 1. Set

φj(t) = jφ(jt),

and for v ∈ L1([0, T );X) define

vφj (t) =

∫ ∞

0

φj(s− t)v(s)ds,
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where v has been extended outside of [0, T ] in an arbitrary measurable essentially bounded

fashion. One readily checks that vφj → v, j →∞, uniformly on compact subsets of (0, T ),

if v is continuous on (0, T ), and vφj → v in L1([0, T ];X). If v : [0, T ] → D(A) and Av is

continuous on (0, T ) then vφj (t) ∈ D(A) and Avφj → Av, j → ∞, uniformly on compact

subsets of (0, T ). φ with the properties above is called a mollifier because vφ is typically

smoother than v.

Corollary 10. Let G : D(A) → Z be A-continuous and E be the subspace defined in

(13). Let K1,K2 ≥ 0 and φ a mollifier as above such that, for all (x, v), (y, w) ∈ E,

lim inf
j→∞

∫ T

0

‖G((Ṡ(·)x+ S � v)φj (t))−G((Ṡ(·)y + S � w)φj (t))‖dt

≤ K1‖x− y‖+K2

∫ T

0

‖v(t)− w(t)‖dt.

Then the map Ψ0 in (14) satisfies the inequalities (18) in Corollary 9, and its exten-

sion Ψ satisfies the analogous inequalities on D(A)× L1([0, T ], X) and equation (12).

Proof. Since G is A-continuous, we have for all t ∈ (0, T ) and (x, v) ∈ E
lim
j→∞

G((Ṡ(·)x+ S � v)φj (t)) = G(Ṡ(t)x+ S � v(t)).

By Fatou’s lemma, the inequalities (18) in Corollary 9 holds, and Ψ0 has an extension Ψ

on D(A)×L1([0, T ], X) which satisfies the analogous inequalities and, by Proposition 6,

equation (12).

3. A Stieltjes type convolution of operator families with vector-valued L1-

functions. The convolution we introduce in this section turns out to be useful in the

proof of our perturbation theorems. The results we present are established in [34].

Let I ⊆ R be an interval which is bounded from below and

l(I) := inf I and r(I) := sup(I)

denote its left and right end-point. Unless explicitly stated otherwise, we always assume

that l(I) ∈ I and r(I) /∈ I. Recall that, for every f ∈ L1(I,X),
∫ ·
l(I)

f(t)dt is of bounded

variation and its variation is given by

v

(∫ ·

l(I)

f(t)dt; I

)
= ‖f‖1 =

∫ r(I)

l(I)

‖f(s)‖ds.

This motivates our next definition.

Definition 3. A function f ∈ L1(I,X) is of bounded pseudo-variation if

pv(f ; I) := lim
h↘0

1

h

∫ r(I)−h

l(I)

‖f(s+ h)− f(s)‖ds <∞.

If r(I) =∞, r(I)− h is to be interpreted as ∞. Recall that f : I → X is of bounded

variation if

v(f ; I) := sup
{ k∑

j=1

‖f(tj)− f(tj−1)‖
}
<∞,
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where the supremum is taken over all partitions t0 < · · · < tk of I where k ∈ N and

tj ∈ I. f : I → X is Lipschitz continuous if

pv∞(f ; I) := sup

{‖f(t)− f(s)‖
|t− s| ; t, s ∈ I, t 6= s

}
<∞.

Every function of bounded pseudo-variation admits a version that is of bounded vari-

ation:

Lemma 11. Let f : I → X be of bounded pseudo-variation. Then

(19) f⊕(t) := lim
h↘0

1

h

∫ t+h

t

f(s)ds

exists for all t ∈ I, f = f⊕ a.e., and f⊕ is of bounded variation on I with v(f⊕, I) =

pv(f, I). Further (f⊕)⊕ = f⊕ and f⊕ is right continuous.

We set

(20) pv⊕(f ; I) := pv(f ; I) + ‖f⊕(l(I))‖.
Proposition 12. The vector space

PV(I;X) := {f⊕; f : I → X is of bounded pseudo-variation}
equipped with the norm pv⊕(f ; I) is a Banach space.

The analogous result for the space of Lipschitz continuous functions is well known.

We extend the previous concepts to operator families.

Definition 4. A family of bounded linear operators (U(t))t∈I from a Banach space X

into a Banach space Y is called to be of bounded strong pseudo-variation if

pv(U(·)x; I) <∞ ∀x ∈ X.
It is easy to check that x 7→ U(·)x is a closed linear operator from X into the Banach

space PV(I;Y ) and so a bounded linear operator; this implies that

PV(U ; I,X) := sup
‖x‖≤1, x∈X

pv(U(·)x; I) <∞,

PV⊕(U ; I,X) := sup
‖x‖≤1, x∈X

pv⊕(U(·)x; I) <∞,
(21)

and

pv(U(·)x; I) ≤ PV(U ; I,X) ‖x‖,
pv⊕(U(·)x; I) ≤ PV⊕(U ; I,X) ‖x‖,

∀x ∈ X.(22)

We call PV(U ; I,X) the strong pseudo-variation of U on I ×X.

It is well known and follows in the same way that U(·) is Lipschitz continuous in

operator norm if it is strongly Lipschitz continuous. We set

PV∞(U ; I,X) = sup

{‖U(t)− U(t)‖
|t− s| ; t, s ∈ I, t 6= s

}
.

We introduce

U⊕(t)x = lim
h↓0

1

h

∫ t+h

t

U(s)xds
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which exists according to Lemma 11. Notice that U(t)x and U⊕(t)x have the same pseudo-

variation.

Before we define a Stieltjes type convolution of U with f ∈ L1(I,X), with l(I) = 0,

we recall that the standard convolution

(U ∗ f)(t) :=

∫ t

0

U(s)f(t− s)ds, t ∈ I,

defines a function in L1(I, Y ), if f ∈ L1(I,X) and U(t) is strongly integrable on I. If U

is of bounded strong pseudo-variation, we actually have the following result.

Proposition 13. Let I be a bounded interval, U be of bounded strong pseudo-variation

on I and f ∈ L1([0, T ], X). Then U ∗ f ∈ L∞(I, Y ) and

‖U ∗ f‖∞ ≤ sup
‖x‖≤1

‖U(·)x‖∞‖f‖1.

In fact, much more holds.

Theorem 14. Let U be of bounded strong pseudo-variation on I and f ∈ L1(I,X). Then

U ∗ f is continuous on I. Moreover the limit

U ? f = lim
h↘0

1

h

∫ ·

0

(U(s+ h)− U(s))f(· − s)ds,

exists in L1(I, Y ),

‖U ? f‖1 ≤ PV(U ; I,X) ‖f‖1,
and

(U ∗ f)(t) =

∫ t

0

(U ? f)(s)ds+

∫ t

0

U⊕(0)f(s)ds.

Finally

U⊕ ? f = U ? f.

We define

(23) (U � f)(t) = (U ? f)(t) + U⊕(0)f(t).

Our Stieltjes type convolution relates to the standard convolution as follows.

Corollary 15. Let I = [0, T ) and (U(t))t∈I be a family of bounded linear operators

from X to Y that is of bounded strong pseudo-variation.

(a) Then, for all f ∈ L1(I, Y ),

(U ∗ f)(t) =

∫ t

0

(U � f)(s)ds ∀t ∈ I, ‖U � f‖1 ≤ PV⊕(U ; [0, T ), X) ‖f‖1.

(b) If f : [0, T ) → X is of bounded pseudo-variation, then U � f is of bounded pseudo-

variation on [0, T ),

pv⊕(U � f ; I) ≤ PV⊕(U ; I,X)pv⊕(f ; I).

Further U⊕ � f⊕ = U � f⊕ = U⊕ � f = U � f a.e. on I,

(U � f)⊕(0) = U⊕(0)f⊕(0).
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(c) If U is Lipschitz continuous and f ∈ L1(I,X), then U ? f is continuous with

‖U ? f‖∞ ≤ PV∞(U ; I,X) ‖f‖1.
If U(t) and V (t), t ∈ I, are families of bounded linear operators which are of bounded

strong pseudo-variation, then, for each x, U �(V (·)x) is defined and a function of bounded

pseudo-variation, but difficult to turn into a family of bounded linear operators W (t)x,

because it is uniquely determined up to a set of Lebesgue measure 0 which depends on x.

This situation can be remedied by setting

(U � V )(t)x = (U � [V (·)x])⊕.

By Lemma 11 and Corollary 15 (b), U � V is a family of bounded linear operators that

is of locally bounded strong pseudo-variation and strongly right-continuous.

Proposition 16. Let f : [0, T ) → X be of bounded pseudo-variation and U(t), V (t),

t ∈ [0, T ), form families of bounded linear operators on X that are of bounded strong

pseudo-variation. Then

(U � V ) � f = U � (V � f) a.e.

We define recursively

U�1 = U⊕, U�(n+1) = U � U�n.
Corollary 17. Let (U(t))t∈I be a family of bounded linear operators that is of locally

bounded strong variation. Then

PV⊕(U�n; I,X) ≤ [PV⊕(U ; I,X)]n ∀n ∈ N.

If U(t) maps X into a closed subspace Z, then

PV⊕(U�(n+1); I,X) ≤ [PV⊕(U ; I, Z)]n PV⊕(U ; I,X) ∀n ∈ N.

Application to integrated semigroups. If we apply our results to integrated semigroups

we obtain the following generalization of Theorem 3. Notice that S � f = S ? f because

S⊕(0) = 0.

Lemma 18. Let S be an integrated semigroup which is of locally bounded strong pseu-

do-variation. Then (S � f)(t) ∈ D(A) and (S ∗ f)(t) ∈ D(A) for all f ∈ L1(I,X) and

almost all t ≥ 0. Furthermore we have

A(S ∗ f)(t) = (S � f)(t)−
∫ t

0

f(s)ds for a.a. t ≥ 0

and

(S ∗ f)(t) =

∫ t

0

(S � f)(s)ds ∀t ∈ I.

4. Cumulative outputs of bounded strong variation. Recall that X,Y are Ba-

nach spaces and A is a Hille-Yosida operator on X. The locally Lipschitz continuous

integrated semigroup generated by A is denoted by (S(t))t≥0 and the C0-semigroup on

D(A) generated by A0 is denoted by (Ṡ(t))t≥0.
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Assumption H4. Let B be an A-bounded operator with values in Y , T ∈ [0,∞], such

that for every x ∈ X,

B

∫ t

0

S(s)xds =

∫ t

0

V (s)xds, t ∈ [0, T ),

with a family (V (t))t≥0 of bounded linear operators from X to Y that is of bounded

strong pseudo-variation on I = [0, T ).

Remark 1. Replacing V by V ⊕ we see that B
∫ t

0
S(s)ds is right differentiable with

derivative V ⊕(t)x. So without restriction, we assume this from the very beginning, with

V (t) being strongly right continuous.

Lemma 19. Let Assumption H4 be satisfied. Then the following holds:

1. For all x ∈ D(A) and all t ∈ I, BS(t)x = V (t)x and V (·)x is a.e. differentiable on

[0, T ) with d
dtV (·)x ∈ L1([0, T );X) and V (t)x =

∫ t
0
d
dsV (s)xds.

For all x ∈ D(A) and all t ∈ I, V (t)x is right differentiable and

Bx+ V (t)Ax = V ′(t)x.

For all x ∈ D(A0) and all t ∈ I, V (t)x is continuously differentiable and BṠ(t)x =

V ′(t)x.

2. For all f ∈ L1(I,X) and t ∈ I,

(V ∗ f)(t) = B(S ∗ f)(t).

3. If (x, f) ∈ E, E as in (13), then V (·)x + V ∗ f is continuously differentiable on

[0, T ] and

B(Ṡ(t)x+ (S � f)(t)) =
d

dt
(V (t)x+ (V ∗ f)(t)).

In particular V (·)x ∈W 1
1,loc[0, T ] and

B(Ṡ(t)x+ (S � f)(t)) = V ′(t)x+ (V ∗ f)′(t).

Proof. The first statement in 1. is obvious because A
∫ t

0
S(s)xds is differentiable for x ∈

D(A) with derivative AS(t)x. Similarly, for x ∈ D(A0), AS(t)x is differentiable with

derivative AṠ(t)x = Ṡ(t)A0x and so is BS(t)x = V (t)x with derivative BṠ(t)x. For

x ∈ D(A), by part 1 and (7),

V (t)x = Btx+ B

∫ t

0

S(s)Axds = tBx+

∫ t

0

V (s)Axds.

We see that V (t)x is right differentiable and

V ′(t)x = Bx+ V (t)Ax, x ∈ D(A).

Returning to the case that x ∈ D(A0), we have that
∫ T

0

|V ′(t)x|dt = pV(V (·)x; [0, T )) ≤ PV
(
V ; [0, T ), D(A)

)
‖x‖.

If x ∈ D(A) = D(A0), we find a sequence (xn) in D(A0) such that xn → x as n → ∞.

By the previous estimate, the functions V ′(·)xn form a Cauchy sequence in the Banach
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space L1([0, T );X) and have a limit v therein. Then
∫ t

0

v(s)ds = lim
n→∞

∫ t

0

V ′(s)xnds = lim
n→∞

V (t)xn = V (t)x.

As for 2. we first recall that A(S ∗ f)(t) is continuous in t (Theorem 3). Since B is

A-continuous, B(S ∗ f)(t) is continuous. Changing the order of integration shows that
∫ t

0

(S ∗ f)(r)dr =

∫ t

0

(∫ t−s

0

S(r)f(s)dr

)
ds.

So ∫ t

0

B(S ∗ f)(r)dr = B

∫ t

0

(S ∗ f)(r)dr =

∫ t

0

B

(∫ t−s

0

S(r)f(s)dr

)
ds

=

∫ t

0

(∫ t−s

0

V (r)f(s)dr

)
ds =

∫ t

0

(V ∗ f)(r)dr.

Since V ∗ f is continuous, the assertion follows.

3. As B is A-bounded and A(Ṡ(t)x+ (S � f)(t)) is continuous,

B(Ṡ(t)x+ (S � f)(t))

= lim
h→0

1

h
B(S(t+ h)x− S(t)x+ (S ∗ f)(t+ h)− (S ∗ f)(t))

= lim
h→0

1

h
(V (t+ h)x− V (t)x+ (V ∗ f)(t+ h)− (V ∗ f)(t))

uniformly for t in bounded intervals. So V (t)x+ (V ∗ f)(t) is continuously differentiable

in t with derivative B(Ṡ(t)x+ (S � f)(t)).

It follows from Lemma 19 (1) and the fact that S(t) maps X into D(A) that V has

the properties of a cumulative output defined below [12, 24, 32]. In some circumstances

it is convenient to start from the operator family V (t) rather than the operator B.

Definition 5. A family (V (t))t≥0 of bounded operators from X to Y is a cumulative

output for (S(t))t≥0 if the following holds: V (t) is strongly right continuous at any t > 0,

the right limit V (0+) exists strongly, and

(24) V (t)S(r) =

∫ t+r

0

V (s)ds−
∫ t

0

V (s)ds−
∫ r

0

V (s)ds ∀t, r ≥ 0.

It follows from the uniform boundedness theorem and Lemma 4.14 in [32] that V (t)

is exponentially bounded.

Remark 2. Since S(·)x is continuously differentiable for all x ∈ D(A) we obtain

V (t)S′(r)x = V (t+ r)x− V (r)x, t, r > 0.

If w(V ) denotes the exponentially bound for (V (t))t≥0, we define

F (λ)x = λ

∫ ∞

0

e−λtV (t)xdt, λ > w(V ), x ∈ X.

Since V is a cumulative output for S, F (λ) is a resolvent output of A, i.e.,

F (λ)(µ−A)−1 =
1

µ− λ(F (λ)− F (µ)), λ, µ > w(V ), λ 6= µ.
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So we can define B̂ = F (λ)(λ − A) and show that this definition is independent of

λ > w(V ). A straightforward Laplace transform argument shows that Assumption H4 is

satisfied with B̂ replacing B.

5. Application to the semilinear Cauchy problem. We state the additional as-

sumptions on G and A.

Assumption H5. There exists a linear operator B : D(A)→ Y into a Banach space Y ,

T > 0 such that

‖G(x)−G(y)‖ ≤ ‖B(x− y)‖ ∀x, y ∈ D(A),

and

B

∫ t

0

S(r)xdr =

∫ t

0

V (r)xdr, t ∈ [0, T ), x ∈ X,

with an operator family (V (t))t∈[0,T ) from X to Y which is of bounded strong pseudo-

variation and PV⊕(V ; [0, T ), Z) < 1.

Theorem 20. Under Assumption H5, there is a unique continuous semiflow Θ on D(A)

such that the exponential Lipschitz condition (5) is satisfied and the orbits of Θ uniquely

solve the Cauchy problem (3) in the L1-Friedrichs sense (L1-F).

Proof. Let T > 0. We show that, under Assumption H5, the assumptions of Theorem 8

are fulfilled with

K1 = PV(V ; [0, T ), X), K2 = PV⊕(V ; [0, T ), Z).

Let (x, v), (y, w) ∈ E, E as in (13). By Lemma 19 and H5,

‖G(Ṡ(t)x+ (S � v)(t))−G(Ṡ(t)y + (S � w)(t))‖
≤ ‖B(Ṡ(t)x+ (S � v)(t))−B(Ṡ(t)y + (S � w)(t))‖
= ‖V ′(t)(x− y) + (V � (v − w))(t)‖

for a.a. t ≥ 0. By Corollary 15 (a),
∫ T

0

‖G(Ṡ(t)x+ (S � v)(t))−G(Ṡ(t)y + (S � w)(t))‖dt

≤ PV(V ; [0, T ), X) ‖x− y‖+ PV⊕(V ; [0, T ), Z) ‖v − w‖.
This theorem will work well if we have enough information about the integrated

semigroup S generated by A. Aesthetically it may be more pleasing if all assumptions

are in terms of A (or its resolvent) and G.

Corollary 21. There exists a linear operator B : D(A) → Y into a Banach space Y

such that

‖G(x)−G(y)‖ ≤ ‖B(x− y)‖ ∀x, y ∈ D(A),

and there exist µ > 0 and γ ∈ (0, 1) and c > 0 such that
∫ ∞

0

‖B(λ+ µ−A)−(k+1)x‖kλk−1dλ+ lim inf
λ→∞

‖B(λ−A)−1x‖ ≤ γ‖x‖

∀x ∈ Z, k ∈ N,
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∫ ∞

0

‖B(λ+ µ−A)−(k+1)x‖kλk−1dλ ≤ c‖x‖ ∀x ∈ D(A), k ∈ N.

Then there is a unique continuous semiflow Θ on D(A) such that the orbits of Θ

uniquely solve the Cauchy problem (3) in the Friedrichs sense (L1-F) for all x ∈ D(A).

Proof. By Theorem 6.8 and the subsequent remark in [34], there is a family of bounded

operators (V (t))t≥0 and some w > 0 such that

B(λ−A)−1x = λ

∫ ∞

0

e−λtV (t)xdt ∀λ > w, x ∈ X,

and V is of bounded strong (pseudo)-variation on every finite interval, V (0) = 0. Moreover

the strong right limit V (0+) = V ⊕(0) exists and

V ⊕(0)x = lim
λ→∞

B(λ−A)−1x.

For sufficiently large λ > 0,

‖G(x)−G(y)‖ ≤ ‖B(λ−A)−1‖ ‖(λ−A)(x− y)‖ ∀x, y ∈ D(A)

and therefore G is A-continuous. A straightforward Laplace transform argument shows

that Assumption H4 is satisfied on every finite interval provided we find some T > 0 with

PV⊕(V ; [0, T ), Z) < 1. To this end, let

V µ(t) = e−µtV (t) + µ

∫ t

0

e−µsV (s)ds.

By Proposition 3.1 in [34],

B(λ+ µ−A)−1 = λ

∫ ∞

0

e−λtV µ(t)dt.

V µ is of bounded pseudo-variation on [0,∞), and PV⊕(V µ; [0,∞), Z) ≤ γ as follows

from [39] or [4] (see also [34], Theorem 4.2). It follows from Proposition 3.1 (c) in [34]

that, for any T > 0,

lim sup
h→0

1

h

∫ T−h

0

e−µt‖V (t+ h)x− V (h)x‖dt+ ‖V ⊕(0)x‖

= pv⊕(V µ(·)x), [0, T )) ≤ γ‖x‖ ∀x ∈ Z.
So

PV⊕(V ; [0, T );Z) < γeµT .

By choosing T > 0 small enough we achieve that γeµT < 1 and our assertion follows from

Theorem 20.

6. Semilinear Miyadera-Voigt theorems. For densely defined A, X = Z and G = B

we obtain a new proof of the well known Miyadera-Voigt perturbation theorem for C0-

semigroups [35] that makes no use of the Dyson-Phillips series and works for semi-linear

perturbations of Miyadera-Voigt type. If the perturbation is of Kato type, the density of

D(A) can be dropped.
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Theorem 22. Let A be the generator of a C0-semigroup Ṡ on a Banach space X, Z ⊆ X
be a closed subspace of X and Y be another Banach space. Let D be a dense subspace of

X such that D ∩ Z is dense in Z. Let G0 : D → Z, B0 : D → Y , B0 linear, such that

‖G0(x)−G0(y)‖ ≤ ‖B0(x− y)‖ ∀x, y ∈ D,
and the following conditions are satisfied:

1. D ⊆ D(A), Ṡ(t)D ⊆ D, and B0Ṡ(·)x continuous for all x ∈ D.

2. There are α, λ, K > 0 and γ ∈ (0, 1) such that

(a)
∫ α

0
e−λt‖B0Ṡ(t)x‖dt ≤ K‖x‖ for all x ∈ D.

(b)
∫ α

0
e−λt‖B0Ṡ(t)x‖dt ≤ γ ‖x‖ for all x ∈ D ∩ Z.

Then there is a unique A-continuous extension G : D(A) → Z of G0 and a unique

continuous semiflow Θ on X such that the exponential Lipschitz condition (5) and the

following are satisfied:

1. For all x ∈ X, Θ(·, x) uniquely solves the Cauchy problem (3) in the Friedrichs

sense (L1-F).

2. For all x ∈ X and t ≥ 0 we have

(25) Θ(t, x) = Ṡ(t)x+ lim
h→0

∫ t

0

Ṡ(t− s)G(
1

h

∫ s+h

s

Θ(r, x)dr)ds.

Remark 3. In the proof we will show that B0 is A|D bounded and can be uniquely

extended to an A-bounded linear operator B : D(A)→ Y , answering a question asked in

[35], Remark 5.

This particular result even holds if condition 2. is replaced by the following weaker

one: There are α,K > 0 such that

‖
∫ t

0

B0Ṡ(r)xdr‖ ≤ K‖x‖ ∀x ∈ D, t ∈ [0, α].

Proof. Define

V (t)x =

∫ t

0

B0Ṡ(s)xds, t ≥ 0, x ∈ D.

Since Ṡ is a semigroup that leaves D invariant,

V (t)Ṡ(r)x = V (t+ r)x− V (r)x, t, r ≥ 0, x ∈ D.
By our assumptions,

‖V (t)x‖ ≤ eλαK‖x‖, x ∈ D, t ∈ [0, α].

V (t) can be uniquely extended to a bounded linear operator from X to Y for t ∈ [0, α],

satisfying the same estimate. The functional relationship between V and Ṡ shows induc-

tively that V (t) can be extended to a bounded linear operator from X to Y for t ∈ [0, nα],

n ∈ N,

(26) V (t)Ṡ(r) = V (t+ r)− V (r), t, r ≥ 0.

Cf. Remark 2. This functional relationship implies that V is exponentially bounded,

‖V (t)‖ ≤ M̃eω̃t, t ≥ 0,
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with appropriate constants M̃, ω̃. See the proof of Lemma 4.14 in [32]. It also follows that

V (t)x → 0, t → 0, first for x ∈ D, but then also for x ∈ X. By (26), V (t) is strongly

right continuous. Set

F (λ) = λ

∫ ∞

0

e−λtV (t)dt, λ > ω̃.

Taking Laplace transforms of the functional relation (26) between V and Ṡ shows that

F (·) is a resolvent output for A,

F (λ)(µ−A)−1 =
1

µ− λ (F (λ)− F (µ)), µ, λ > ω̃, λ 6= µ.

Thus the definition B := F (λ)(λ − A) is independent of λ > ω̃ and provides an

A-bounded operator B. Set

S(t) =

∫ t

0

Ṡ(r)dr.

Then

BS(t)x = F (λ)(λ− A)S(t)x = F (λ)[λS(t)x− Ṡ(t)x+ x]

forms a strongly continuous exponentially bounded family of bounded linear operators.

Taking Laplace transforms,

λ

∫ ∞

0

e−λtBS(t)dt = F (λ) = λ

∫ ∞

0

e−λtV (t)dt.

Since BS(t) is strongly continuous and V (t) strongly right continuous, the uniqueness

properties of the Laplace transform imply that V (t) = BS(t) for all t ≥ 0 and the second

formula in Assumption H5 follows. Further, for x ∈ D, both V (t)x and BS(t)x can

continuously be differentiated yielding B0Ṡ(t)x = BṠ(t)x for all t ≥ 0. Specializing to

t = 0, B0x = Bx, i.e., B is an A-bounded extension of B0.

Actually it follows from our assumptions that D is a core for A, i.e., D is dense in

D(A) with respect to the graph norm of A. See [13], Proposition 1.7, and [35], p. 168,

where additional references can be found.

This allows to extend G0 to a map G from D(A) to Z as follows. Let x ∈ D(A). Then

there exists a sequence (xn) in D such that xn → x and Axn → Ax as n→∞. Since B

is an A-bounded extension of B0, B0xn → Bx as n→∞. The relation between G0 and

B0 implies that (G0(xn)) is a Cauchy sequence, and we can define

G(x) = lim
n→∞

G0(xn).

This definition is independent of the choice of the sequence (xn) and

‖G(x)−G(y)‖ ≤ ‖B(x− y)‖ ∀x, y ∈ D(A).

Since B is A-bounded, G is an A-continuous extension of G0, and as such uniquely

determined by G0 because D is dense in D(A) with respect to the graph norm of A.

By Lemma 19 (1), there exists a bounded linear map V̇ : X → L1([0, α], Y ) such that

(V̇ x)(s) = B0Ṡ(s)x for x ∈ D and

V (t)x =

∫ t

0

(V̇ x)(s)ds
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and ∫ α

0

e−λt‖(V̇ x)(t)‖dt ≤ K‖x‖ ∀x ∈ X,
∫ α

0

e−λt‖(V̇ x)(t)‖dt ≤ γ ‖x‖ ∀x ∈ Z.

Let τ ∈ (0, α]. Then

pv⊕(V (·)x; [0, τ)) =

∫ τ

0

‖(V̇ x)(t)‖dt ≤ Keλτ‖x‖ ∀x ∈ X,

pv⊕(V (·)x; [0, τ)) ≤ γeλτ‖x‖ ∀x ∈ Z.
Choosing τ > 0 small enough we can achieve that γeλτ < 1. The existence and the

properties of the semiflow Θ now follow from Theorem 20.

Theorem 23. Let A be a Hille-Yosida operator in a Banach space X, A0 the part of A

in D(A) and Ṡ(·) the C0-semigroup generated by A0.

Let D be a dense subspace of D(A) and Y another Banach space. Let G0 : D → X,

B0 : D → Y , B0 linear, such that

‖G0(x)−G0(y)‖ ≤ ‖B0(x− y)‖ ∀x, y ∈ D,
and the following conditions are satisfied:

1. D ⊆ D(A0), Ṡ(t)D ⊆ D, and B0Ṡ(·)x continuous for all x ∈ D.

2. For every ε > 0 there exists δ > 0 such that
∫ δ

0

‖B0Ṡ(t)x‖dt ≤ ε ‖x‖ for all x ∈ D.

Then there is a unique A-continuous extension G : D(A) → X of G0 such that G(x) =

limλ→∞G
(
λ(λ−A)−1x

)
for all x ∈ D(A) and a unique continuous semiflow Θ on X

such that the exponential Lipschitz condition (5) and the following are satisfied:

1. For all x ∈ X, Θ(·, x) uniquely solves the Cauchy problem (3) in the Friedrichs

sense (L1-F).

2. For all x ∈ X and t ≥ 0 we have

(27) Θ(t, x) = Ṡ(t)x+ lim
h→0

∫ t

0

Ṡ(t− s)G
(

1

h

∫ s+h

s

Θ(r, x)dr

)
ds.

Perturbations (A + B0)|D of this kind are said to be of Kato type [37]. We mention

that Hille-Yosida operators are preserved under Kato type perturbations ([34], Theorem

6.11).

Proof. The same proof as for Theorem 22 provides a strongly continuous family of

bounded linear operators V0(t) : D(A)→ Y , V0(0) = 0, with

V0(t)Ṡ(r)x = V0(t+ r)x− V0(r)x, t, r ≥ 0, x ∈ D(A),

and

PV⊕(V0; [0, δ), D(A)) ≤ ε,
where δ has been chosen in dependence of ε as in 2. of the assumptions of this theorem.

In particular V0(t)→ 0, t→ 0, in operator norm. The functional relation with Ṡ implies
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that V0(t) is right continuous in operator norm. Integrating over r,

V0(t)S(r)x =

∫ t+r

0

V0(s)xds−
∫ t

0

V0(s)xds−
∫ r

0

V0(s)xds,

t, r ≥ 0, x ∈ D(A).

(28)

Then V0 can be extended to a cumulative output for S on X (i.e., (28) holds for x ∈ X)

by

V (t) := lim
h↘0

V0(t)
1

h
S(h)

with convergence holding in operator norm (cf. Definition 5). See the proof of Theorem

6.11 in [34]. It is readily checked that V is a cumulative output for S on X. Further

PV⊕(V ; [0, δ), X) ≤MPV⊕(V ; [0, δ), D(A)) ≤Mε,

with M = lim infh↘0
1
h‖S(h)‖. Choosing ε > 0 and δ > 0 small enough,

PV⊕(V ; [0, δ), X) < 1.

By Lemma 4.14 in [32], V (·) is exponentially bounded and, as in the proof of Theorem

22, we define

F (λ) = λ

∫ ∞

0

e−λtV (t)dt.

Then F (λ) → 0 as λ → ∞ in operator norm. By taking Laplace transforms of the

cumulative output relation (28), for V rather than V0, F (·) is a resolvent output for A

and the definition B = F (λ)(λ − A) is independent of λ. The uniqueness properties of

the Laplace transform imply that

B

∫ t

0

S(r)dr =

∫ t

0

V (r)dr.

Let B̃ be another extension of B0 to D(A), B̃(λ − A)−1 → 0, λ → ∞, in operator

norm. Since D is a core for A0, B̃ and B coincide on D(A0). Set F̃ (λ) = B̃(λ − A)−1.

Then

B̃x = F̃ (λ)(λ−A)x = lim
µ→∞

µF̃ (µ)x, x ∈ D(A).

Similarly Bx = limµ→∞ µF (µ)x, x ∈ D(A). But F (λ)x = B(λ−A)−1x = B̃(λ−A)−1x =

F̃ (λ)x for x ∈ D(A) because (λ−A)−1 maps D(A) into D(A0), so B̃ = B.

By the definition of B,

Bx = lim
λ→∞

λF (λ)x = lim
λ→∞

λB(λ−A)−1x, x ∈ D(A).

As in the proof of Theorem 22, G0 has a unique A0-continuous extension G̃ : D(A0)→ X

which satisfies

‖G̃(x)− G̃(y)‖ ≤ ‖B(x− y)‖, x, y ∈ D(A0).

It follows that, for x ∈ D(A), the family (G̃(λ(λ− A)−1x)) is a Cauchy net as λ → ∞.

Hence the limit

G(x) = lim
λ→∞

G̃(λ(λ−A)−1x), x ∈ D(A),
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exists and G satisfies ‖G(x) − G(y)‖ ≤ ‖B(x − y)‖ for all x, y ∈ D(A). Since B is

A-bounded, G is A-continuous. Further G is uniquely determined by G̃ and the property

G(x) = limλ→∞G(λ(λ− A)−1x) for all x ∈ D(A).

We have checked all assumptions of Theorem 20 and our assertions follow.

7. Semilinear perturbations in Banach lattices. We consider a Banach lattice X

with positive convex cone X+. Following [3, 1], we call a linear operator A in X resolvent

positive, if (a,∞) ⊆ ρ(A) for some a ∈ R and (λ − A)−1 ≥ 0 for all λ > a. Here ρ(A)

denotes the resolvent set of A. We refer to [26] for more details on ordered Banach spaces

and positive operators.

We say that a linear operator A in X is absolutely resolvent majorized by a resolvent

positive operator Ā if (a,∞) ∈ ρ(A) ∩ ρ(Ā) for some a ∈ R with

|(λ−A)−1x| ≤ (λ− Ā)−1|x| for all x ∈ X and λ > a.

Given a family of bounded operators (V (t))t≥0 of locally bounded strong variation

we obtain iterative convolutions V �n for n ∈ N by

V �(n+1) := (V �n � V ) .

V �n is again a family of bounded operators that is of locally bounded strong variation (see

Corollary 17). We make the following assumption. Recall that an operator in a Banach

lattice is called positive if it maps positive elements in its domain into X+.

Assumption H7a. Let X be a Banach lattice and A be resolvent majorized by a resolvent

positive Hille-Yosida operator Ā. Let G : D(A)→ Z map into a closed sublattice Z of X

and assume that there is a linear positive operator B : D(Ā)→ Z such that

|G(x)−G(y)| ≤ Bv whenever x, y ∈ D(A), v ∈ D(Ā), |x− y| ≤ v,
and there exists some w ∈ R such that

B(λ− Ā)−1x = λ

∫ ∞

0

e−λtV (t)xdt ∀λ > w, x ∈ X,

where V is a family of bounded strong pseudo-variation on some interval [0, T + ε) with

T, ε > 0 and

PV⊕(V �n; [0, T ), Z) < 1

for some n ∈ N.

Remark 4. (a) Since (λ− Ā)−1 and B are positive we have

|G(x)−G(y)| ≤ B(λ− Ā)−1|(λ−A)(x− y)|
and therefore G is A-continuous.

(b) Inductively one realizes that

|(λ−A)−nx| ≤ (λ− Ā)−n|x| ∀x ∈ X,n ∈ N,

which implies that A is a Hille-Yosida operator as well.

We are going to prove a theorem similar to Theorem 20 and proceed as in the previous

section by showing first that Ψx is well defined and then that it admits a unique fixed

point. Let (S̄(t))≥0 denote the integrated semigroup generated by Ā. We start with
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Lemma 24. Let T > 0. Under Assumptions H7a, Ψ0 satisfies the inequalities (18) in

Corollary 9 with

K1 = PV(V ; [0, T+), X), K2 = PV⊕(V ; [0, T+), Z),

where

PV(V ; [0, T+), X) := lim sup
h↓0

PV(V ; [0, T + h), X).

Further the extension Ψ of Ψ0 satisfies

|Ψ(x, v)−Ψ(x,w)| ≤ V � |v − w| ∀v, w ∈ L1([0, T ];Z).

Proof. We start by showing for v ∈ L1([0, T ], X) that

|(S � v)(t)| ≤ (S̄ � |v|)(t).(29)

We have for locally Lipschitz continuous integrated semigroups (see [16] p.224)

S(t+ h)x− S(t)x = lim
k→∞

∫ t+h

t

(
k

s

)(
k

s
−A

)−(k+1)

xds.

Since A is resolvent dominated by Ā,

|(S(t+ h)− S(t))x| ≤ lim
k→∞

∫ t+h

t

(
k

s

) ∣∣∣∣∣

(
k

s
−A

)−(k+1)

x

∣∣∣∣∣ ds

≤ lim
k→∞

∫ t+h

t

(
k

s

)(
k

s
− Ā

)−(k+1)

|x|ds = (S̄(t+ h)− S̄(t))|x|,

and the inequality (29) follows a.e. from Theorem 14 and S � v = S ? v. As a by-product,

we see that {S̄(t)} is an increasing family. Since S � v and S̄ � |v| are continuous by

Theorem 3, the inequality holds everywhere.

We apply Corollary 10. Let φ : R → [0,∞) be infinitely often differentiable with

support in (0, 1) and
∫ 1

0
φ(s)ds = 1. Then, for x, y ∈ D(A),

|(Ṡ(·)x)φj (t)− (Ṡ(·)y)φj (t)| =
∣∣∣∣
∫ ∞

0

φj(s− t)Ṡ(s)(x− y)ds

∣∣∣∣

= lim
λ→∞

∣∣∣∣
∫ ∞

0

φj(s− t)Ṡ(s)λ(λ−A)−1(x− y)ds

∣∣∣∣

= lim
λ→∞

lim
h↘0

∣∣∣∣
∫ ∞

0

φj(s− t)
1

h
[S(s+ h)− S(s)]λ(λ−A)−1(x− y)ds

∣∣∣∣

≤ lim
λ→∞

lim
h↘0

∫ ∞

0

φj(s− t)
1

h
[S̄(s+ h)− S̄(s)]λ(λ− Ā)−1|x− y|ds

= lim
λ→∞

∫ ∞

0

φj(s− t)Ṡ(s)λ(λ− Ā)−1|x− y|ds.
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Since φ is zero on (−∞, 0],

(30) |(Ṡ(·)x)φj (t)− (Ṡ(·)y)φj (t)|

≤ − lim
λ→∞

∫ ∞

0

φ′j(s− t)S̄(s)λ(λ− Ā)−1|x− y|ds

= −
∫ ∞

0

φ′j(s− t)S̄(s)|x− y|ds =

∫ ∞

0

φ′′j (s− t)
(∫ s

0

S̄(r)|x− y|dr
)
ds

∈ D(Ā).

Let v, w ∈ L1([0, T ], Z). We set v(s) = w(s) = 0 for s > T . Let t ∈ [0, T ]. Then

|(S ? v)φj (t)− (S ? w)φj (t)| ≤
∫ ∞

0

φj(s− t)(S̄ ? |v − w|)(s)ds

= −
∫ ∞

0

φ′j(s− t)(S̄ ∗ |v − w|)(s)ds ∈ D(Ā).

By Assumption H7a,

|G((Ṡ(·)x+ S ? v)φj (t))−G((Ṡ(·)y + S ? w)φj (t))|

≤ B
∫ ∞

0

φ′′j (s− t)
(∫ s

0

S̄(r)|x− y|dr
)
ds

−B
∫ ∞

0

φ′j(s− t)(S̄ ∗ |v − w|)(s)ds

=

∫ ∞

0

φ′′j (s− t)
(∫ s

0

V (r)|x− y|dr
)
ds−

∫ ∞

0

φ′j(s− t)(V ∗ |v − w|)(s)ds

=

∫ ∞

0

φj(s− t)V ⊕(ds)|x− y|+
∫ ∞

0

φj(s− t)(V � |v − w|)(s)ds.

Recall that V ⊕(t)x = V (t)x for a.a. t and that V ⊕(·) is of bounded strong variation which

equals the strong pseudo-variation of V (·). So the Stieltjes integral in the last equation

makes sense. Since the support of φj is contained in (0, 1/j),

∫ T

0

‖G((Ṡ(·)x+ S ? v)φj (t))−G((Ṡ(·)y + S ? w)φj (t))‖dt

≤
∫ T

0

∥∥∥∥
∫ ∞

0

φj(s− t)V ⊕(ds)|x− y|
∥∥∥∥dt

+

∫ T

0

(∫ ∞

0

φj(s− t)‖(V � |v − w|)(s)‖ds
)
dt

≤ PV

(
V ;

[
0, T +

1

j

)
, X

)
‖x− y‖ sup

0≤s≤T

∫ ∞

0

φj(s− t)dt

+

∫ T+ 1
j

0

(∫ ∞

0

φj(s− t)dt
)
‖(V � |v − w|)(s)‖ds



112 H. R. THIEME AND H. VOSSELER

≤ PV

(
V ;

[
0, T +

1

j

)
, X

)
‖x− y‖

+ PV⊕
(
V ;

[
0, T +

1

j

)
, Z

)∫ T+ 1
j

0

‖v(s)− w(s)‖ds.

In the last inequality we have used Corollary 15 (a). Recalling that we have set v(t) =

0 = w(t) for t > T , this implies the assumption in Corollary 10. Now
∣∣∣∣
1

h

∫ t+h

t

(S ? v)(s)ds− 1

h

∫ t+h

t

(S ? w)(s)ds

∣∣∣∣

≤ 1

h

∫ t+h

t

|(S ? (v − w))(s)|ds ≤ 1

h

∫ t+h

t

(S̄ ? |v − w|)(s)ds

=
1

h
((S̄ ∗ |v − w|)(t+ h)− (S̄ ∗ |v − w|)(t)) ∈ D(Ā).

By Assumption H7a and Lemma 19 (2.),
∣∣∣∣G
(

1

h

∫ t+h

t

Ṡ(s)xds+
1

h

∫ t+h

t

(S ? v)(s)ds

)

−G
(

1

h

∫ t+h

t

Ṡ(s)xds+
1

h

∫ t+h

t

(S ? w)(s)ds

)∣∣∣∣

≤ B 1

h
((S̄ ∗ |v − w|)(t+ h)− (S̄ ∗ |v − w|)(t))

=
1

h
((V ∗ |v − w|)(t+ h)− (V ∗ |v − w|)(t)).

Then Corollaries 10 and 15 imply the second assertion.

We are now ready to prove a result similar to Theorem 20 for Banach lattices.

Theorem 25. Under the assumption H7a there is a unique continuous semiflow Θ on

D(A) satisfying (5) such that the orbits of Θ are the unique F -solutions in L1([0, T ], X)

of (10) for all x ∈ X and T > 0.

Proof. We want to apply Corollary 9. By Lemma 24, the first assumption holds and

Ψ0 has an extension Ψ. Therefore it only remains to show that there exists n ∈ N and

ε ∈ (0, 1) such that

‖Ψn
x(v)−Ψn

x(w)‖1 ≤ ε‖v − w‖1 ∀v, w ∈ L1([0, T ], Z), x ∈ D(A).

By Lemma 24,

|Ψx(v)−Ψx(w)| ≤ V � |v − w|.
Thus by induction

|Ψn
x(v)−Ψn

x(w)| ≤ V �n � |v − w|.
By Corollary 15,

‖Ψn
x(v)−Ψn

x(w)‖1 ≤ PV⊕(V �n; [0, T ], X) ‖v − w‖1.
and we have reached our goal with ε = PV⊕(V �n; [0, T ], X).
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We call a semiflow Θ on D(A) positive if Θ(t, ·) maps D(A) ∩ X+ into itself for all

t ≥ 0, where X+ denotes the positive cone of the Banach lattice X.

Corollary. Let X be a Banach lattice and A be a resolvent positive Hille-Yosida

operator. Let G : D(A) → Z map into a closed subspace Z of X and be positive, i.e., G

maps D(A) ∩X+ into X+.

Assume that there is a linear positive operator B : D(A)→ Z such that

|G(x)−G(y)| ≤ Bv whenever x, y, v ∈ D(A), |x− y| ≤ v,
and there exists some w ∈ R such that

B(λ−A)−1x = λ

∫ ∞

0

e−λtV (t)xdt ∀λ > w, x ∈ X.

where V is a family of bounded strong pseudo-variation on some interval [0, T + ε) with

T, ε > 0 and

PV⊕(V �n; [0, T ), Z) < 1 for some n ∈ N.

Then there exists a unique continuous positive semiflow Θ on D(A) which satisfies

(5) and whose orbits uniquely solve (3) in the Friedrichs sense (L1-F).

Proof. By Theorem 25 we only need to show the positivity of the semiflow. Since G

is positive and the integrated semigroup S is increasing, S ? v takes values in X+ if

v ∈ L1([0, T ], Z ∩X+) by Theorem 14 and the map

Ψ(x, v) = lim
h↓0

G

(
1

h
[S(t+ h)− S(t)]x+

1

h

∫ t+h

t

(S ? v)(s)ds

)

maps (D(A) ∩X+) × L1([0, T ], Z ∩X+) into itself. Hence, if x ∈ D(A) ∩X+, the fixed

point vx is in L1([0, T ], Z ∩X+) and

Θ(t, x) = Ṡ(t)x+ (S ? vx)(t) ∈ X+

by Theorem 14.

The Banach lattice X is called an abstract L-space, if in addition the norm on X

is additive on the positive cone X+ (in particular X may be a L1-space or a space of

measures).

Assumption H7b. Let X be an abstract L-space, A a linear operator in X, and

G : D(A)→ X.

Suppose there are a resolvent positive Hille-Yosida operator Ā and a positive Ā-bounded

operator B : D(Ā)→ Z such that A is absolutely resolvent majorized by Ā,

spr B(µ− Ā)−1 < 1 for some µ ∈ R ∩ ρ(Ā)

and

|G(x)−G(y)| ≤ Bw for all x, y ∈ D(A), w ∈ D(Ā) with |x− y| ≤ w.
Theorem 26. The statement of Theorem 5.3 also holds if Assumption H7a is replaced

by Assumption H7b.
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Proof. Since Ā is resolvent positive on (w,∞) for some w > 0 and B is positive, we have

(−1)n
dn

dλn
B(λ− Ā)−1 = n!B(λ− Ā)−(n+1) ≥ 0, λ > w,

i.e., (B(λ− Ā))λ>w is completely monotonic. By the vector valued version of Bernstein’s

theorem (see [3], section 5, or [1], Section 2.7), we find an exponentially bounded increas-

ing family (V (t))t≥0, V (0) = 0, such that

B(λ− Ā)−1x =

∫ ∞

0

e−λtdV (t)x = λ

∫ ∞

0

e−λtV (t)xdt, ∀x ∈ X, λ > w.

Since every increasing family of bounded operators is of bounded strong variation on

every finite interval, we know from (23), and Theorem 14 that (V �n(t))t≥0 is an increasing

family of bounded operators that is of bounded strong variation on every finite interval.

Since X is an abstract L-space and V �n is increasing,
∫ ε−h

0

‖V �n(s+ h)x− V �n(s)x‖ds =

∫ ε−h

0

‖|V �n(s+ h)x− V �n(s)x|‖ds

=

∥∥∥∥
∫ ε−h

0

|V �n(s+ h)x− V �n(s)x|ds
∥∥∥∥ ≤

∥∥∥∥
∫ ε−h

0

(V �n(s+ h)|x| − V �n(s)|x|)ds
∥∥∥∥

=

∥∥∥∥
∫ ε

ε−h
V �n(s)|x|ds−

∫ h

0

V �n(s)|x|ds
∥∥∥∥ ≤ h‖V �n(ε)|x| − V �n(0)|x|‖.

By Definition 3 and (20), for n ≥ 2,

pv⊕(V �n(·)x; [0, ε]) = pv(V �n(·)x; [0, ε]) + ‖V �n(0)x‖ ≤ ‖V �n(ε)|x|‖

≤ eλε
∥∥∥∥
∫ ε

0

e−λtV �n(dt)|x|
∥∥∥∥ ≤ eλε‖(B(λ− Ā)−1)n|x|‖ ≤ eλε‖(B(λ− Ā)−1)n‖ ‖x‖.

By (21),

PV⊕(V �n; [0, ε], X) ≤ eλε‖(B(λ− Ā)−1)n‖.
Choosing λ and n large and ε > 0 small enough, we have PV⊕(V �n; [0, ε], X) < 1 and

our statement follows from Theorem 25.

8. Applications to age-structured population dynamics. In the sequel, we present

applications to several age-structured population models. We treat the boundary con-

dition at age 0 as in [30, 31, 33, 19]. For alternative approaches see [20, 28] and the

references cited there. The first model does not involve any additional structure, but has

a very general birth law.

8.1. Age-structured population models without additional structure. The development of

an age-structured population can be described as a partial differential equation for the

age-density u(t, ·) at time t,
(
∂

∂t
+

∂

∂a

)
u(t, a)

F(a)
= 0; t > 0, 0 < a < c,

u(t, 0) = f(u(t, ·)); t > 0,

u(0, a) = u0(a); 0 ≤ a < c.

(31)
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The number c ∈ (0,∞] denotes the maximum age that an individual can reach. F(a)

is the probability to survive till age a and is a decreasing function of a with F(0) = 1,

F(a) > 0 for a ∈ [0, c) and F(a) = 0 for a > c with the last only making sense if c <∞.

f(u(t, ·)) is the population birth rate as a function of the population age density. We

make the following assumption:

Assumption H8a. There exist a non-negative not necessarily finite Borel measure m on

[0, c) such that f : L1([0, c);m+ `)→ [0,∞), f(0) = 0, and

|f(u)− f(v)| ≤
∫

[0,c)

|u(a)− v(a)|m(da).

` represents the Lebesgue measure and L1([0, c);m+ `) the space of real-valued Borel

measurable functions x such that∫

[0,c)

|x(a)|m(da) +

∫

[0,c)

|x(a)|da <∞.

The assumption f(0) = 0 means that the birth rate is 0 if the population size is 0. As

state space we choose the abstract L space X = R×L1([0, c); R). However, the solutions

u of the abstract Cauchy problem in which we will recast (31) will take values in the

subspace {0} × L1([0,∞); R) which can be identified with L1([0,∞); R). We define the

operator

A(0, x) =

(
x(0),−F

(
x

F

)′)
, x ∈ L1([0, c)),

with D(A) being the set of functions x ∈ L1([0, c)) such that x/F is absolutely continuous

and F(x/F)′ is integrable on [0, c). (Cf. [33], Section 5). We find that

(λ−A)−1(ξ, x) = (0, v), ξ ∈ R, x ∈ L1[0, c),

with

v(a) = ξe−λaF(a) +

∫ a

0

e−λ(a−s)F(a)

F(s)
x(s)ds, a ∈ [0, c).

We see that (0,∞) is contained in ρ(A), ‖(λ−A)−1‖ ≤ 1/λ for λ > 0 and that (λ−A)−1

maps the positive cone into itself, i.e., A is resolvent-poitive. We make the following

assumption:

Assumption H8b. There is some w > 0 such that∫

[s,c)

e−w(a−s)F(a)

F(s)
m(da) is a bounded function of s ∈ [0, c).

With this assumption, D(A) is a subspace of L1([0, c),m+ `) and the following oper-

ator B is defined on D(A):

B(0, x) =

(∫

[0,c)

x(a)m(da), 0

)
, x ∈ D(A).

Obviously B is a positive operator from D(A) to X. Further G(x) = (f(x), 0) is an

operator from D(A) to X satisfying the assumptions of Theorem 2, provided we can

verify that the spectral radius of F (λ) = B(λ − A)−1 is smaller than 1. But B maps
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X into Z = R × {0}, so the spectral radius of B(λ − A)−1 is smaller than the norm of

B(λ−A)−1 taken on this closed subspace, which is

‖B(λ−A)−1‖Z =

∫

[0,c)

e−λaF(a)m(da).

This expression converges to m({0}) for λ→∞. So it is sufficient to assume that

m({0}) < 1.

This is particularly satisfied if m({0}) = 0, which means that an individual that has just

been born does not reproduce.

Theorem 27. Let the Assumptions H8a and H8b be satisfied and m({0}) < 1. For each

u0 ∈ L1([0, c),R) = L1[0, c), there exists a unique Friedrichs solution u which is defined

for all times. More precisely u(t, ·) is continuous in t ≥ 0 as a function with values in

L1[0, c), u(0, ·) = u0, and there exists a sequence of functions un : [0,∞) × [0, c) → R

with the following properties:

(a) For all t ≥ 0, un(t, ·) ∈ L1[0, c) and
∫ c

0

|un(t, a)− u(t, a)|da→ 0 locally uniformly in t ≥ 0,

(b) For all t ≥ 0, un(t, ·)/F is absolutely continuous with F ∂
∂a

un(t,·)
F ∈ L1[0, c), un(t, ·)

is differentiable in t as a function with values in L1[0, c), and
∫ T

0

∫ c

0

∣∣∣∣
∂

∂t
un(t, a) + F(a)

∂

∂a

un(t, a)

F(a)

∣∣∣∣dadt→ 0, n→∞

where ∂
∂tun(t, a) stands for the derivative of un(t, ·) with respect to t,

(c) un(t, ·) ∈ L1([0, c);m+ `) and, for all T > 0,
∫ T

0

|un(t, 0)− f(un(t, ·))|dt→ 0, n→∞.

Moreover Θ(t, u0) = u(t, ·) defines a semiflow on L1[0, c]. If f maps non-negative

functions in L([0, c),m + `) onto non-negative functions, then Θ is a positive semiflow,

i.e., if the initial datum u0 is non-negative, so is the solution u.

8.2. An age-structured population model with an additional structure. Let E be a Banach

space that represents the distribution of a population with respect to a structure different

from age, e.g., induced by space or body size. Let u(t, a) denote the structural distribution

(with respect to this structure) of the individuals with age a at time t. We consider the

following model:

(32)





(∂t + ∂a)u(t, a) = Au(t, a) +M(a)u(t, a), t > 0, 0 < a < c,

u(t, 0) =

∫ c

0

[F (u(t, ·))](a)da, t > 0,

u(0, a) = u0(a), 0 ≤ a < c.

The number c ∈ (0,∞) denotes the maximum age an individual can reach. The closed

linear operator A and the bounded linear operators M(a) describe how individuals (with

age a) change with respect to the other structure and also to what extent they die.
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The boundary condition describes the birth of individuals. The operators F (f)(a) repre-

sents the birth rate of individuals with age a if f : [0, c) → E is the age-density of the

population.

We assume that A is the infinitesimal generator of a C0-semigroup {U(t); t ≥ 0} on

E. Then the set

D = {f ∈ C1([0, c];E); f(0) = 0 = f ′(0), f(t) ∈ D(A) ∀t ∈ [0, c], Af continuous}
is dense in L1([0, c), E).

For more general assumptions that allow the operator A to depend on a see [25]. We

want to apply the semilinear Miyadera-Voigt theory developed in Section 6.

Assumption 28. Let the operators F : D → E and M(a) : E → E, a ∈ [0, c), have the

following properties:

(a) There exist a Banach space Ẽ and an A-bounded linear operator C : D(A) → Ẽ

such that

‖[F (f)](a)− [F (g)](a)‖ ≤ ‖C(f(a)− g(a))‖ ∀f, g ∈ D, a ∈ [0, c),

and, for each ε > 0, there exists some δ ∈ (0, c) with
∫ δ

0

‖CU(t)x‖dt ≤ ε‖x‖ ∀x ∈ D(A).

(b) {M(a); a ∈ [0, c)} is a strongly Borel measurable family of bounded linear operators

such that, for every x ∈ E, ‖x‖ ≤ 1,

ess sup
0≤a<c

‖M(a)x‖ <∞.

Following the approach in [31, 19] and [33, Sec. 5], we let let X◦ = L1([0, c), E). The

evolutionary semigroup on X◦ associated with U is defined by

(T0(t)f)(a) =

{
U(t)f(a− t), a ≥ t

0, a < t

}
, f ∈ X◦, 0 ≤ a < c.

Cf. [7, 25], e.g., and the references therein. It is readily checked that T0(·) is a C0-

semigroup on X◦ and ‖T0(t)‖ → 0 as t→∞. So there exist ω > 0 and M̂ ≥ 1 such that

‖T0(t)‖ ≤ M̂e−ωt. If A0 denotes the infinitesimal generator of T0, D ⊆ D(A0) and

[A0(f)](a) = Af(a)− f ′(a), f ∈ D, a ∈ [0, c).

Moreover T0(t)D ⊆ D for all f ∈ D. Let X = E ×X◦. It follows from the considerations

in [33, Sec. 5], that there exists a Hille-Yosida operator A such that

(λ−A)−1(η, f) = (0, g),

g(a) = e−λaU(a)η +

∫ a

0

e−λsU(s)f(a− s)ds.

A generates an integrated semigroup S(·) on X such that Ṡ(t)(0, v) = (0, T0(t)v) and

S(t) = lim
λ→∞

∫ t

0

λṠ(r)(λ−A)−1dr,
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from which we deduce that

‖S(t)− S(r)‖ ≤ M̃
∫ t

r

e−ωsds

and

‖(λ−A)−n‖ ≤ M̃(λ+ ω)−n ∀λ > −ω, n ∈ N.
In terms of the original semigroup, the integrated semigroup is given by

S(t)(η, f) = (0, g), η ∈ E, f ∈ X◦,

g(a) = H(t− a)U(a)η +

∫ t

0

[T0(s)f ](a)ds.

Here H denotes the Heaviside function, H(t) = 1 for t ≥ 0, H(t) = 0 for t < 0. The

generator A of the integrated semigroup S is related to the infinitesimal generator A of

U by

A(0, f) = (−f(0), Af(·)− f ′),
for f ∈ C1([0, c], E) with f(a) ∈ D(A) for all a ∈ [0, c). Obviously D(A) = {0}×X◦ which

can be identified with X◦. In order to make the connection to Theorem 23, we identify

D and {0} ×D and define operators B0 : D → Y , Y = L1([0, c), Ẽ) × L1([0, c), E), and

G0 : D → X by

B0(0, f) = (Cf(·),M(·)f(·))
G0(0, f) =

(∫ c

0

[F (f)](a)da,M(·)f(·)
)


 f ∈ D.

The assumptions of Theorem 23 are readily checked, and there exists a semiflow on

L1([0, c), E) which solves the age-structured problem 32 in an appropriate generalized

sense.

8.3. Age-structured population models with diffusion. We make the additional structure

in the preceding example explicit and assume that the individuals are distributed over

a bounded open habitat Ω ⊆ RN . If, at time t, u(t, a, x) is the density of individuals at

age a and location x, then the model reads

(33)

(
∂

∂t
+

∂

∂a

)
u(t, a, x) = γ(x)∆xu(t, a, x)

−µ(a, x)u(t, a, x); x ∈ Ω,

u(t, a, x) = 0; x ∈ ∂Ω,

u(t, 0, x) =

∫ ∞

0

β0(a, x)u(t, a, x)da

+
n∑

j=1

βj(a, x)

∣∣∣∣
∂

∂xj
u(t, a, x)

∣∣∣∣ da; x ∈ Ω,

u(0, a, x) = u0(a, x); x ∈ Ω.





{
t > 0,

0 < a < c.

The number c ∈ (0,∞) denotes the maximum age that an individual can reach. µ(a, x)

is the per capita mortality rate at age a at location x. The individuals move randomly with

a diffusion rate γ(x) which only depends on location. ∆x denotes the Laplace operator

with respect to x. We assume that the boundary of the habitat Ω is deadly expressed
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by Dirichlet boundary conditions. The birth rate at location x is assumed to depend not

only on the density of individuals at x but also on the magnitude of the flux through x.

This dependence is expressed by the rates βj .

We assume, for simplicity, that the boundary of Ω is of class C3 and that µ is con-

tinuously differentiable on [0, c) × Ω with bounded partial derivatives. Further we as-

sume that γ has bounded continuous partial derivatives up to order three. Moreover

inf{γ(x);x ∈ Ω} > 0. For sharper assumptions see the literature mentioned below. The

functions βj are assumed to be non-negative, Borel measurable, and essentially bounded

on [0, c)× Ω.

In order to connect the model (33) to the model (32), we let E = L2(Ω), D(A) =

H2(Ω) ∩H1
0 (Ω), and

[Aφ](x) = γ(x)∆φ(x), [M(a)φ](x) = −µ(a, x)φ(x).

Here Hk(Ω) is the Banach space of functions in L2(Ω) whose generalized partial deriva-

tives are also contained in L2(Ω), up to order k; the norm on Hk(Ω) combines the

L2-norms of the function and its generalized derivatives up to order k via the Euclidean

norm. Hk
0 (Ω) is the closure of C∞0 (Ω) in Hk(Ω). Further we set

([F (φ)](t))(x) = β0(t, x)|φ(x)|+
N∑

j=1

βj(t, x)

∣∣∣∣
∂

∂xj
φ(x)

∣∣∣∣ , φ ∈ H1
0 (Ω).

Under our assumptions on γ and µ, A generates a C0-semigroup {U(t); t ≥ 0} with

U(t)φ ∈ D(A) for all t > 0, φ ∈ E, which is given by a Green’s function,

[U(t)φ](x) =

∫

Ω

Γ(t, x, y)φ(y)dy.

See [18, Thm. 16.2, 16.3] and [14, Sec. VI.2.1]. In order to check the Assumptions 28, we

set Ẽ = EN+1, with the norm ‖(φ0, . . . , φn)‖ =
∑N
j=0 ‖φj‖. Then, for φ, ψ ∈ H1

0 (Ω),

‖F (t)φ− F (t)ψ‖ =

∥∥∥∥β0(t, ·)|φ|+
N∑

j=1

βj(t, ·)
∣∣∣∣
∂

∂xj
φ

∣∣∣∣− β0(t, ·)|ψ| −
N∑

j=1

βj(t, ·)
∣∣∣∣
∂

∂xj
ψ

∣∣∣∣
∥∥∥∥

≤
∥∥∥∥β0(t, ·)|φ− ψ|+

N∑

j=1

βj(t, ·)
∣∣∣∣
∂

∂xj
(φ− ψ)

∣∣∣∣
∥∥∥∥.

Since the functions βj are bounded, there exists a constant κ such that

‖F (t)φ− F (t)ψ‖ ≤
∥∥∥∥κ|φ− ψ|+

N∑

j=1

κ

∣∣∣∣
∂

∂xj
(φ− ψ)

∣∣∣∣
∥∥∥∥

≤ ‖κφ− κψ‖+
N∑

j=1

∥∥∥∥κ
∂

∂xj
φ− κ ∂

∂xj
ψ

∥∥∥∥ =
√
N + 1‖Cφ− Cψ‖,

where C : H1
0 (Ω)→ Ẽ, Ẽ = EN+1 is the linear operator

Cφ = κ(φ,∇φ), φ ∈ H1
0 (Ω).
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Let φ ∈ E, t > 0. Then

CU(t)φ = κ(φ0, . . . , φn),

φ0(x) =

∫

Ω

Γ(t, x, y)φ(y)dy,

φj(x) =

∫

Ω

∂

∂xj
Γ(t, x, y)φ(y)dy.

The Green’s function satisfies the following estimates [18, Thm. 16.3]:

0 ≤ Γ(t, x, y) ≤ ξ0(t, |x− y|),
∣∣∣∣
∂

∂xj
Γ(t, x, y)

∣∣∣∣ ≤ ξ1(t, |x− y|),

ξi(t, r) = c1t
−N+i

2 exp
(
−cr2t−1

)
, i = 0, 1.

With these estimates,

‖φj‖ ≤
∫

RN

ξ1(t, ‖x‖)dx‖φ‖ = cN

∫ ∞

0

ξ1(t, r)rN−1dr‖φ‖

= cNc1t
− i

2

∫ ∞

0

e−cr
2

dr‖φ‖ = c̃N t
− i

2 ‖φ‖,

where i = 0 for j = 0 and i = 1 for j = 1, . . . , N and cN , c̃N are appropriate constants.

If 0 ≤ t ≤ 1, with a constant ĉN ,

‖CU(t)φ‖ ≤ ĉN t−
1
2 ‖φ‖.

If δ ∈ (0, 1], for all φ ∈ E,
∫ δ

0

‖CU(t)φ‖dt ≤ ĉN
∫ δ

0

t−
1
2 ‖φ‖dt ≤ 2ĉNδ

1/2‖φ‖.
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