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Abstract. A strongly coupled cross-diffusion model for two competing species in a heterogeneous

environment is analyzed. We sketch the proof of an existence result for the evolution problem

with non-flux boundary conditions in one space dimension, completing previous results [4]. The

proof is based on a symmetrization of the problem via an exponential transformation of variables

and the use of an entropy functional.

1. Introduction. For the time evolution of two species with non-homogeneous densi-

ties, diffusion effects have to be taken into account. Shigesada et al. proposed in their

pioneering work [12] to introduce so-called cross-diffusion terms modeling the population

pressure due to the mutual interferences among the individuals of the species. Denoting

by ni the population density of the i-th species (i = 1, 2), the time-dependent equations

can be written in one space dimension as [12]

∂tn1 − (((c1 + α11n1 + α12n2)n1)x + d1n1Ux)x = 0,(1)

∂tn2 − (((c2 + α21n1 + α22n2)n2)x + d2n2Ux)x = 0,(2)

2000 Mathematics Subject Classification: Primary 35K55; Secondary 65N40.
The authors acknowledge partial support from the German-Spanish Bilateral Project DAAD-

Acciones Integradas, Project HA2000-0010. The first author was supported by the Spanish D.G.I.
Project BFM2000-1324 and the European RNT Project HPRN-CT2002-00274. The second au-
thor was supported by the TMR Project ERB-FMBX-CT97-0157, the Gerhard-Hess Program of
the Deutsche Forschungsgemeinschaft, grant JU 359/3, and by the AFF Project of the University
of Konstanz, grant 4/00.

The paper is in final form and no version of it will be published elsewhere.

[209]



210 G. GALIANO AND A. JÜNGEL

in the bounded interval Ω ⊂ R with time t > 0. Here, U = U(x) is the (given) en-

vironmental potential, modeling areas where the environmental conditions are more or

less favorable [10, 12]. The diffusion coefficients ci and αij are non-negative, and di ∈ R
(i, j = 1, 2).

The above system of equations is completed with non-flux boundary conditions and

initial conditions:

(((c1 + α11n1 + α12n2)n1)x + d1n1Ux) · ν = 0,(3)

(((c2 + α21n1 + α22n2)n2)x + d2n2Ux) · ν = 0, on ∂Ω× (0, T ),(4)

ni(·, 0) = n0,i in Ω, i = 1, 2,(5)

where ν denotes the exterior unit normal to ∂Ω.

Up to now, only partial results are available in the literature concerning the well-

posedness of the problem. We summarize some of the available results for the time-

dependent equations (see [13] for a review) and refer to [8] for the stationary problem.

Global existence of solutions and their qualitive behavior for α11 = α22 = α21 = 0 have

been proved in, e.g., [9, 11]. In this case, Eq. (2) is only weakly coupled. For sufficiently

small cross-diffusion parameters α12 > 0 and α21 > 0 (or equivalently, ”small” initial

data) and vanishing self-diffusion coefficients α11 = α22 = 0, Deuring proved the global

existence of solutions [2]. For the case c1 = c2, a global existence result in one space

dimension has been obtained by Kim [7]. Furthermore, under the condition

8α11 > α12, 8α22 > α21,(6)

Yagi [14] has shown the global existence of solutions in two space dimensions assuming

α12 = α21. A global existence result for weak solutions in any space dimension under

condition (6) can be found in [3]. Condition (6) can be easily understood by observing

that in this case, the diffusion matrix induces an elliptic operator. If the condition (6)

does not hold, there are choices of ci, αij , ni ≥ 0 for which the matrix diffusion is not

elliptic, and it is therefore unclear if the problem (1)-(5) can be solved for these data.

More recently, Ichikawa and Yamada [5] have improved the results of Yagi, replacing

condition (6) by

64α11α22 > α12α21 or 64α11α22 = α12α21 > 0.(7)

They use the same techniques as Yagi combined with suitable energy estimates. From the

view-point of mathematical biology, conditions like (6) and (7) mean that self-diffusion

or diffusion is dominant over cross-diffusion.

In [4] we showed how the existence of solutions of problem (1), (2), (5) with mixed

boundary conditions and Lotka-Volterra source terms can be obtained, without assuming

conditions like (6) or (7). In the present paper, we perform several changes in the method

of proof to tackle the case of non-flux boundary conditions, as originally proposed in [12].

For simplicity, we considered zero source terms, although more general situations may be

treated.

More precisely, we are able to show that for any ci, ai > 0 there exists a weak solution

u1, u2 to (1)–(5) such that u1 and u2 are non-negative. We stress the fact that the non-

negativity property is obtained without the use of the maximum principle. The idea
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of the proof is as follows: The system (1)–(2) is first symmetrized via an exponential

transformation of variables. A priori estimates are derived for a perturbed semi-discrete

problem by using an entropy functional, yielding H1 bounds which are independent of the

solutions. The non-negativity property is obtained from the embedding H1(Ω) ↪→ L∞(Ω),

which holds only in one space dimension.

Before we state the results and sketch the method of proof, we perform (for a smoother

presentation) the following change of unknowns:

u1 = α21n1, u2 = α12n2, and q = −Ux.
We assume that α12 > 0 and α21 > 0 which is no restriction since if α12 = 0 or α21 = 0,

at least one of the equations (1), (2) is weakly coupled, and the results of [11] apply. Eqs.

(1)–(5) can be reformulated as

∂tui − (ciuix + 2aiuiuix + (u1u2)x + diuiq)x = 0 in Ω× (0, T ) =: QT ,(8)

(ciuix + 2aiuiuix + (u1u2)x + diuiq) · ν = 0 on ∂Ω× (0, T ) =: ΓT ,(9)

u(·, 0) = u0
i in Ω, i = 1, 2,(10)

where T > 0, u0
1 = α21n0,1, u0

2 = α12n0,2 and a1 = α11/α21, a2 = α22/α12.

2. Existence of solutions of problem (8)–(10). The main result is the following

theorem.

Theorem 1. Assume that q ∈ L2(QT ), u0
i ∈ L∞(Ω) satisfies u0

i ≥ γ > 0 in Ω and

ai, ci > 0, di ∈ R, i = 1, 2. Then, there exists a weak solution (u1, u2) of (8)-(10)

satisfying u1, u2 ∈ L2(0, T ;H1(Ω)) ∩W 1,1(0, T ;H1(Ω)∗) and

u1(x, t), u2(x, t) ≥ 0 for (x, t) ∈ QT .
This result can be extended in several ways. First, under suitable restrictions we may

include non-trivial source terms in the formulation of (8)–(10), see [4]. In particular,

Lotka-Volterra type source terms may be considered. Second, by an appropriate and

standard approximation technique we may allow the initial data to be just non-negative.

With a more subtle approximation of the problem, we may prove the above result for

non-negative self-diffusion coefficients, ci.

Proof. The proof consists of several steps.

Step 1. We work with unknowns which symmetrize the elliptic operator. Introduce

w = (w1, w2) by defining u1 = ew1 , u2 = ew2 and set b(w) = (b1(w), b2(w)) = (ew1 , ew2).

With the diffusion coefficients

aii(w) = cie
wi + 2aie

2wi + ew1+w2 , i = 1, 2, a12(w) = a21(w) = ew1+w2 ,

Eqs. (8)-(10) are formally equivalent to

∂tbi(w)−
( 2∑

j=1

aij(w)wjx + dibi(w)q
)
x

= 0, in QT ,(11)

( 2∑

j=1

aij(w)wjx + dibi(w)q
)
· ν = 0 on ΓT ,(12)
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w(0) = w0 in Ω,(13)

where w0
i = log(u0

i ), i = 1, 2.

Step 2. In order to solve the above problem, we introduce a perturbed semi-discrete

problem. Let ε > 0, N ∈ N and τ = T/N , the time step. Given wk−1, approximating w

in the interval ((k − 1)τ, kτ ], we are seeking solutions wk of the elliptic problem

bi(w
k)− bi(wk−1)

τ
−
( 2∑

j=1

aij(w
k)wkjx + dibi(w

k)qk
)
x

+ ε(bi(w
k)− 1) = 0 in Ω,(14)

( 2∑

j=1

aij(w
k)wkjx + dibi(w

k)qk
)
· ν = 0 on ∂Ω,(15)

for k = 1, . . . , N . Here we defined qk := 1
τ

∫ kτ
(k−1)τ

q(·, t)dt.
We now introduce the discrete entropy, for k = 0, . . . , N , α = 2 min{c1, c2}:

ηk =
2∑

i=1

∫

Ω

(bi(w
k)(wki − 1) + 1) + α

∫

Ω

(bi(w
k)− 1− wki ) ≥ 0.

We can prove the following entropy-type estimate, which holds in any space dimension.

Lemma 1. Let wk ∈ H1(Ω;R2) be a weak solution of (14)-(15). Then there exists a

constant C > 0 independent of τ and ε such that for any k = 1, . . . , N and any τ, ε > 0,

ηk + τ
2∑

i=1

∫

Ω

(
α2

4
|wkix|2 + α|(ewki /2)x|2 + ai|(ew

k
i )x|2 + ε|wki |2

)
≤ ηk−1 + Cτ,(16)

∫

Ω

bi(w
k) ≤ C.(17)

Proof. The key of the proof of (16) is to use wki + α(1 − bi(−wk)) ∈ H1(Ω) as a test

function in the weak formulation of (14)-(15). Adding the corresponding equations for

i = 1 and i = 2 gives

1

τ

2∑

i=1

∫

Ω

(bi(w
k)− bi(wk−1))

[
wki + α(1− bi(−wk))

]
(18)

+
2∑

i,j=1

∫

Ω

aij(w
k)wkjx

[
wki + α(1− bi(−wk))

]
x

+ε

2∑

i=1

∫

Ω

(bi(w
k)− 1)

[
wki + α(1− bi(−wk))

]

= −
2∑

i=1

∫

Ω

dibi(w
k)qk ·

[
wki + α(1− bi(−wk))

]
x
.

In order to estimate the first term on the left-hand side of (18), we use the convexity of

s 7→ bi(s) and the elementary inequality es ≥ 1 + s for all s ∈ R:

1

τ

2∑

i=1

∫

Ω

(bi(w
k)− bi(wk−1))[wki + α(1− bi(−wk))]
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=
1

τ
(ηk − ηk−1) +

1

τ

2∑

i=1

∫

Ω

(bi(w
k)− bi(wk−1)− bi(wk−1)(wki − wk−1

i ))

+
α

τ

2∑

i=1

∫

Ω

(bi(w
k−1)bi(−wk) + wki − wk−1

i − 1) ≥ 1

τ
(ηk − ηk−1).

We rewrite the second term on the left-hand side of (18) as

2∑

i,j=1

∫

Ω

aij(w
k)wkjx(wkxi + αbi(−wk)wkix)x

=

2∑

i=1

∫

Ω

(cie
wki + 2aie

2wki + αci + 2αaie
wki )|wkix|2

+ α

∫

Ω

(ew
k
2 |wk1x|2 + ew

k
1 |wk2x|2 + (ew

k
1 + ew

k
2 )wk1xw

k
2x) + 4

∫

Ω

|(e(wk1 +wk2 )/2)x|2.

For the third term on the left-hand side, it is easy to check that (es−1)(s+α(1−e−s)) ≥ s2.

Finally, for the first term on the right-hand side of (18) we employ Young’s inequality:

−
2∑

i=1

∫

Ω

dibi(w
k)qk(∇wki + αe−w

k
i wkix)

≤
2∑

i=1

∫

Ω

(
aie

2wki |wkix|2 +
αci
2
|wkix|2 +

(
1

4
+

1

2αci

)
d2
i |qk|2

)
.

Putting the above estimates together, we infer from (18):

1

τ
(ηk − ηk−1) +

2∑

i=1

∫

Ω

((
αci
2

+ (ci + 2αai)e
wki + aie

2wki

)
|wkix|2 + ε|wki |2

)

≤
2∑

i=1

∫

Ω

(
1

4
+

1

2αci
)d2
i |qk|2 − α

∫

Ω

(ew
k
2 |wk1x|2 + ew

k
1 |wk2x|2 + (ew

k
1 + ew

k
2 )wk1x · wk2x)

≤ C +
α

4

∫

Ω

(ew
k
1 |wk1x|2 + ew

k
2 |wk2x|2).

The last integral can be absorbed by the second term on the left-hand side since α =

2 min{c1, c2} and (16) follows.

To prove (17) we use ψ = 1 as a test function in the weak formulation of (14)–(15).

We obtain, for k = 1, . . . , N ,∫

Ω

ew
k
i =

∫

Ω

ew
k−1
i − ετ

∫

Ω

(ew
k
i − 1) ≤

∫

Ω

ew
k−1
i + ετ |Ω|.

Therefore, we obtain ∫

Ω

ew
k
i ≤

∫

Ω

ew
0
i + εkτ |Ω|,

and since kτ ≤ T and ε > 0 is small (say ε < 1), estimate (17) follows.

Step 3. We consider the linear problem

bi(z)− bi(wk−1)

τ
−
( 2∑

j=1

aij(z)w
k
jx + dibi(z)q

k
)
x

+ ε
bi(z)− 1

zi
wki = 0 in Ω,(19)
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( 2∑

j=1

aij(z)w
k
jx + dibi(z)q

k
)
· ν = 0 on ∂Ω,(20)

for wk−1, z ∈ H1(Ω). By the Lax-Milgram lemma, this problem admits a unique solution

w ∈ H1(Ω). Note that since the spatial dimension is one, the H1(Ω) estimate for w

provides an L∞(Ω) estimate of w. We may then use the Leray-Schauder fixed-point

theorem to prove the existence of weak solutions of the semi-discrete problem (14)–(15).

Lemma 2. Let wk−1 ∈ L∞(Ω;R2), k ≥ 1. Then there exists a weak solution wk ∈
H1(Ω;R2) of (14)-(15).

The proof relies in the compact embedding L∞(Ω) ⊂ H1(Ω). For a similar result, see

Lemma 3 of [4].

Step 4. We define the piecewise constant functions w(τ) by

w(τ)(x, t) = wk(x) if (x, t) ∈ Ω× ((k − 1)τ, kτ ]

and q(τ) in a similar way. It is clear that

q(τ) → q in L2(QT ) as τ → 0.(21)

The following result is a direct consequence of Lemma 1 and Poincaré’s inequality in the

form ‖z‖H1(Ω) ≤ C(‖zx‖L2(Ω) + |
∫

Ω
z|).

Corollary 1. Let τ > 0. Then the following estimates hold:

‖η(τ)‖L∞(0,T ;L1(Ω)) ≤ C,
‖bi(w(τ)‖L∞(0,T ;L1(Ω)) ≤ C,

2∑

i=1

(α‖ew
(τ)
i /2‖2L2(0,T ;H1(Ω)) + ai‖ew

(τ)
i ‖2L2(0,T ;H1(Ω)) + ε‖w(τ)

i ‖2L2(0,T ;Ω)) ≤ C,

where C > 0 is independent of τ and ε, and

η(τ)(t) =

2∑

i=1

∫

Ω

(bi(w
(τ))(w

(τ)
i − 1) + 1 + α(bi(w

(τ))− 1− w(τ)
i ))(t).

To pass to the limit, we also need estimates for the discrete time derivative. For this

we define

b̃(τ)(·, t) =
kτ − t
τ

(b(wk)− b(wk−1)) + b(wk), t > 0,

and introduce στ , the shift operator:

στw
(τ)(·, t) = wk−1 if t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N.

Lemma 3. We have

τ−1‖b(w(τ))− b(στw(τ))‖L1(0,T ;H1(Ω)∗) + ‖∂tb̃(τ)‖L1(0,T ;H1(Ω)∗) + ‖b̃(τ)‖L2(0,T ;H1(Ω)) ≤ C,

where C does not depend on τ, ε.
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Proof. From the weak formulation of Eqs. (14) for i = 1, 2 we obtain for i = 1, 2,

τ−1‖bi(w(τ))− bi(στw(τ))‖L1(0,T ;H1(Ω)∗)

≤ ‖ci(ew
(τ)
i )x + 2aie

w
(τ)
i (ew

(τ)
i )x + die

w
(τ)
i q(τ) + ε(bi(w

(τ))− 1)‖L1(0,T ;L2(Ω))

+ ‖ew
(τ)
1 (ew

(τ)
2 )x + ew

(τ)
2 (ew

(τ)
1 )x‖L1(0,T ;L2(Ω))

≤ ci‖(ew
(τ)
i )x‖L1(0,T ;L2(Ω)) + 2ai‖ew

(τ)
i ‖L2(0,T ;L∞(Ω))‖(ew

(τ)
i )x‖L2(QT )

+ di‖ew
(τ)
i ‖L2(0,T ;L∞(Ω))‖q(τ)‖L2(QT ) + ε(‖ew

(τ)
i ‖L1(0,T ;L2(Ω)) + T |Ω|2)

+ ‖ew
(τ)
1 ‖L2(0,T ;L∞(Ω))‖/ew

(τ)
2 )x‖L2(QT ) + ‖ew

(τ)
2 ‖L2(0,T ;L∞(Ω))‖(ew

(τ)
1 )x‖L2(QT ).

Using Poincaré’s inequality and that spatial dimension is one, we obtain

‖ew
(τ)
i ‖L2(0,T ;L∞(Ω)) ≤ C‖ew

(τ)
i ‖L2(0,T ;H1(Ω)) ≤ C,

in view of Corollary 1, and therefore

‖bi(w(τ))− bi(στw(τ))‖L1(0,T ;H1(Ω)∗) ≤ Cτ.
Furthermore,

‖∂tb̃(τ)‖L1(0,T,H1(Ω)∗) ≤ τ−1‖b(w(τ))− b(στw(τ))‖L1(0,T ;H1(Ω)∗) ≤ C,
and

‖b̃(τ)‖L2(0,T ;H1(Ω)) ≤ 2‖b(w(τ))‖L2(0,T ;H1(Ω)) + ‖b(στw(τ))‖L2(0,T ;H1(Ω)) ≤ C,
by Corollary 1.

Step 5. We already have all the necessary estimates to pass to the limit τ → 0 and

ε → 0. In fact, we take ε = τ and perform the limit ε = τ → 0. Since the embedding

H1(Ω) ↪→ L∞(Ω) is compact in one space dimension, we can apply Aubin’s lemma to

b̃(τ), in view of the uniform bounds of Lemma 3, to obtain, up to a subsequence which is

not relabeled,

∂tb̃
(τ) ⇀ ∂tz weakly in L1(0, T ;H1(Ω)∗),(22)

b̃(τ) ⇀ z weakly in L2(0, T ;H1(Ω)),(23)

b̃(τ) → z strongly in L2(0, T ;L∞(Ω)),(24)

b(w(τ)) ⇀ u weakly in L2(0, T ;H1(Ω)).(25)

By Lemma 3 we have, as τ → 0,

‖b̃(τ) − b(w(τ))‖L1(0,T ;H1(Ω)∗) ≤ ‖b(w(τ))− b(στw(τ))‖L1(0,T ;H1(Ω)∗) → 0,

and hence z = u. Finally, using the above estimates and convergences, we are able to

prove that

ew
(τ)
i = bi(w

(τ))→ ui strongly in L2(QT ), i = 1, 2,(26)

(see [4], for a similar result).

Now we can let τ = ε → 0 in the weak formulation of (14), i = 1, 2, which reads for

φ ∈ L∞(0, T ; (W 1,∞(Ω))∗):
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∫ T

0

〈∂tb̃i
(τ)
, φ〉+

∫

QT

(ci(e
w

(τ)
i )x + 2aie

w
(τ)
i (ew

(τ)
i )x + (ew

(τ)
1 +w

(τ)
2 )x)φx

= −ε
∫

QT

(ew
(τ)
i − 1)φ− di

∫

QT

ew
(τ)
i q(τ)φx.

In view of (22)-(26) and (21) we obtain
∫ T

0

〈∂tui, φ〉+

∫

QT

(ciuix + 2aiuiuix + (u1u2)x)φx = −di
∫

QT

uiqφx,

i.e. u = (u1, u2) is a weak solution of (8)-(9). Moreover, the initial condition (10) is

satisfied in the sense of H1(Ω)∗.
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