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Abstract. We shall present necessary and sufficient conditions for both conservativity and

uniqueness of solutions to birth-and-death system of equations using methods of semigroup

theory. The derived conditions correspond to the uniqueness criteria for forward and backward

birth-and-death systems due to Reuter, [10, 11, 1], that were derived in a different context by

Markov processes’ techniques.

1. Introduction. In order to provide a meaningful introduction to this paper let us first

provide a brief description of the model and introduce the necessary notation.

1.1. The model. We shall consider the classical Markov birth-and-death process that

describes the evolution of the population whose size k at any time t may increase to k+1

or decrease to k − 1 owing to a ”birth” or a ”death” of an individual; the probability

that a birth or death occur in time interval ∆t being λk∆t + o(∆t) and µk∆t + o(∆t),

respectively. If we denote by uk(t) the probability that the population is of size k at time

t, then the corresponding (forward) Kolmogorov system takes the form:

u′0 = −λ0u0 + µ1u1,
...

u′n = −(λn + µn)un + µn+1un+1 + λn−1un−1,
...

(1)

We shall use the convention that boldface letters denote sequences, e.g. u = (u0, u1, . . . ,

un, . . .). Also, we put λ−1 = µ0 = 0 and, to avoid technicalities (see e.g. [1, p. 100]) we

assume that λn, µn > 0 for all other indices. N0 denotes the set {0, 1, 2, . . .}.
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System (1) is considered in the Banach space X = l1—this choice is dictated by the

fact that the probabilistic interpretation of u yields uk ≥ 0 and

‖u‖X =
∞∑

k=0

uk = 1

so that the X-norm of u should be preserved in the evolution.

For any subspace Z of X, Z+ denote the cone of nonnegative elements of Z.

It is convenient to write the right-hand side of (1) as the sum of two operators. Firstly

we introduce formal mappings of sequences. Remembering the convention λ−1 = µ0 = 0,

we let w = Au = −{(λn + µn)un}n∈N0
. By B we denote the mapping v = Bu, where

v = {µn+1un+1 + λn−1un−1}n∈N0
. The formal mappings A and B can define various

operators in X. As a basic choice we define the operator A in X as the restriction of A
to the domain

DA = {u ∈ X; Au ∈ X}.(2)

In particular, if u ∈ D(A)+, then a simple calculation shows that v = Bu ∈ X+ with

∞∑

n=0

(vn + wn) = 0.(3)

This allows us to define a positive operator B as the restriction of B to DA. It follows

then that for u ∈ DA we have

‖Bu‖ ≤ ‖Au‖.(4)

1.2. The description of the results. Mathematical equations of the applied sciences are

built by combining various conservation and constitutive laws. They are also formulated

and understood pointwise, that is, all the operations, like differentiation, summation

or integration, are meant in the classical ”calculus” sense, and the equation itself is

supposed to be satisfied for all reasonable values of the independent variables. Thus the

birth-and-death system (1) is basically understood as

u′ = Au + Bu,(5)

that is, the equations of the system, taken row by row, should be satisfied for all u

for which the expression above makes sense. Only the probabilistic interpretation of the

solution suggests that one should have un(t) ≥ 0 for all n ∈ N0 and t ≥ 0, and

∞∑

n=0

un(t) =

∞∑

n=0

un(0) = 1, t > 0.

However, when we prove the solvability of (5), its meaning often changes to make it

manageable by particular techniques. Thus, if we prove the existence of a semigroup

(dynamical system) ”solving” (5), then what we really obtain is a solution to a particular

reformulation of the original problem, where on the right-hand side stands the generator

T of this semigroup which (at least in the linear case) is uniquely defined. This generator

may be quite different from A + B and only a detailed characterization of its domain

can reveal whether the constructed semigroup gives the full picture of the dynamics

described by (5). For the birth-and-death system it can be proved that the generator
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T is between the minimal operator Tmin = A + B (defined on D(A)) and the maximal

operator Tmax = A+ B defined on

Dmax = {u ∈ X; Au + Bu ∈ X},

that is,

Tmin ⊆ T ⊆ Tmax.

The position of T on this scale determines the well-posedness of the problem (5). The

following situations are possible and are of interest here:

1. Tmin = T = Tmax,

2. Tmin  T = Tmin = Tmax,

3. Tmin = T  Tmax,

4. Tmin  T = Tmin  Tmax,

5. Tmin  T  Tmax.

It turns out that each case has its own specific interpretation in the model.

In all cases where T  Tmax we don’t have uniqueness, that is, there are strongly

differentiable X-valued solutions to (5) emanating from zero and therefore they are not

described by the constructed dynamical system: ”there is more to life than meets the

semigroup” [9, 4]. To achieve uniqueness here one has to impose additional constraints

on the solution.

If Tmin  T , then despite the fact that the model is formally conservative, see (3), the

solutions are not - the described quantity leaks out from the system and the mechanism

of this leakage is not present in the model. In the Markov processes’ terminology such

case is referred to as dishonesty of the transition function, [11, 1].

Finally, as λn, µn are the rates of change of the states in the population, for any

solution u(t) the quantity

∆t
∞∑

n=0

(λn + µn)un(t)(6)

describes the total number of state changes in the interval ∆t. Thus the condition u(t) ∈
D(A) for any t, equivalent to (6) being finite, reflects the realistic property of finite total

number of ”switches” at any time. Thus, if T 6= Tmin, then there may occur infinite

number of state changes in a finite time interval.

Therefore, strictly speaking only the problems with T = Tmin = Tmax can be phys-

ically realistic. However, in many applications the first equality is deemed to be not so

important and the case T = Tmin = Tmax is considered to be ”optimal”. We shall follow

this line in the paper and thus we shall not address the question under what conditions

u(t) ∈ D(A) for t ≥ 0 but we shall prove necessary and sufficient conditions for T = Tmin

and T = Tmax. We shall also compare our results with those existing in the literature.

Acknowledgements. The author is greatly indebted to Dr A. Bobrowski for stimu-

lating discussions during the conference that made the author more aware of the proba-

bilistic context of the problem and, in particular, for mentioning the monograph [1].
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2. Reuter-Lederman method. In this section we shall reformulate the classical result

of Reuter and Lederman (e.g. [10]) for solving Kolmogorov equations in terms of the

semigroup theory. The idea of this method is to approximate the solution of (1) by a

sequence of solutions of cut-off problems of a similar form.

For the sequence u ∈ X we introduce the projection operators

Pnu =

{
ui if 0 ≤ i ≤ n,
0 if i > n,

(7)

define An = APn = PnA = PnAPn and Bn = PnBPn, and consider the system of

ordinary differential equations in Rn

un = Anun +Bnun.(8)

The right-hand side generates a uniformly continuous positive semigroup of contractions

on Rn, denoted by (Gn(t))t≥0. The family (Gn(t))t≥0 can be extended to the uniformly

continuous family of operators defined on the whole of X by Ḡn(t) = PnGn(t)Pn. Note

that (Ḡn(t))t≥0 is no longer a semigroup.

Theorem 1. (a) There is a positive C0-semigroup of contractions (G(t))t≥0 such that

for
◦
u ∈ X and t ≥ 0

G(t)
◦
u = lim

n→∞
Ḡn(t)

◦
u,(9)

and the generator T of (G(t))t≥0 is an extension of Tmin.

(b) If t→ v(t) = (v1(t), v2(t) . . .) is a sequence of functions such that for any k, t→ vk(t)

is integrable on any bounded subset of R+ and satisfies for almost all t and any k:

vk(t) =
◦
uk +

∫ t

0

(−(λk + µk)vk(s) + λk−1vk−1(s) + µk+1vk+1(s)) ds,(10)

then for all t ≥ 0 and all k

vk(t) ≥ (G(t)
◦
u)k.(11)

(c) For any
◦
u ∈ X, u(t) = G(t)

◦
u satisfies the equation (10) for any t ≥ 0 and every k.

Investigation of the conservativity of solutions was reduced, [10, Theorems 6 and 7],

also [6, 12], to the analysis of summability of the expression wn,n0
= w̄n,n0

+ w̃n,n0
, where

w̄n,n0
=

1

λn
+

µn
λnλn−1

+ . . .+
µn · · ·µn0+1

λn · · ·λn0

,(12)

w̃n,n0
=
µn · · ·µn0

λn · · ·λn0

.(13)

Theorem 2. Let us denote by un0
(t) the solution corresponding to the initial condition

◦
un0

defined by
◦
un,n0

= δn,n0
(Kronecker’s delta).

(a) If
∞∑

n=n0

wn,n0
=∞,(14)

then
∑∞

n=0 un,n0
(t) = 1 for all t ≥ 0.
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(b) If
∞∑

n=n0

wn,n0
<∞ and µn+1wn,n0

= O(1),(15)

then
∑∞

n=0 un,n0
(t) < 1 for some t > 0.

3. Kato-Voigt perturbation method. Let us recall the assumptions of Voigt’s result

in an abstract situation. Let X denote the Banach space L1(Ω, µ), where (Ω, µ) is a

measure space, endowed with the standard norm ‖ · ‖. In particular, as in this paper,

we may have Ω = N0 with µ being the counting measure. Let (G(t))t≥0 be a strongly

continuous semigroup on X. We say that (G(t))t≥0 is a substochastic semigroup if for

each t ≥ 0, G(t) ≥ 0 and ‖G(t)‖ ≤ 1. It is called a stochastic semigroup if additionally

‖G(t)f‖ = ‖f‖ for X+. We shall consider two linear operators in X: A and B, that have

the properties:

1. (A,D(A)) generates substochastic semigroup (GA(t))t≥0,

2. D(B) ⊃ D(A) and Bf ≥ 0 for any f ∈ D(B)+,

3. for any f ∈ D(A)+ ∫

Ω

(Af +Bf)dµ ≤ 0.(16)

In this context we have the following basic theorem [13, 5]

Theorem 3. Under the above assumptions there exists a smallest substochastic semi-

group (GT (t))t≥0 generated by an extension T of (A + B,D(A)). This semigroup can

be obtained as the strong limit in X of semigroups (Gr(t))t≥0, 0 < r < 1, generated

by (A + rB,D(A)). The convergence is monotonic as r ↗ 1−. Moreover, (GT (t))t≥0 =

(G(t))t≥0, where (G(t))t≥0 is the semigroup constructed by the Reuter–Lederman method.

We shall find whether the constructed semigroup is conservative by means of the

technique introduced by Arlotti in [2] and developed in a few subsequent papers [3, 5].

The main result of [2] specified to the present situation reads:

Theorem 4. If for any u ∈ X+ such that Au + Bu ∈ X we have

∞∑

n=0

(−(λn + µn)un + λn−1un−1 + µn+1un+1) ≥ 0,(17)

then T = A+B.

Then we have the following result:

Theorem 5. T = A+B if and only if

∞∑

n=0

1

λn

( ∞∑

i=0

i∏

j=1

µn+j

λn+j

)
= +∞,(18)

(where we put
∏0
j=1 = 1).



170 J. BANASIAK

Proof. Assume, on the contrary, that for some 0 ≤ u ∈ Dmax the sum in (17) is negative,

then there is b > 0 such that the convergent sequence

bn = −λnun + µn+1un+1(19)

= lim
n→∞

n∑

k=0

(−(λn + µn)un + λn−1un−1 + µn+1un+1),

satisfies bn ≤ −b for all n ≥ n0 with large enough n0. We can easily modify u so that all

bn-s are less or equal than −b. This can be done e.g. by putting uk = λ−1
k (b+ µk+1uk+1)

for 0 ≤ k ≤ n0 − 1 and leaving uk with k ≥ n0 unchanged. Clearly such a redefined u

satisfies 0 ≤ u ∈ Dmax.

Starting from (19) we get for n ≥ 0

un ≥
b

λn
+
µn+1

λn
un+1,

and, by induction, for arbitrary k

un ≥
b

λn

( k∑

i=0

i∏

j=1

µn+j

λn+j

)
+
µn+1 . . . µn+k+1

λn . . . λn+k
un+k+1.

Since k is arbitrary, we obtain in particular

un ≥
b

λn

( ∞∑

i=0

i∏

j=1

µn+j

λn+j

)

and, if the assumption (18) is satisfied, we obtain
∑∞

n=0 un = +∞, which contradicts the

assumption of summability of {un}n∈N0
.

To prove the necessity let us assume that the series in (18) is convergent and observe

that
∞∑

n=0

1

λn

( ∞∑

i=0

i∏

j=1

µn+j

λn+j

)
=

1

λ0

∞∑

l=0

l−1∏

i=0

λi
µi+1

( ∞∑

r=l

r∏

j=1

µj
λj

)
(20)

Let us construct u so that for n ≥ 0 and some b > 0,

−b = −λnun + µn+1un+1.

Using e.g [7, Eq. (1.2.4)], we get for n ≥ 1

un =
n−1∏

i=0

λi
µi+1

(
u0 −

b

λ0

n−1∑

l=0

l∏

i=1

µi
λi

)
(21)

From the assumption we have in particular that the series
∑∞
l=0

∏l
i=1 µi/λi is convergent

as the internal series of a convergent double series of positive elements. Moreover, this

series converges monotonically so if we define u0 = (b/λ0)
∑∞
l=0

∏l
i=1 µi/λi, then uns so

defined are nonnegative and are given by the formula

un =
b

λ0

n−1∏

i=0

λi
µi+1

( ∞∑

l=n

l∏

i=1

µi
λi

)
.

By (20) and (18) we obtain that
∑∞

n=0 un < ∞ and by construction, Au + Bu ∈ l1,

so that u belongs to the domain of the maximal operator. We must find an element
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with the same properties but in D(T ). First, we find f = u − (Au + Bu). We obtain

f0 = u0 + λ0u0 − µ1u1 = u0 + b and for n > 0,

fn = un + λnun + µnun − λn−1un−1 − µn+1un+1 = un,

so that 0 ≤ f ∈ l1. For any sequence u, the mapping Lu = ((1 + λn + µn)−1un)n≥0 is

well-defined and for u ∈ l1 we have Lu = R(1, A)u, where A was defined in (2). Since

also the mapping B is defined for any sequence, we can write the system of equations

u−Au− Bu = f

as

u− LBu = Lf

and consider all iterates for n ≥ 1

(LB)nu− (LB)n+1u = (LB)nLf = R(1, A)(BR(1, A))nf ,

where in the last term we used the fact that on l1 the mapping L coincides with R(1, A)

and that D(B) ⊃ D(A). Summing up the iterates we obtain

u− (LB)n+1u =

n∑

i=0

R(1, A)(BR(1, A))nf .

From the general theory of substochastic semigroups (e.g. [3]) we obtain that the right-

hand side converges in the norm to a (positive) element ug of the domain of the generator

and, since we have found that u is nonnegative, the sequence of iterates also converges

in the norm to a nonnegative element h which belongs to the kernel of I − (A+B). Thus

0 ≤ ug = u− h

and

−b =
∞∑

i=0

((A+ B)u)i =
∞∑

i=0

(Tug)i +
∞∑

i=0

((A+ B)h)i =
∞∑

i=0

(Tug)i +
∞∑

i=0

hi.

Since h is nonnegative, we obtain
∑∞
i=0(Tug)i < 0. Next, let us consider

‖f‖ = ‖(I − T )ug‖ =

∞∑

i=0

ug,i −
∞∑

i=0

(Tug)i ≥ ‖ug‖+ b

which can be expressed as ‖(I − T )−1f‖ < ‖f‖, which by [3, 8] contradicts the conserva-

tivity of the semigroup and makes T = A+B impossible.

Next we shall relate this result to the conditions of [10, Theorem 6], also Theorem 2.

Proposition 1. Condition (18) is equivalent to (14) for some (any) n0 ≥ 0. Thus the

sufficient condition for conservativity of the solution from [10] is also necessary.

Proof. Let us denote the inner sum appearing in (18) by Wn =
∑∞
r=0 an,r where

an,0 =
1

λn
, an,r =

µn+1 · . . . · µn+r

λnλn+1 · . . . · λn+r
.

Next, w̄n,n0
of (12) can be written as w̄n,n0

=
∑n−n0

s=0 bn,s with

bn,0 =
1

λn
,

µn · . . . · µn−s+1

λn · . . . · λn−s
,
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thus changing the variable n according to n = s+ l (l is the new variable) we obtain for

s > 0

bn,s = bl+s,s =
µs+l · . . . · µl+1

λs+l · . . . · λl
= al,s

and for s = 0, bn,0 = 1/λl = al,0. Therefore, for any n0

∞∑

n=n0

w̄n,n0
=

∞∑

n=n0

n−n0∑

s=0

bn,s =

∞∑

s=0

∞∑

l=n0

bl+s,s =

∞∑

s=0

∞∑

l=n0

al,s =

∞∑

l=n0

Wl.(22)

Let us fix n0. If (18) is satisfied, then either
∑∞

l=n0
Wl =∞, or for some 0 ≤ k ≤ n0 − 1

Ak :=
∑∞
l=k

∏l
i=k+1 µi/λi = +∞. Let m > k. Then

Ak := 1 +
m−1∑

l=k

l∏

i=k+1

µi
λi

+Am

m∏

i=k+1

µi
λi
,

so that Ak and Am are simultaneously either convergent or divergent for any pair k,m.

Using this result together with (22) we see that the Reuter-Ledermann condition (14) is

satisfied for any n0.

Conversely, if the Reuter-Lederman condition is satisfied even for some n0, then either∑∞
n=n0

w̄n,n0
=
∑∞
l=n0

Wl = +∞ or
∑∞
n=n0

w̃n,n0
= An0

=∞. This yields (18).

Remark 1. In [1, Chapter 3, Theorem 2.2] the condition (18) appears in a different

context: as the necessary and sufficient condition for the minimal solution to the backward

equation to be its unique solution. The link between this statement and the conservativity

(honesty) of solutions to the forward equation is not explicitly indicated. However, as the

matrices of the coefficient of forward and backward equations are (at least formally)

transpose to each other, such a link can be established on the basis of the results relating

conservativity of substochastic semigroups and the structure of the point spectrum of the

adjoint problem, [8].

4. Maximality of the generator. Let us use the general setting of Section 3. First we

state a simple observation that will be the basis of our considerations.

Proposition 2. Let (G(t))t≥0 be a substochastic semigroup generated by T . If for some

0 ≤ h ∈ D(Tmax) ∫

Ω

Tmaxhdµ > 0,(23)

then T 6= Tmax.

Conversely, assume that

(A1) either

Nσ :=
⋃

σ>0

ker(σI − (A+ B)) ∩X = ∅

or, if Nσ 6= ∅, then N+
σ = Nσ ∩X+ 6= ∅ and

∫

Ω

Tmaxhdµ = 0,(24)

for any h ∈ D(Tmax), then Tmax = T .
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Proof. Since T generates a substochastic semigroup, it is dissipative, thus if 0 ≤ h ∈
D(T ), then

∫
Ω
Thdµ ≤ 0. Since T ⊂ Tmax, (23) shows that h /∈ D(T ).

If Tmax 6= T , then by [4] and (A1), N+
σ 6= ∅. Taking 0 6= h ∈ N+

σ , we get
∫

Ω

Tmaxhdµ = σ

∫

Ω

hdµ > 0,(25)

contradicting (24).

Lemma 1. If Nσ 6= ∅, then there is 0 ≤ h ∈ Nσ.

Proof. If h = {hn}n∈N0
∈ Nσ, then it must be a formal solution to

σh0 = −h0λ0 + µ1h1,
...

σhn = −hn(λn + µn) + µn+1hn+1 + λn−1hn−1,
...

with σ > 0. Let us first note that as µ1h1 = (σ + λ0)h0, h1 ≥ 0 provided h0 ≥ 0 so that

(σ + µ1)h1 − λ0h0 = λ(h1 + h0) ≥ 0.(26)

For arbitrary k > 1 we have from (26)

(σ + µk)hk − λk−1hk−1 =

(
1 +

σ

µk

)
((σ + λk−1 + µk−1)hk−1 − λk−2hk−2)− λk−1hk−1

≥
(

1 +
σ

µk

)
((σ + µk−1)hk−1 − λk−2hk−2)(27)

so that by induction (σ + µk)hk − λk−1hk−1 ≥ 0 for any k. Thus hk ≥ λk−1hk−1

σ+µk
≥ 0.

Theorem 6. T 6= Tmax if and only if

∞∑

n=1

1

µn

n−1∏

j=1

λj
µj

(n−1∑

i=0

µi
λi

)
< +∞.(28)

Proof. Due to Lemma 1 and Proposition 2, T 6= Tmax if and only if for each {un}n∈N0
∈ l1+

such that {−(λn + µn)un + λn−1un−1 + µn+1un+1n}n∈N0
∈ l1 we have

I =

∞∑

n=0

(−(λn + µn)un + λn−1un−1 + µn+1un+1) > 0.

As in (19) we have to investigate the behaviour of the sequence {rn}n∈N0
defined as

rn = −λnun + µn+1un+1, n ≥ 0.(29)

Using again [7, Eq. (1.2.4)] we obtain for n ≥ 1

un =
1

µn

n−1∑

i=0

(
ri

n−1−i∏

j=1

λn−j
µn−j

)
+
u0λ0

µn

n−1∏

j=1

λj
µj
.(30)
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Factoring out gn−1 :=
∏n−1
j=1

λj
µj

from (30) we can rewrite un in the more compact form

un =
gn−1

µn

(
r0 + λ0u0 +

n∑

i=1

rig
−1
i

)
.(31)

If T 6= Tmax, then there is a nonnegative {un}n∈N0
∈ l1 for which I = limn→∞ rn > 0.

Thus the terms of {rn}n∈N0
are strictly positive starting from some n′0. If n′0 > 0, then

we can modify {un}n∈N0
so that rn > 0 also for 0 ≤ n ≤ n′0 − 1. Indeed, first observe

that there is n′′0 ≥ n0 with un′′0 > 0 (otherwise all un are zero starting from n0 which

gives rn = 0 for n ≥ n0). Taking n0 = max{n′0, n′′0}, we modify {un}n∈N0
by putting

ūn0
= un0

, 0 < ūn0−k <
µn0+1−k
λn0−k

ūn0+1−k for k = 0, . . . n0.

Denote for a moment such modified sequence by {ūn}n∈N0
and the corresponding se-

quence (29) by {r̄n}n∈N0
. Since we changed only finitely many components of the se-

quence {un}n∈N0
, {ūn}n∈N0

∈ l1. Also, as only a finite number of elements of {rn}n∈N0

were changed, {r̄n}n∈N0
converges (to the same limit) so that {ūn}n∈N0

∈ Dmax.

Since there are a finite number of positive r̄n = −λnūn+µn+1ūn+1, their minimum is

positive and inf{r̄0, . . . , r̄n0−1, rn0
. . .} = r > 0. Thus, we can take a nonnegative sequence

{un}n∈N0
∈ Dmax with the associated sequence {rn}n∈N0

satisfying inf {rn}n∈N0
= r > 0.

Since
∑∞
n=0 un < +∞, and rn ≥ r > 0 for n ≥ 0 and λ0u0 ≥ 0, we must have

∞ >
∞∑

n=1

gn−1

µn

(
r0 + λ0u0 +

n∑

i=1

rig
−1
i

)
≥ r

∞∑

n=1

gn−1

µn

( n∑

i=1

g−1
i

)
,

so that the series in (28) is convergent.

To prove the converse, define un by (29) with arbitrary {rn}n∈N0
converging to I >

0 (e.g. we may take rn = I for all n). By (28) such defined {un}n∈N0
∈ l1, so that

{un}n∈N0
∈ Dmax and since I > 0, the assertion follows by (23).

Remark 2. The condition (28) is exactly the condition of [1, Chapter 3, Theorem 2.3]

for the uniqueness of minimal dishonest solutions to the forward equation. In the present

context this result is stronger as it gives uniqueness among all possible l1 solutions.

We complete the paper by giving a survey of standard cases that are covered by

Theorems 5 and 6.

Observation 1. If both sequences {µ−1
n }n∈N, {λ−1

n }n∈N /∈ l1, then T = Tmin = Tmax. In

particular, this is true for the standard birth-and-death problem from population theory

where the coefficients are affine functions of n.

Proof. Expanding (28) we get for a given n

1

µn

(
1 +

λn−1

µn−1
+ . . .+

λn−1 . . . λ1

µn−1 . . . µ1

)
≥ 1

µn
.

Similarly, expanding (18) we get

1

λn

(
1 +

µn+1

λn+1
. . .

)
,

and putting these together we get the divergence of both series.
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Observation 2. If {µ−1
n }n∈N ∈ l1 and

lim
n→∞

λn
µn

= q < 1,(32)

then T = Tmin 6= Tmax.

Proof. From (32), λn/µn ≤ q0 < 1 starting from some n0. Thus

1

µn

(
1 +

λn−1

µn−1
+ . . .+

λn−1 . . . λ1

µn−1 . . . µ1

)
≤ 1

µn
(1 + q0 +Mn0

qn0 ),

where Mn0
does not depend on n. Since q0 < 1, the series (28) is convergent. Similarly,

(18) is satisfied as it involves µn
λn
≥ q0 > 1 which gives the divergence of the inner series.

Observation 3. If the sequence {µn}n∈N is of polynomial growth: µn = O(nβ) for some

β as n→∞, {λ−1
n }n∈N ∈ l1 and

lim
n→∞

λn
µn

= q > 1,(33)

then Tmin  T = Tmax.

Proof. As in the above proof

1

µn

(
1 +

λn−1

µn−1
+ . . .+

λn−1 . . . λ1

µn−1 . . . µ1

)
≥ 1

µn

(
1 + q0 +Mn0

qn0

)
,

for some n0 and q0 > 1, where Mn0
does not depend on n. Since q0 > 1, qn0 /n

β diverges

for any β and the series (28) diverges. Similarly, the series in (18) is summable.

Observation 4. There are sequences {λn}n∈N0
and {µn}n∈N0

for which Tmin  T  
Tmax.

Proof. Take λn = 2 · 3n and µn = 3n. Terms in the series (18) are

1

2 · 3n
(

1 +
1

2
+

1

22
. . .

)
,

so that the series is summable. Terms in the series (28) are

1

3n
(
1 + 2 + . . .+ 2n−1

)
,

so that this series is also summable.
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