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Abstract. Two asexual density-dependent population dynamics models with age-dependence

and child care are presented. One of them includes the random diffusion while in the other

the population is assumed to be non-dispersing. The population consists of the young (under

maternal care), juvenile, and adult classes. Death moduli of the juvenile and adult classes in both

models are decomposed into the sum of two terms. The first presents death rate by the natural

causes while the other describes the environmental influence depending on the total density of

the juvenile and adult individuals. An existence and uniqueness theorem is proved, a class of

separable solutions is constructed, and the large time behavior of the general and separable

solutions is given for the non-dispersing population with stationary vital rates. The steady-state

and separable solutions are constructed and the large time behavior of the separable solutions

is studied for the population with the spatial dispersal.

1. Introduction. The Sharpe-Lotka-McKendrick-von Foerster (see, e.g., [12]) and

Hoppensteadt-Staroverov-Hadeler (see, e.g., [4]) models are well known in mathemati-

cal biology. The first one (or its Gurtin-MacCamy modification [3]) is usually used to

describe the dynamics of asexual age-structured populations. The other one is the basic

model in mathematical demography and describes the evolution of populations forming

permanent pairs. Both models do not treat the child care phenomenon. Moss de Oliveira

(see [8] and references therein) was the first to study consequences of this phenomenon.

She introduced parental care into the Penna bit-string model (see, e.g., [8]) which is

well known in the computer simulations of biological ageing. In asexual version of this

model each individual is represented by a computer string of 32 bits. In sexual version

each individual has two bit strings. Some results of biological ageing obtained by using
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Monte Carlo simulations for the Penna model are reviewed in [8]. In particular, ageing

of a semelparous species (i.e., a species that reproduce only once in life) and the spatial

distribution of the populations are studied.

In [11] we proposed two non-dispersing population dynamics models with age structure

and maternal care: one for bisexual populations without formation of permanent pairs

and the other for asexual ones producing offspring at fixed ages. In contrast to the Penna

aging model those models are represented by systems of PDE (or integro-PDE) equations

and can be examined analytically.

In the present paper we generalize the model in [11] for the asexual population and

present two asexual population dynamics models taking into account age structure, child

care, and a population density factor describing an environmental influence. Both models

are represented by systems of integro-PDE. One of the models includes random diffusion

in a bounded domain with an extremely inhospitable boundary (or without migration

across it) while in the other the population is assumed to be non-dispersing. In both

cases the population consists of the young, juvenile, and adult classes. The young and

juvenile individuals are of pre-reproductive age, while the adults have reproductive and

post-reproductive age grades. Ages of production of offspring are not fixed in theses

models. We assume that all young individuals are under maternal care and all adults

of reproductive age are divided into fertile singles (having no offspring under mater-

nal care at the given time), mothers (taking care of offspring), and temporarily ster-

ile singles (individuals for whom child care time is over but whose age still is in the

sterility interval after delivery). We also assume that young offspring and their mothers

are at the same position at every time and, in the case of the dispersing population,

move together with them. We let the vital rates of the juvenile and adult individuals

depend on their total density N and, following Moss de Oliveira [8], we assume that

young offspring are subject to natural mortality and are protected from density related

increases of mortality dependent on N directly. We also adopt the strong child care

law by which all young offspring are killed if their mother dies. Therefore, the death

rate of young individuals consists of their natural death rate independent of N plus

the death rate of their mothers. Such the division of population is natural for some

species of mammals, e.g. the European polecat species (mustela putorius) living in Eng-

land. In particular, these models can be applied to describe the evolution of semelparous

species.

The description of the long time behavior of the population subject to the models

below is one of goals of this paper.

The paper is organized as follows. In Sec. 3, which consists of three subsections,

we present and analyze a non-dispersing population dynamics model. In 3.1 separable

solutions and their large time behavior are studied. In 3.2 we prove an existence and

uniqueness theorem, and in 3.3 we give the large time behavior of the general solution

in the case of stationary vital rates. Section 4 is devoted to the dynamics of a dispersing

population and consists of two subsections. In 4.1 the separable solutions and their large

time asymptotics are examined, and in 4.2 the steady-state solutions are studied. A

discussion follows in Sec. 5, including some comments about the models.
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2. Notation. The following notation is used for the analysis of the population dynamics

with child care.

Rm : the Euclidean space of dimension m with x = (x1, . . . , xm),

κ : the diffusion modulus,

T0, h, T1, (T0 < h < T1): the child care period, sterility period after delivery, and

maturation period, respectively,

(0, T1) = (0, T0) ∪ [T0, T1): the pre-reproductive age interval which consists of (0, T0)

(the young) and [T0, T1) (the juvenile) age intervals,

[T1,∞): the adult age interval,

Ti+1 = T1 + ih, i = 0, 1, . . . , n: age of production of the feasible (i+ 1)st generation,

σ1 = (T1, Tn+1), σ1 = [T1, Tn+1]: the delivery age interval,

(T1, Tn+1 + T0): the child care age interval,

(Tn+2,∞), Tn+2 = Tn+1 + h: the post-reproductive age interval,

σ2 = (T2, Tn+2), σ2 = [T2, Tn+2],

σ = (T1 + T0, Tn+1 + T0), σ = [T1 + T0, Tn+1 + T0],

D1 = (T0,∞), D1 = [T0,∞), D̃1 = D1 \ {T1, T2, Tn+1, Tn+2},
D2 = {(τ1, τ2) : τ2 ∈ (0, T0), τ1 ∈ (T1 + τ2, Tn+1 + τ2)},
D2 = {(τ1, τ2) : τ2 ∈ [0, T0], τ1 ∈ [T1 + τ2, Tn+1 + τ2]},
D̃2 = D2 \ {(τ1, τ2) : τ1 − τ2 = T2},
D3 = {(τ1, τ3) : τ3 ∈ (0, h− T0), τ1 ∈ (T1 + T0 + τ3, Tn+1 + T0 + τ3)},
D3 = {(τ1, τ3) : τ3 ∈ [0, h− T0], τ1 ∈ [T1 + T0 + τ3, Tn+1 + T0 + τ3]},
D̃3 = D3 \ {(τ1, τ3) : τ1 − τ3 = T2 + T0},
∂t = ∂/∂t, ∂τi = ∂/∂τi,

D1 = ∂t + ∂τ1 , D2 = ∂t + ∂τ1 + ∂τ2 , D3 = ∂t + ∂τ1 + ∂τ3 ,

C0(D) (resp. C0(D)): the class of bounded continuous functions in D (resp. D), where

D is a domain not necessarily bounded and D the closure of D,

C1(D) (resp. C1(D)): a class of bounded continuous functions f(x1, . . . , xm) in D

(resp. D) with ∂xif ∈ C0(D) (resp. C0(D)), i = 1, ...,m,

C0,1,...,0(D): the class of bounded continuous functions f(x1, . . . , xm) inD with ∂x2
f ∈

C0(D),

Lp(D), (p = 1, 2): the standard Banach space of functions f with norm ||f || =

(
∫
D
|f(x)|pdx)1/p.

u1(t, τ1, x): the age-space-density of individuals aged τ1 at time t at the position x

who are of juvenile, fertile single, or post-reproductive age,

u2(t, τ1, τ2, x): the age-space-density of young offspring aged τ2 at time t at the position

x whose mothers are of age τ1 at the same time t,

u3(t, τ1, τ2, x): the age-space-density of individuals aged τ1 at time t at the position x

who care for offspring aged τ2 at the same time t,

u4(t, τ1, τ3, x): the age-space-density of individuals aged τ1 at time t at the position x

for whom child care time is over but who still have been in the temporarily sterile class

for τ3 units of time (i.e. for whom time τ3 is passed after the end of child care),

N(t, x): the total spatial density of the juvenile and adult individuals at time t at the

location x,
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α(t, τ1, x,N)dt: the probability for individuals aged τ1 at time t to produce offspring

at the location x in the time interval [t, t+ dt],

α(t, τ1, x,N)b(t, τ1, x,N): the birth rate of offspring at time t at the location x whose

mothers are of age τ1 at the same time t,

ν1(t, τ1, x,N): the death rate of individuals aged τ1 at time t at the position x who

are of juvenile, fertile single, or post-reproductive age,

ν2(t, τ1, τ2, x): the death rate of young offspring aged τ2 at time t at the location x

whose mothers are of age τ1 at the same time t,

ν3(t, τ1, τ2, x,N): the death rate of individuals aged τ1 at time t at the location x who

care for offspring aged τ2 at the same time t,

ν4(t, τ1, τ3, x,N): the death rate of individuals aged τ1 at time t at the position x for

whom child care time is over but who still have been in the temporarily sterile class for

τ3 units of time,

[u1|τ1=Ts ]: a jump discontinuity of u1 at τ1 = Ts.

In what follows the child care period T0, sterility period after delivery h, and matura-

tion period T1 are assumed to be constant. In the case of non-dispersing populations all

functions u1, . . . , u4, ν1, . . . , ν4, b, α, u10, . . . , u30, and u40 do not depend on the spatial

position x.

3. The non-dispersing population dynamics model. Using the balance law, we

derive the following density-dependent population dynamics model with child care:

(3.1)





D1u1 = −ν1(t, τ1, N)u1−
{

0, τ1 6∈ σ1,

α(t, τ1, N)u1, τ1 ∈ σ1

+

{
0, τ1 6∈ σ2,

u4|τ3=h−T0
, τ1 ∈ σ2,

τ1 ∈ D1, t > 0,

u1|τ1=T0
=
∫
σ
u2|τ2=T0

dτ1, t ≥ 0,

u1|t=0 = u10, τ1 ∈ D1,

[u1|τ1=Ts ] = 0, t ≥ 0, s = 1, 2, n+ 1, n+ 2;

(3.2)





D2u2 = −
(
ν2(t, τ1, τ2) + ν3(t, τ1, τ2, N)

)
u2, (τ1, τ2) ∈ D2, t > 0,

u2|τ2=0 = α(t, τ1, N)b(t, τ1, N)u1(t, τ1), τ1 ∈ σ1, t ≥ 0,

u2|t=0 = u20 in D2;

(3.3)





D2u3 = −ν3(t, τ1, τ2, N)u3, (τ1, τ2) ∈ D2, t > 0,

u3|τ2=0 = α(t, τ1, N)u1(t, τ1), τ1 ∈ σ1, t ≥ 0,

u3|t=0 = u30 in D2;

(3.4)





D3u4 = −ν4(t, τ1, τ3, N)u4, (τ1, τ3) ∈ D3, t > 0,

u4|τ3=0 = u3|τ2=T0
, τ1 ∈ σ, t ≥ 0,

u4|t=0 = u40 in D3;

(3.5) N =

∫

D1

u1dτ1 +

∫

D2

u3dτ1dτ2 +

∫

D3

u4dτ1dτ3, t ≥ 0.
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We stress that ν2 is N -independent and add the following compatibility conditions:

(3.6)





u10(T0) =
∫
σ
u20(τ1, T0)dτ1,

u20(τ1, 0) = α(0, τ1, N0)u10(τ1)b(0, τ1, N0) in σ1,

u30(τ1, 0) = α(0, τ1, N0)u10(τ1) in σ1,

u40(τ1, 0) = u30(τ1, T0) in σ,

(3.7) N0 =

∫

D1

u10dτ1 +

∫

D2

u30dτ1dτ2 +

∫

D3

u40dτ1dτ3, t ≥ 0.

As follows from the foregoing, the given constants T0, h, T1 and functions b, α, ν1,

. . . , ν4, u10(τ1), u20(τ1, τ2), u30(τ1, τ2), and u40(τ1, τ3), as well as the unknown ones u1, u2,

u3, and u4 must be positive, otherwise they have no biological significance. In this paper

we shall consider the case where T0 < h < T1. This assumption is natural for some species

of populations. Starting with the initial distributions u10, . . . , u40 we want to describe the

evolution of u1, u2, u3, and u4 satisfying (3.1)–(3.7).

3.1. Separable solutions. In this section we shall examine model (3.1)–(3.7) with

(3.1.1)

{
α = α(τ1), b = b(τ1), ν1 = µ1(τ1) + ρ(N), ν2 = µ2(τ1, τ2),

ν3 = µ3(τ1, τ2) + ρ(N), ν4 = µ4(τ1, τ3) + ρ(N).

We look for solutions in the form

(3.1.2) ui = f(t)ui0, ui0 = Uvi exp{λ(T0 − τ1)}, i = 1, 2, 3, 4, v1(T0) = 1, f(0) = 1,

where U is a positive constant and f(t), v1(τ1), v2(τ1, τ2), v3(τ1, τ2), v4(τ1, τ3) and the

constant λ are to be determined.

Theorem 1. Let constants T0 < h < T1 and functions µ1, . . . , µ4, α, and b be positive

and: ρ ∈ C1([0,∞)), ρ > 0 and ρ′ > 0 for all N > 0, α, b ∈ C1(σ1), µ1 ∈ C0(D1),

µ2, µ3 ∈ C1,0(D2), µ4 ∈ C1,0(D3). Assume that λ0 is the unique real root of the equation

(3.1.3) R(λ) = 1, R(λ) :=

∫

σ

v2(τ1, T0) exp{λ(T0 − τ1)}dτ1

satisfying the condition

(3.1.4)

∫

D1

exp

{
− λ0x−

∫ x

T0

µ1(ξ)dξ

}
dx <∞.

Then problem (3.1)–(3.7) and (3.1.1) has a one-parameter class of nonnegative separable

solutions of type (3.1.2) such that:

u1 ∈ C0([0,∞)×D1) ∩ C1([0,∞)× D̃1),

us ∈ C0([0,∞)×D2) ∩ C1([0,∞)× D̃2), s = 2, 3,

u4 ∈ C0([0,∞)×D3) ∩ C1([0,∞)× D̃3),

and, for i = 1, 2, 3, 4,

ui −−→
t→∞

0 if λ0 ≤ ρ(0),

ui −−→
t→∞

∞ if supN≥0 ρ(N) ≤ λ0 <∞,
ui −−→

t→∞
ui0N∗/N0 with N0 defined by (3.7) if λ0 > 0 and there exists N∗ > 0 such

that ρ(N∗) = λ0.
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Proof. By direct substitution of (3.1.2) into (3.1)–(3.5) we get (3.1.3) and equations:

(3.1.5) N = fN0,

(3.1.6) N ′ = N(λ0 − ρ(N)), N(0) = N0,

(3.1.7)





∂τ1v2 + ∂τ2v2 = −v2µ23(τ1, τ2) in D2, v2(τ1, 0) = α(τ1)b(τ1)v1(τ1), τ1 ∈ σ1,

∂τ1v3 + ∂τ2v3 = −v3µ3 in D2, v3(τ1, 0) = α(τ1)v1(τ1), τ1 ∈ σ1,

∂τ1v4 + ∂τ3v4 = −v4µ4 in D3, v4(τ1, 0) = v3(τ1, T0), τ1 ∈ σ,

(3.1.8) v′1 = −µ1v1 −
{

0, τ1 6∈ σ1,

α(τ1)v1, τ1 ∈ σ1

+

{
0, τ1 6∈ σ2,

v4(τ1, h− T0), τ1 ∈ σ2

in D1, v1(T0) = 1,

[v1(Ts)] = 0, s = 1, 2, n+1, n+2. Here and in what follows the prime superscript indicates

differentiation and µ23 = µ2 + µ3. Note that N0 depends on λ0. Integration of (3.1.7)

yields

(3.1.9) v2 = (bαv1)|(τ1−τ2) exp

{
−
∫ τ2

0

µ23(x+ τ1 − τ2, x)dx

}
,

(3.1.10) v3 = (αv1)|(τ1−τ2) exp

{
−
∫ τ2

0

µ3(x+ τ1 − τ2, x)dx

}
,

(3.1.11) v4 = (αv1)|(τ1−τ3−T0) exp

{
−
∫ T0

0

µ3(x+ τ1 − τ3 − T0, x)dx−
∫ τ3

0

µ4(x+ τ1 − τ3, x)dx

}
.

Observe that Eqs. (3.1.8) and (3.1.11) can be easily solved. Substituting (3.1.9) into

(3.1.3), we get

1 =

∫

σ1

α(ξ)b(ξ)v1(ξ) exp

{
− ξλ−

∫ T0

0

µ23(x+ ξ, x)dx

}
dξ.

The distribution of roots of this characteristic equation is well known. Let λi, i = 1, 2, . . .

be the complex roots. Then Reλi < λ0, where λ0 is a unique real root. Since 0 ≤ ρ ∈
C1([0,∞)), Eq. (3.1.6) has a unique global solution N ≤ N0 exp{λ0t}. Its long time

behavior is given by Langlais and Milner in [6]. This completes the proof.

3.2. The existence and uniqueness theorem. In this section we examine problem (3.1)–

(3.7) in the case where

(3.2.1)

{
α = α(t, τ1), b = b(t, τ1, N), ν1 = µ1(t, τ1) + ρ(N), ν2 = µ2(t, τ1, τ2),

ν3 = µ3(t, τ1, τ2) + ρ(N), ν4 = µ4(t, τ1, τ3) + ρ(N).

Set

Q1 = {(t, τ1) : t = τ1, τ1 − T0, τ1 − T1, τ1 − T2, τ1 − Tn+1, τ1 − Tn+2, τ1 = T1, T2,

Tn+1, Tn+2},
Q2 = {(t, τ1, τ2) : τ1 − τ2 = T2, t = τ2, τ1, τ1 − T0, τ1 − T1, τ1 − T2, τ1 − Tn+1},
Q3 = {(t, τ1, τ3) : τ1−τ3 = T2+T0, t = τ3, τ3+T0, τ1, τ1−T0, τ1−T1, τ1−T2, τ1−Tn+1}.

Theorem 2. Let functions α, b, µ1, . . . , µ4, u10, . . . , u40 and constants T0 < h < T1 be

positive and: ρ ∈ C1([0,∞)), ρ > 0 and ρ′ > 0 for all N > 0, α ∈ C1([0,∞) × σ1), b ∈
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C1([0,∞) × σ1 × [0,∞)), µ1 ∈ C1,0([0,∞) × D1), µ2, µ3 ∈ C1,1,0([0,∞) × D2), µ4 ∈
C1,1,0([0,∞)×D3), u10 ∈ C1(D1)∩L1(D1) and u′10 ∈ L1(D1), u20, u30 ∈ C1(D2), u40 ∈
C1(D3). Then, for any fixed t∗ > 0, problem (3.1)–(3.7) and (3.2.1) has a unique positive

solution such that

u1 ∈ C0([0, t∗]×D1) ∩ C1(([0, t∗]×D1) \Q1),

us ∈ C0([0, t∗]×D2) ∩ C1(([0, t∗]×D2) \Q2), s = 2, 3,

u4 ∈ C0([0, t∗]×D3) ∩ C1(([0, t∗]×D3) \Q3), N ∈ C1([0, t∗]).

Proof. We stress that jumps of all partial derivatives of u1, . . . , u4 at the sets of their

discontinuity are bounded. Assuming that

(3.2.2)

{
u1 = f(t)U1(t, τ1), u2 = f(t)U2(t, τ1, τ2), u3 = f(t)U3(t, τ1, τ2),

u4 = f(t)U4(t, τ1, τ3), f(0) = 1

and substituting for u1, u2, u3, and u4 in (3.1)–(3.5), we get:

(3.2.3) β(t) =

∫

D1

U1dτ1 +

∫

D2

U3dτ1dτ2 +

∫

D3

U4dτ1dτ3,

(3.2.4) N ′ = N(β′/β − ρ(N)), N(0) = N0

with N0 defined by (3.7),

(3.2.5) f = N/β,

(3.2.6)





D1U1 = −µ1U1 −
{

0, τ1 6∈ σ1,

αU1, τ1 ∈ σ1

+

{
0, τ1 6∈ σ2,

U4|τ3=h−T0
, τ1 ∈ σ2,

τ1 ∈ D1, t > 0,

U1|τ1=T0
=
∫
σ
U2|τ2=T0

dτ1, t ≥ 0,

U1|t=0 = u10 in D1,

[U1|τ1=Ts ] = 0, s = 1, 2, n+ 1, n+ 2, t ≥ 0;

(3.2.7)





D2U2 = −µ23U2, (τ1, τ2) ∈ D2, t > 0,

U2|τ2=0 = αb(t, τ1, N)U1, τ1 ∈ σ1, t ≥ 0,

U2|t=0 = u20 in D2;

(3.2.8)





D2U3 = −µ3U3, (τ1, τ2) ∈ D2, t > 0,

U3|τ2=0 = αU1, τ1 ∈ σ1, t ≥ 0,

U3|t=0 = u30 in D2;

(3.2.9)





D3U4 = −µ4U4, (τ1, τ3) ∈ D3, t > 0,

U4|τ3=0 = U3|τ2=T0
, τ1 ∈ σ, t ≥ 0,

U4|t=0 = u40 in D3.

Integration of Eqs. (3.2.6)–(3.2.9) along characteristics yields:

(3.2.10) U2 =





u20(τ1 − t, τ2 − t) exp{−
∫ τ2
τ2−t µ23(x+ t− τ2, x+ τ1 − τ2, x)dx}, t ≤ τ2,

(αU1)|(t−τ2,τ1−τ2)b(t− τ2, τ1 − τ2, N(t− τ2))×
exp{−

∫ τ2
0
µ23(x+ t− τ2, x+ τ1 − τ2, x)dx}, t ≥ τ2;
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(3.2.11) U3 =

{
u30(τ1 − t, τ2 − t) exp{−

∫ τ2
τ2−t µ3(x+ t− τ2, x+ τ1 − τ2, x)dx}, t ≤ τ2,

(αU1)|(t−τ2,τ1−τ2) exp{−
∫ τ2

0
µ3(x+ t− τ2, x+ τ1 − τ2, x)dx}, t ≥ τ2;

(3.2.12) U4 =





f1(t, τ1, τ3), t ≤ τ3 + T0,

(αU1)|(t−τ3−T0,τ1−τ3−T0) exp{−
∫ T0

0
µ3(x+ t− τ3 − T0, x+ τ1−

τ3 − T0, x)dx−
∫ τ3

0
µ4(x+ t− τ3, x+ τ1 − τ3, x)dx}, t ≥ τ3 + T0

with

f =





u40(τ1 − t, τ3 − t) exp{−
∫ τ3
τ3−t µ4(x+ t− τ3, x+ τ1 − τ3, x)dx}, t ≤ τ3,

u30(τ1 − t, T0 + τ3 − t) exp{−
∫ T0

T0+τ3−t µ3(x+ t− τ3 − T0, x+ τ1−
τ3 − T0, x)dx−

∫ τ3
0
µ4(x+ t− τ3, x+ τ1 − τ3, x)dx}, τ3 ≤ t ≤ τ3 + T0;

(3.2.13) U1 =





u10(τ1 − t) exp{−
∫ τ1
τ1−t µ̃1(x+ t− τ1, x)dx}+

∫ τ1
τ1−t U4(y + t− τ1,

y, h− T0) exp{−
∫ τ1
y
µ̃1(x+ t− τ1, x)dx}dy, t ≤ τ1 − τ s1 ,

U1(τ s1 + t− τ1, τ s1 ) exp{−
∫ τ1
τs1
µ̃1(x+ t− τ1, x)dx}+

∫ τ1
τs1
U4(y + t− τ1, y, h− T0) exp{−

∫ τ1
y
µ̃1(x+ t− τ1, x)dx}dy,

[U1(t, τ i1)] = 0, t ≥ τ1 − τ s1 , τ1 ∈ (τ s1 , τ
s+1
1 ], s = 0, . . . , 4, i = 1, 2, 3, 4,

where τ j1 = Tj for j = 0, 1, 2, τ 3
1 = Tn+1, τ

4
1 = Tn+2, τ

5
1 =∞, and

µ̃1 =

{
µ1, τ1 6∈ σ1,

µ1 + α, τ1 ∈ σ1,
U4(t, τ1, h− T0) = 0 for τ1 6∈ σ2.

We must add Eq. (3.2.6)2 to system (3.2.10)–(3.2.13). The functions U2(t, τ1, T0) and

U4(t, τ1, h− T0) involved in Eqs. (3.2.6)2 and (3.2.13) are defined as follows:

(3.2.14) U2|τ2=T0
=





u20(τ1 − t, T0 − t) exp{−
∫ T0

T0−t µ23(x+ t− T0,

x+ τ1 − T0, x)dx}, t ≤ T0,

(αU1)|(t−T0,τ1−T0)b(t− T0, τ1 − T0, N(t− T0))×

exp{−
∫ T0

0
µ23(x+ t− T0, x+ τ1 − T0, x)dx}, t ≥ T0;

(3.2.15) U4|τ3=h−T0
=





f1(t, τ1, h− T0), t ≤ h,
(αU1)|(t−h,τ1−h) exp{−

∫ T0

0
µ3(x+ t− h, x+ τ1 − h, x)dx−

∫ h−T0

0
µ4(x+ t− h+ T0, x+ τ1 − h+ T0, x)dx}, t ≥ h

Because of the delays T0 and h system (3.2.6)2 and (3.2.10)–(3.2.13) has a retarded

structure. Equation (3.2.13)1 defines U1(t, τ1) for t ∈ [0, τ1 − T0] with τ1 ∈ [T0, T1]. Then

from Eq. (3.2.13) we find U1(t, τ1) for t ∈ [0, τ1 − T0] with τ1 ∈ [T1, T2]. Due to the

delay h, by (3.2.15), we determine U4(t, τ1, h− T0) for t ∈ [0, τ1 − T0] with τ1 ∈ [T2, T3].

Now going along the axis τ1 by the step h, we construct U1(t, τ1) for t ∈ [0, τ1 − T0] and

τ1 ∈ [T0, Tn+2]. Finally, Eq. (3.2.13) defines U1(t, τ1) for t ∈ [0, τ1−T0] and τ1 ∈ [Tn+2,∞).

Then from (3.2.11) and (3.2.12) we find U3 and U4 for t ≤ τ1 − T0 and all τ1, τ2, and τ3.
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It is easy to see that, for t ≥ τ1 − T0,

(3.2.16)





U1(t, τ1) = U1(T0 + t− τ1, T0)v1(t, τ1), v1(t, T0) = 1,

U3(t, τ1, τ2) = U1(T0 + t− τ1, T0)v3(t, τ1, τ2),

U4(t, τ1, τ3) = U1(T0 + t− τ1, T0)v4(t, τ1, τ3),

where v3, v4, and v1 satisfy Eqs. (3.2.11)–(3.2.13) and (3.2.15) with Ui replaced by vi.

Starting with v1(t, T0) = 1 for t ≥ 0 and using the argument above, we construct v1, v3,

and v4 for t ∈ [τ1 − T0,∞) with all τ1.

It remains to determine U2(t, τ1, τ2), U1(t, T0), β(t), N(t), and f(t) and then, by

(3.2.2), find u1, u2, u3, and u4. Knowing, by (3.2.10)1, U2 for t ≤ τ2 and hence U2(t, τ1, T0)

for t ∈ [0, T0], from (3.2.6)2 we find U1(t, T0) ∈ C0([0, T0])∩C1([0, T0)). Then, by (3.2.16),

we define U1, U3, and U4 for 0 ≤ t ≤ τ1 and all τ1 and, by (3.2.3), β(t) ∈ C1([0, T0]).

Now, by (3.2.4) and (3.2.5) we define N ∈ C1([0, T0]) and f ∈ C1([0, T0]), respectively.

Finally, Eq. (3.2.10) defines U2 for 0 ≤ t ≤ T0 + τ2 and all τ1 and τ2. Since U2(t, τ1, T0)

is known for t ∈ [0, 2T0], from (3.2.6)2 we find U1(t, T0) ∈ C0([T0, 2T0]) ∩ C1((T0, 2T0]).

Then from (3.2.16) we find U1, U3, and U4 for t ∈ [τ1, T0 + τ1] and all τ1. Repeating the

procedure above, we construct U1, U2, U3, U4, f,N, and, by (3.2.2), u1, u2, u3, and u4 for

t ∈ [0, t∗]. It is easy to see that the functions u1, u2, u3, and u4 are continuous everywhere

and C1-functions in the domains given in theorem. This completes the proof.

3.3. The asymptotic behavior of the general solution. In this section we examine prob-

lem (3.1)–(3.7) and (3.1.1) with general initial distributions and study the large time

behavior of its solution.

Theorem 3. Let constants T0 < h < T1 and functions u10, . . . , u40, µ1, . . . , µ4, α, and b

be positive and: α and b ∈ C1(σ1), µ1 ∈ C1(D1), µ2, µ3 ∈ C1,0(D2), µ4 ∈ C1,0(D3), u10 ∈
C1(D1) ∩ L1(D1) and u′10 ∈ L1(D1), u20, u30 ∈ C1(D2), u40 ∈ C1(D3). Then the large

time behavior of the solution of the linear problem (3.2.6)–(3.2.9), which in the case under

consideration does not involve N, is given by the following:

(3.3.1) Ui ∼ Ũi = ηvi exp{λ0(T0 + t− τ1)}, i = 1, 2, 3, 4,

where the constant η is determined in (3.3.5), v1(τ1), v2(τ1, τ2), v3(τ1, τ2), and v4(τ1, τ3)

are defined by Eqs. (3.1.8)–(3.1.11), and λ0 is the unique real root of (3.1.3) satisfying

(3.1.4).

Theorem 4. Let ρ and ρ′ be positive for all N > 0 and ρ ∈ C1([0,∞)). Then under

conditions of Theorem 3 the unique solution of problem (3.1)–(3.7) and (3.1.1) has the

following large time asymptotics:

ui ∼ viN(t)(β̃)−1 exp{−λ0τ1}, i = 1, 2, 3, 4,

with

β̃ =

∫

D1

v1(τ1) exp{−λ0τ1}dτ1 +

∫

D2

v2(τ1, τ2) exp{−λ0τ1}dτ1dτ2

+

∫

D3

v3(τ1, τ3) exp{−λ0τ1}dτ1dτ3
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and N(t) the unique solution of

(3.3.2) N ′ = N(λ0 − ρ(N)), N(0) = Ñ0 = β̃η exp{λ0T0}.
Moreover, for i = 1, 2, 3, 4,

ui −−→
t→∞

0 if λ0 ≤ ρ(0),

ui −−→
t→∞

∞ if supN≥0 ρ(N) < λ0 <∞,
ui −−→

t→∞
viN∗(β̃)−1 exp{−λ0τ1} if λ0 > 0 and there N∗ > 0 such that ρ(N∗) = λ0.

Proof of Theorem 3. In the case under consideration U1, U2, U3, and U4 of Sect. 3.2,

for t ≥ τ1 − T0, can be written as follows:

(3.3.3) Ui = U1(T0 + t− τ1, T0)vi, i = 1, 2, 3, 4,

where U1(t, T0) is defined by Eq. (3.2.6)2. Now we find an upper bound for U1(t, T0). It

follows from (3.2.6)2 that

U1(t, T0) =





∫
σ
U2(t, τ1, T0)dτ1, 0 ≤ t ≤ T1,

∫ t+T0

T1+T0
U1(T0 + t− τ1, T0)v2(τ1, T0)dτ1+

∫ Tn+1+T0

t+T0
u2(t, τ1, T0)dτ1, t ∈ [T1, Tn+1],

∫
σ
U1(T0 + t− τ1, T0)v2(τ1, T0)dτ1, t ≥ Tn+1.

Hence

U1(t, T0) ≤ ξ
∫ t−T1

t−Tn+1

U1(x, T0)dx, ξ = sup
τ1∈σ2

v2(τ1, T0), t ≥ Tn+1.

Now

U1(t, T0) ≤ ηξ, η =

∫ Tn+1

0

U1(x, T0)dx, t ∈ [Tn+1, Tn+1 + T1];

then

U1(t, T0) ≤ ξ
∫ Tn+1+T1

T1

U1(x, T0)dx ≤ ξ
∫ Tn+1

T1

U1(x, T0)dx+ ξ

∫ Tn+1+T1

Tn+1

U1(x, T0)dx

≤ ξη(1 + T1ξ),

∫ Tn+1+T1

T1

U1(x, T0)dx ≤ η(1 + T1ξ), t ∈ (Tn+1 + T1, Tn+1 + 2T1],

and, by induction,

U1(t, T0) ≤ ξ
∫ Tn+1+mT1

mT1

U1(x, T0)dx ≤ ξη(1+T1ξ)
m, t ∈ (Tn+1+mT1, Tn+1+(m+1)T1].

Therefore there exists the Laplace transform f(λ, T0) of U1(t, T0),

f(λ, T0) =

∫ ∞

0

U1(t, T0) exp{−tλ}dt =

∫

σ

dτ1

∫ τ1−T0

0

U2(t, τ1, T0) exp{−tλ}dt

+

∫

σ

dτ1

∫ ∞

τ1−T0

U1(T0 + t− τ1, T0)v2(τ1, T0) exp{−tλ}dt

= I(λ) +R(λ)f(λ, T0),
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where

I(λ) =

∫

σ

dτ1

∫ τ1−T0

0

U2(t, τ1, T0) exp{−tλ}dt, R(λ) =

∫

σ

v2(τ1, T0) exp{λ(T0 − τ1)}dτ1.

Hence

(3.3.4) f(λ, T0) = I(λ)(1−R(λ))−1.

Roots of R(λ) are discussed in Sect. 3.1. The function I(λ) is analytic and using the

method of a rectangle contour integral (see [1]), we evaluate the inverse Laplace transform

obtaining

(3.3.5) U1(t, T0) ∼ Ũ1(t, T0) := η exp{tλ0}, η = −I(λ0)/R′(λ0)

with λ0 the unique real root of Eq. (3.1.3) satisfying (3.1.4). Now, by (3.3.3), (3.3.1)

follows.

Proof of Theorem 4. Differentiating (3.2.3) and (3.2.6)2 with respect to t and tak-

ing into account the continuity of U1, U2, U3, and U4 at the sets of discontinuity of

∂tU1, . . . , ∂tU4, we get

(3.3.6) β′ =

∫

D1

∂tU1dτ1 +

∫

D2

∂tU3dτ1dτ2 +

∫

D3

∂tU4dτ1dτ3

and

(3.3.7) U ′1(t, T0) =

∫

σ

∂tU2(t, τ1, T0)dτ1.

The method used to derive Eqs. (3.3.4) and (3.3.5) may be applied to Eq. (3.3.7) to

obtain
∫ ∞

0

U ′1(t, T0) exp{−tλ}dt = I1(λ)(1−R(λ))−1,

I1(λ) =

∫

σ

dτ1

∫ τ1−T0

0

∂tU2(t, τ1, T0) exp{−tλ}dt.

Hence, for large time,

U ′1(t, T0) ∼ −I1(λ0)(R′(λ0))−1 exp{tλ0}

where, by (3.3.3) with i = 2, (3.1.3), and (3.2.6)2 with t = 0,

I1(λ0) =

∫

σ

{U2(τ1−T0, τ1, T0) exp{λ0(T0− τ1)}−U2(0, τ1, T0)}dτ1 +λ0I(λ0) = λ0I(λ0).

This and (3.3.5) give

(3.3.8) U ′1(t, T0) ∼ λ0U1(t, T0)

and, by (3.3.6) and (3.3.2), β′/β ∼ λ0 for large time. Therefore Eq. (3.3.2) is the asymp-

totic form of (3.2.4). Finally, from Eqs. (3.3.1), (3.2.3), (3.2.5), (3.2.2), and (3.3.2) the

conclusion follows.
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4. The dispersing population dynamics model. In this section we generalize the

model in Sect. 3 by including random spatial diffusion in Ω, an open bounded domain

in Rm with extremely inhospitable boundary ∂Ω (or without migration across it), and

examine separable and steady-state solutions in the case of constant diffusion modulus κ

and stationary vital rates.

The general model reads as follows:

(4.1)





D1u1 − κ∆u1 = −ν1(t, τ1, x,N)u1−
{

0, τ1 6∈ σ1,

α(t, τ1, x,N)u1, τ1 ∈ σ1

+

{
0, τ1 6∈ σ2,

u4|τ3=h−T0
, τ1 ∈ σ2,

τ1 ∈ D1, x ∈ Ω, t > 0,

u1|τ1=T0
=
∫
σ
u2|τ2=T0

dτ1, t ≥ 0, x ∈ Ω,

u1|t=0 = u10 in D1 × Ω,

[u1|τ1=Ts ] = 0, t ≥ 0, x ∈ Ω, s = 1, 2, n+ 1, n+ 2,

Bu1|∂Ω = 0, t ≥ 0, τ1 ∈ D1;

(4.2)





D2u2 − κ∆u2 = −
(
ν2 + ν3(t, τ1, τ2, x,N)

)
u2, (τ1, τ2) ∈ D2, x ∈ Ω, t > 0,

u2|τ2=0 = α(t, τ1, x,N)b(t, τ1, x,N)u1, τ1 ∈ σ1, t ≥ 0, x ∈ Ω,

u2|t=0 = u20 in D2 × Ω,

Bu2|∂Ω = 0, t ≥ 0, (τ1, τ2) ∈ D2;

(4.3)





D2u3 − κ∆u3 = −ν3(t, τ1, τ2, x,N)u3, (τ1, τ2) ∈ D2, x ∈ Ω, t > 0,

u3|τ3=0 = α(t, τ1, x,N)u1, τ1 ∈ σ1, x ∈ Ω, t ≥ 0,

u3|t=0 = u30 in D2 × Ω,

Bu3|∂Ω = 0, (τ1, τ2) ∈ D2, t ≥ 0;

(4.4)





D3u4 − κ∆u4 = −ν4(t, τ1, τ3, x,N)u4, (τ1, τ3) ∈ D3, x ∈ Ω, t > 0,

u4|τ3=0 = u3|τ2=T0
, τ1 ∈ σ, t ≥ 0, x ∈ Ω,

u4|t=0 = u40 in D3 × Ω,

Bu4|∂Ω = 0, (τ1, τ3) ∈ D3, t ≥ 0;

(4.5) N =

∫

D1

u1dτ1 +

∫

D2

u3dτ1dτ2 +

∫

D3

u4dτ1dτ3, t ≥ 0, x ∈ Ω,

where ∆ is the Laplace operator in Rm, B = γ1(t, x)∂ν + γ2(t, x) with nonnegative γ1

and γ2 and such that γ1 + γ2 > 0 on ∂Ω, and ∂ν the outward normal derivative on

∂Ω. We emphasize that ν2 does not depend on N. Starting with the initial distributions

u10, . . . , u40 satisfying corresponding compatibility conditions, we want to describe the

evolution of u1, u2, u3, and u4 satisfying (4.1)–(4.5).

4.1. Separable solutions. In this section we restrict ourselves to the case of constant κ

and vital rates given by (3.1.1) and seek solutions of Eqs. (4.1)–(4.5) in the form

(4.1.1) ui = f(t, x)ui0, f(0, x) = f0(x), ui0 = Uvi exp{λ0(T0 − τ1)}, i = 1, 2, 3, 4

with a positive constant U and functions v1, . . . , v4 and the constant λ0 determined in
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Sect. 3 by (3.1.8)–(3.1.11), (3.1.3), and (3.1.4). Direct substitution in (4.1)–(4.5) gives

(4.1.2) N = fβ, β =

∫

D1

u10dτ1 +

∫

D2

u20dτ1dτ2 +

∫

D3

u30dτ1dτ3,

and

(4.1.3)





∂tN = (λ0 − ρ(N))N + κ∆N, t > 0, x ∈ Ω,

N(0, x) = βf0(x), x ∈ Ω,

BN |∂Ω = 0, t ≥ 0.

The solvability of problem (4.1.3) with the homogeneous Dirichlet boundary condition

(γ1 = 0, γ2 = 1) and the asymptotic behavior of its solution are well known (see, e.g.,

[2], [5], [9], [10]). Let Λ1 > 0 be the first eigenvalue of the Dirichlet problem for −∆ in

Ω. The asymptotics of N enables us to formulate

Theorem 5. Let ∂Ω ∈ C2+δ, δ ∈ (0, 1) and f0 ∈ C0(Ω) be positive in Ω and f0|∂Ω = 0.

Then under the conditions of Theorem 1 problem (4.1)–(4.5) and (3.1.1) with the ho-

mogeneous Dirichlet boundary condition has a one-parameter class of separable solutions

defined by Eqs. (4.1.1)–(4.1.3) and (3.1.8)–(3.1.11). Any separable solution, positive in

Ω, is such that

(u1(t, ·), u2(t, ·), u3(t, ·), u4(t, ·)) −−→
t→∞

0 uniformly on (D1 × Ω, D2 × Ω, D2 × Ω, D3 × Ω)

if λ0 ≤ κΛ1 + γ with γ = infN≥0 ρ(N). If λ0 > κΛ1 and there exists N∗ > 0 such that

ρ(N∗) = λ0, then

(u1(t, ·), u2(t, ·), u3(t, ·), u4(t, ·)) −−→
t→∞

(u10, u20, u30, u40)Ñ/β

uniformly on (D1 × Ω, D2 × Ω, D2 × Ω, D3 × Ω), where Ñ(x) is the solution of

(4.1.4) −κ∆Ñ = Ñ(λ0 − ρ(Ñ)), Ñ |∂Ω = 0,

positive in Ω.

This theorem is analogous to that of Langlais [5] proved for the Gurtin and MacCamy

model [3]. Equation (4.1.4) shows that λ0 is an eigenvalue of the Dirichlet problem for

−κ∆ +ρ(Ñ)I in Ω, where I is the identity operator. The structure of separable solutions

of model (4.1)–(4.5) and (3.1.1) with the homogeneous Neumann boundary condition

(γ1 = 1, γ2 = 0) is given by

Theorem 6. Let T0 < h < T1 and functions f0, µ1, . . . , µ2, α, and b be positive, ρ ∈
C1(R1) and such that ρ > 0 for N 6= 0 and ρ′ > 0 for N > 0, f0 ∈ C0(Ω), ∂νf0|∂Ω = 0,

α, b ∈ C1(σ1), µ1 ∈ C0(D1), µ2, µ3 ∈ C1,0(D2), µ4 ∈ C1,0(D3), and ∂Ω ∈ C2+δ, δ ∈
(0, 1). Then problem (4.1)–(4.5) and (3.1.1) with the homogeneous Neumann boundary

condition has a one-parameter class of nonnegative separable solutions of type (4.1.1).

Any nonnegative (nontrivial) separable solution is such that:

(u1(t, ·), u2(t, ·), u3(t, ·), u4(t, ·)) −−→
t→∞

0 uniformly on (D1 × Ω, D2 × Ω, D2 × Ω, D3 × Ω)

if λ0 ≤ 0.
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If λ0 > 0 and there exists N∗ > 0 such that ρ(N∗) = λ0, then

(u1(t, ·), u2(t, ·), u3(t, ·), u4(t, ·)) −−→
t→∞

(u10, u20, u30, u40)N∗/β

uniformly on (D1 × Ω, D2 × Ω, D2 × Ω, D3 × Ω).

The proof is based on the asymptotic behavior of problem (4.1.3), which for ρ(N) =

aN with a a constant is given in Sect. 5.7 of [9]. The asymptotics of N in the general

case of ρ(N) can be obtained by the same method.

Remark 1. Let u10 = f0(x)ũ10(τ1), ui0 = f0(x)ũi0(τ1, τ2), i = 2, 3, u40 = f0(x)ũ40(τ1,

τ3), where f0(x) satisfies the condition of Theorem 5, ũj0 satisfies the conditions of The-

orem 1 for uj0, and µj , α, b, ρ satisfy conditions of Theorem 1. Then problem (4.1)–(4.5),

(3.1.1) with the homogeneous Dirichlet boundary condition has a separable solution of

the form u1 = f(t, x)U1(t, τ1), ui = f(t, x)Ui(t, τ1, τ2), i = 2, 3, u4 = f(t, x)U4(t, τ1, τ3),

f(0, x) = f0(x), Uj |t=0 = ũj0, j = 1, . . . , 4, whose asymptotic behavior can also be deter-

mined.

4.2. Steady-state solutions. In this section we consider the stationary case of problem

(4.1)–(4.5), (3.1.1). In this case all functions in (4.1)–(4.5), (3.1.1) are independent of t

and, hence, ui = ui0 for all t ≥ 0 with unknown ui0.

Theorem 7. Let ∂Ω ∈ C2+δ. Then under the conditions of Theorem 1 any nontriv-

ial steady-state solution of problem (4.1)–(4.5), (3.1.1) with the homogeneous Dirichlet

condition is separable, i.e. any separable solution has the form (u1, . . . , u4) = (u10, . . . ,

u40)Ñ/β with u10, . . . , u40, β, and Ñ(x) defined in (4.1.1), (4.1.2), and by (4.1.4), re-

spectively.

Proof. We use the Langlais method [5]. Let u1, . . . , u4, and N represent a nontrivial

steady-state solution of (4.1)–(4.5) and let ηj and wj(x), j ≥ 1, w1 > 0 in Ω be the

eigenvalues and eigenfunctions of the Dirichlet problem for −κ∆wj + ρ(Ñ(x))I in Ω,

that is

(4.2.1) −κ∆wj + ρ(Ñ(x))wj = ηjwj in Ω, wj |∂Ω = 0.

Then for u1, . . . , u4 ∈ L2(Ω) we have

(4.2.2)





u1 =
∑∞

j=1 u1jwj(x)v1j(τ1) exp{ηj(T0 − τ1)}, v1j(T0) = 1,

ui =
∑∞
j=1 u1jwj(x)vij(τ1, τ2) exp{ηj(T0 − τ1)}, i = 2, 3,

u4 =
∑∞

j=1 u1jwj(x)v4j(τ1, τ3) exp{ηj(T0 − τ1)}
where the constants u1j and functions vsj are to be determined. Direct substitution of

(4.2.2) into (4.1)–(4.5) gives Eqs. (3.1.7) with vs replaced by vsj and equations u1j{1 −∫
σ
v2j(τ1, T0)× exp{ηj(T0 − τ1)}dτ1} = 0 for u1j . Solving these equations for vsj , we get

vsj = vs with vs defined by (3.1.8)–(3.1.11). Therefore equations for u1j become

u1j

{
1−

∫

σ

v2j(τ1, T0) exp{ηj(T0 − τ1)}dτ1
}

= 0.

This means that either u1j = 0 or ηj = λ0, and we conclude that for at most one

j we have u1j 6= 0 because (3.1.3) has a unique real root λ0. For this j, ηj = λ0. Thus
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the series (4.2.2) have at most one non-zero term and u1, . . . , u4 represent a separable

solution. The proof is complete.

Corollary. When λ0 < κΛ1 + γ then there exists no nontrivial steady-state solution of

the Dirichlet problem for (4.1)–(4.5), (3.1.1).

5. Discussion. In this paper we presented two asexual density-dependent population

dynamics models with age-dependence and child care. One of them includes the random

diffusion in a bounded domain with an extremely inhospitable boundary (or without mi-

gration across it), while in the other the population is assumed to be non-dispersing.

In both cases the population consists of the young (under maternal care), juvenile,

and adult classes. The analysis is performed for the case when death moduli of the

juvenile and adult classes in both models are decomposed into the sum of two terms.

The first presents death rate by the natural causes, while the other describes the en-

vironmental influence depending on the total size of juvenile and adult classes. It is

assumed that young offspring are protected from density related increases of mortal-

ity dependent on N directly and that their death rate consists of their natural one

independent of N plus the death rate of their mothers. Adult individuals have the

reproductive and post-reproductive age grades. Individuals of reproductive age are di-

vided into fertile singles (having no offspring under maternal care at the given time),

mothers (taking care of offspring), and temporarily sterile singles (individuals for whom

child care time is over but whose age still is in the sterility interval after delivery).

Such splitting of the population is natural for some species of animals, that form pairs

only for period of mating. For some species the temporarily sterile singles may be ne-

glected.

A global existence and uniqueness result is established for the non-dispersing popu-

lation model (3.1)–(3.7) with vital rates (3.2.1). The assumption that α is independent

of N is caused by technical reasons. From Eqs. (3.2.11)–(3.2.15) and (3.2.3) we see, that

involving of N into the set of arguments of α leads to a nonlinear integro-differential

equation for N of type (3.2.4) with β depending on N.

In the case of vital rates of type (3.1.1) the separable solutions of model (3.1)–(3.7)

and the long time asymptotics of the unique solution of this model with vital rates

(3.1.1) and the general initial distributions are studied. It is shown, that this asymp-

totics is a separable solution of the same model. It is known (see, e.g., [6], [7], [12], and

references there) that this assertion is true for the asexual Sharpe-Lotka-McKendrick-

von Foerster model, as well. Any steady-state solution of the dispersing population

model (4.1)–(4.5) (as in the case of the asexual Sharpe-Lotka-McKendrick-von Foerster

model) with the homogeneous Dirichlet boundary condition has the separable struc-

ture.

The child care is included by adding the death rate of mothers to the natural death

rate of their offspring and by letting young offspring be protected from the Verhulst

density factor. The last assumption is of a technical type which enabled us to split the

models of limited population into the models of non-limited one plus equation for N and,

of course, let the existence of separable solutions.
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