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Abstract. Two asexual density-dependent population dynamics models with age-dependence
and child care are presented. One of them includes the random diffusion while in the other
the population is assumed to be non-dispersing. The population consists of the young (under
maternal care), juvenile, and adult classes. Death moduli of the juvenile and adult classes in both
models are decomposed into the sum of two terms. The first presents death rate by the natural
causes while the other describes the environmental influence depending on the total density of
the juvenile and adult individuals. An existence and uniqueness theorem is proved, a class of
separable solutions is constructed, and the large time behavior of the general and separable
solutions is given for the non-dispersing population with stationary vital rates. The steady-state
and separable solutions are constructed and the large time behavior of the separable solutions
is studied for the population with the spatial dispersal.

1. Introduction. The Sharpe-Lotka-McKendrick-von Foerster (see, e.g., [12]) and
Hoppensteadt-Staroverov-Hadeler (see, e.g., [4]) models are well known in mathemati-
cal biology. The first one (or its Gurtin-MacCamy modification [3]) is usually used to
describe the dynamics of asexual age-structured populations. The other one is the basic
model in mathematical demography and describes the evolution of populations forming
permanent pairs. Both models do not treat the child care phenomenon. Moss de Oliveira
(see [8] and references therein) was the first to study consequences of this phenomenon.
She introduced parental care into the Penna bit-string model (see, e.g., [8]) which is
well known in the computer simulations of biological ageing. In asexual version of this
model each individual is represented by a computer string of 32 bits. In sexual version
each individual has two bit strings. Some results of biological ageing obtained by using
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Monte Carlo simulations for the Penna model are reviewed in [8]. In particular, ageing
of a semelparous species (i.e., a species that reproduce only once in life) and the spatial
distribution of the populations are studied.

In [11] we proposed two non-dispersing population dynamics models with age structure
and maternal care: one for bisexual populations without formation of permanent pairs
and the other for asexual ones producing offspring at fixed ages. In contrast to the Penna
aging model those models are represented by systems of PDE (or integro-PDE) equations
and can be examined analytically.

In the present paper we generalize the model in [11] for the asexual population and
present two asexual population dynamics models taking into account age structure, child
care, and a population density factor describing an environmental influence. Both models
are represented by systems of integro-PDE. One of the models includes random diffusion
in a bounded domain with an extremely inhospitable boundary (or without migration
across it) while in the other the population is assumed to be non-dispersing. In both
cases the population consists of the young, juvenile, and adult classes. The young and
juvenile individuals are of pre-reproductive age, while the adults have reproductive and
post-reproductive age grades. Ages of production of offspring are not fixed in theses
models. We assume that all young individuals are under maternal care and all adults
of reproductive age are divided into fertile singles (having no offspring under mater-
nal care at the given time), mothers (taking care of offspring), and temporarily ster-
ile singles (individuals for whom child care time is over but whose age still is in the
sterility interval after delivery). We also assume that young offspring and their mothers
are at the same position at every time and, in the case of the dispersing population,
move together with them. We let the vital rates of the juvenile and adult individuals
depend on their total density N and, following Moss de Oliveira [8], we assume that
young offspring are subject to natural mortality and are protected from density related
increases of mortality dependent on N directly. We also adopt the strong child care
law by which all young offspring are killed if their mother dies. Therefore, the death
rate of young individuals consists of their natural death rate independent of N plus
the death rate of their mothers. Such the division of population is natural for some
species of mammals, e.g. the European polecat species (mustela putorius) living in Eng-
land. In particular, these models can be applied to describe the evolution of semelparous
species.

The description of the long time behavior of the population subject to the models
below is one of goals of this paper.

The paper is organized as follows. In Sec. 3, which consists of three subsections,
we present and analyze a non-dispersing population dynamics model. In 3.1 separable
solutions and their large time behavior are studied. In 3.2 we prove an existence and
uniqueness theorem, and in 3.3 we give the large time behavior of the general solution
in the case of stationary vital rates. Section 4 is devoted to the dynamics of a dispersing
population and consists of two subsections. In 4.1 the separable solutions and their large
time asymptotics are examined, and in 4.2 the steady-state solutions are studied. A
discussion follows in Sec. 5, including some comments about the models.
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2. Notation. The following notation is used for the analysis of the population dynamics
with child care.

R™ : the Euclidean space of dimension m with = = (z1,..., %),

% : the diffusion modulus,

To, h, T1,(To < h < Ty): the child care period, sterility period after delivery, and
maturation period, respectively,

(0,71) = (0,Tp) U [To, T1): the pre-reproductive age interval which consists of (0,7p)
(the young) and [Ty, T1) (the juvenile) age intervals,

[Ty, 00): the adult age interval,

Tiy1 =T1+ih, i =0,1,...,n: age of production of the feasible (i + 1)st generation,

o1 = (T1,Tni1), @1 = [T1, Tyy1): the delivery age interval,

(T, Th+1 + Tp): the child care age interval,

(Th42,00), Thto = Thy1 + h: the post-reproductive age interval,

oy = (T, Thy2), 02 = [T, Tyl

o= (T1+To,Thy1+Tv), o = [T1 + To, Try1 + To),

Dy = (Tp,00), Dy = [Tp,00), Dy = Dy \ {T1, T2, Trs1, Tnia}

Dy = {(11,72) : 2 € (0,Tpy), 71 € (T1 + 72, Tyyp1 + 72) },

?2 ={(11,72) : 2 € [0,To], 71 € [Ty + 72, Tpy1 + T2},

Dg = EQ \ {(’7’1,7’2) 1T — T2 = Tg},

Dg = {(Tl,’l'g) 1 T3 c (O, h — To), T1 c (Tl + TO +7’3,Tn+1 + TO —+ Tg)},

?3 = {(7’1,7’3) 1 T3 € [O,h — To], T € [Tl +TH + T3,Tn+1 + Ty + 7'3]},

Dg = 53 \ {(71,7'3) T — T3 = T2 +T0},

Oy = 0/0t, 9, = 0/0T;,

@1 = &g +(97-1, @2 = 8t +a7-1 +a~,-2, @3 = 8t +871 +a~,-3,

C%(D) (resp. C°(D)): the class of bounded continuous functions in D (resp. D), where
D is a domain not necessarily bounded and D the closure of D,

CY(D) (resp. C*(D)): a class of bounded continuous functions f(z1,..., T,,) in D
(resp. D) with 9,, f € C°(D) (resp. C°(D)),i=1,...,m,

C%1+-9(D): the class of bounded continuous functions f(xy,...,o,,)in D with d,, f €
(D),

L?(D),(p = 1,2): the standard Banach space of functions f with norm ||f|| =
(fp |f (@) [Pdz)/P.

uy(t, 71, x): the age-space-density of individuals aged 7 at time ¢ at the position z
who are of juvenile, fertile single, or post-reproductive age,

us(t, 71, T2, x): the age-space-density of young offspring aged 75 at time ¢ at the position
x whose mothers are of age 7, at the same time ¢,

us(t, 71, T2, x): the age-space-density of individuals aged 7 at time ¢ at the position x
who care for offspring aged 75 at the same time ¢,

u4(t, 1,73, x): the age-space-density of individuals aged 7 at time ¢ at the position z
for whom child care time is over but who still have been in the temporarily sterile class
for 73 units of time (i.e. for whom time 73 is passed after the end of child care),

N(t,z): the total spatial density of the juvenile and adult individuals at time ¢ at the
location z,
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a(t, 71,2, N)dt: the probability for individuals aged 7, at time ¢ to produce offspring
at the location z in the time interval [t,t + dt],

a(t, 7,2, N)b(t, 71,2, N): the birth rate of offspring at time ¢ at the location z whose
mothers are of age 7 at the same time ¢,

vi(t, 1,2, N): the death rate of individuals aged 7 at time ¢ at the position  who
are of juvenile, fertile single, or post-reproductive age,

vo(t, 1,72, z): the death rate of young offspring aged 7o at time ¢ at the location x
whose mothers are of age 7 at the same time ¢,

v3(t, 1, T2, x, N): the death rate of individuals aged 7 at time ¢ at the location  who
care for offspring aged 75 at the same time ¢,

vy(t, 71, 73,2, N): the death rate of individuals aged 7, at time ¢ at the position x for
whom child care time is over but who still have been in the temporarily sterile class for
73 units of time,

[t1]r,=7.]: & jump discontinuity of uy at 7 = Ts.

In what follows the child care period Ty, sterility period after delivery h, and matura-
tion period T3 are assumed to be constant. In the case of non-dispersing populations all

functions w1, ..., us,v1,...,s, b, a, utg, ..., usg, and ugg do not depend on the spatial
position z.

3. The non-dispersing population dynamics model. Using the balance law, we
derive the following density-dependent population dynamics model with child care:

Diur = —vi(t, 71, N)ui—
0) T1 gala 0) T1 ¢627
+

T € Dl,t > O,
3.1) a(t, 7, N)ui, 71 € o1 Ud|ry=h—Ty, T1 € 02,

'LL1|-,—1:T0 = fo’ u2|T2:T0dT17 t Z 07
Utli=0 = U0, T1 € Dy,

[Ui|r=1.]=0,t>0,5s=1,2,n+ 1,n+ 2;

Doug = —(1/2(2?,7'1,7'2) + Vg(t,rl,Tg,N))uQ, (11,72) € Do, t > 0,
(3.2) Us|ry=0 = a(t, 71, N)b(t, 71, N)uy(t, 71), 71 € 71, t >0,
ug|t=0 = ugo in Do;
Doug = —v3(t, 71,72, N)ug, (11,72) € Da,t > 0,
(3.3) Uzl ry=0 = a(t, 71, N)ui(t,71), m € 71, t > 0,
usli—o = uso in Da;
Dauy = —v4(t, 71,73, N)uy, (11,73) € D3,t > 0,
(3.4) Ug|rg=0 = U3|ry=Ty, T1 €T, >0,

Ua|t=0 = Uag in Ds;

(35) N = UldTl +/ Ungld’TQ +/ ’LL4d’7'1dT3, t Z 0.
D Do D3
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We stress that vy is N-independent and add the following compatibility conditions:
u10(To) = [ uso(71, To)dri,

(3 6) ’LLZO(Tl,O) = Ol(O,Tl, N())’Z,Ll()(’rl)b(o, Tl,No) in 51,
u30(71,0) = a(0, 71, No)uio(71) in 771,
u40(711,0) = uso (71, To) in 7,
(3.7) Ny :/ Uu10dT] +/ UuzodT1d T —|—/ ugodridrs, t > 0.
Dy Do D3

As follows from the foregoing, the given constants Ty, h, T} and functions b, a, vy,
ey Ve, u10(T1), w0 (71, T2), uso (71, 72), and wugo(71, 73), as well as the unknown ones uq, ug,
ug, and u4 must be positive, otherwise they have no biological significance. In this paper
we shall consider the case where Ty < h < T. This assumption is natural for some species
of populations. Starting with the initial distributions u1g, . . ., u40 we want to describe the
evolution of uq, ug, ug, and ug satisfying (3.1)—(3.7).

3.1. Separable solutions. In this section we shall examine model (3.1)—(3.7) with
{a =a(r), b=>b(m1), v1 = p1(11) + p(N), va = pa(71,T2),
vs = p3(71,72) + p(N), va = pa(71, 73) + p(N).
We look for solutions in the form

(312) U; = f(t)uio, u;0 = Uv; exp{)\(TO - 7'1)}, 1= 1,2,3,47 Ul(TQ) = l,f(O) = 1,

(3.1.1)

where U is a positive constant and f(t),v1(71), v2(71, 72),v3(71, T2), v4(71,73) and the
constant A are to be determined.

THEOREM 1. Let constants Ty < h < Ty and functions u1, ..., ps, , and b be positive
and: p € C([0,00)), p > 0 and p' > 0 for all N > 0, a,b € C(71), 11 € C°(Dy),
Ua, iz € CHO(Dy), pg € C1O(D3). Assume that \g is the unique real root of the equation

(3.1.3) R(\) =1, R(\) :== / va (71, To) exp{A(To — 71) }dm

g

satisfying the condition

(3.1.4) /D1 exp{ — Ao — /Tj pl(g)dg}da: < 0.

Then problem (3.1)-(3.7) and (3.1.1) has a one-parameter class of nonnegative separable
solutions of type (3.1.2) such that:

uy € C°([0,00) x D1) N CY([0,00) x Dy),

us € CO([0,00) x Da) N C([0,00) x Dy),s = 2,3,

uy € C°([0,00) x D3) N C([0,00) x Ds),
and, fort1=1,2,3,4,

ui ———0 if Ao < p(0),

Ui — 00 if sup > p(IN) < Ao < 00,
t—oo -
up —— w0 N« /Ny with No defined by (3.7) if Ao > 0 and there exists N, > 0 such
—00
that p(N.) = Ao.
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Proof. By direct substitution of (3.1.2) into (3.1)—(3.5) we get (3.1.3) and equations:

(3.1.5) N = fNo,
(3.1.6) N"=N(Xo = p(N)), N(0) = No,
07, V2 + Or, 02 = —vafin3(71, T2) in D2, v2(71,0) = a(11)b(11)v1(71), T1 € T1,

(317) 87—11)3 —|-87—21}3 = —U3U3 in Dy, 113(7'1,0) = (1(7'1)’01(7'1), T €01,
Or, Vg + Oryv4 = —vapig in D3, vy(11,0) = v3(11,T0), 1 €T,
0, 1 €01, 0, 71 € 0o,
+

in D1, v1(Tp) = 1,
a(r)vi, 1 € 01 1 va(To)

(3.1.8) vy = —pyvg — {

[v1(Ts)] =0, s =1,2,n+1,n+2. Here and in what follows the prime superscript indicates
differentiation and po3 = ps + p3. Note that Ny depends on Ag. Integration of (3.1.7)
yields

T2
(3.1.9) vg = (bavy)|(r,—7) exp{ - / pos(x + 71 — Tg,x)dx},
0

’U4(T1,h—TQ), T € 02

T2
(3.1.10) v3 = (1)](r—7) exp{ —/ us(x + 711 — Tg,x)daj},
0

To
(3.1.11) Vg = (QU1)|(ry—rs—Tp) exp{ - / ps(x + 1 — 13 — Tp, x)de—
0

T3
/ pa(x + 11 — T3, x)dx}
0

Observe that Eqgs. (3.1.8) and (3.1.11) can be easily solved. Substituting (3.1.9) into
(3.1.3), we get

L= [ a(§)b&)vi(§)expq —EX— Toﬂ23($+§73«")d$ d€.
/. {0 |

The distribution of roots of this characteristic equation is well known. Let A\;,¢ =1,2,...
be the complex roots. Then Re)\; < Ay, where A\g is a unique real root. Since 0 < p €
C([0,)), Eq. (3.1.6) has a unique global solution N < Ngexp{ot}. Its long time
behavior is given by Langlais and Milner in [6]. This completes the proof. m

3.2. The existence and uniqueness theorem. In this section we examine problem (3.1)—
(3.7) in the case where

(3.2.1) {a =a(t,m1), b=0b(t,71,N), v1 = p1(t, 1) + p(N), va = us(t, 71, 72),
vs = p3(t, 71, 72) + p(N), va = pa(t, 71, 73) + p(N).
Set
Q1 ={tmn):t=n,n1—To,1 —Th,71 — To,71 — Tny1,71 — Tpyo,71 =T, T2,
Tov1, T2}

Q= {(t,71,72) : 11 — e =T, t =10, 71,71 — To, 71 — T1, 71 — To, 71 — Ty},

Qs = {(t,71,73) : 1 —73 = To+Tp,t = 13, 73+T0, 71, 71 —To, 1 =T, 71 =T, 71 —Thy1 }
THEOREM 2. Let functions a,b, 1, ..., e, U10,--.,us0 and constants Ty < h < Ty be
positive and: p € C*([0,00)), p > 0 and p’ > 0 for all N > 0, o € C*([0,00) X T1), b €
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CH([0,00) x 71 x [0,00)), 1 € CO([0,00) x Dy), pa,pz € CHL0([0,00) x Da), py €
01’1’0([0,00) Xﬁg), U190 € Ol(ﬁl) ﬁLl(D1) and u’m € Ll(Dl), U20, U30 € 01(52), Uq0 €
CY(D3). Then, for any fized t. > 0, problem (3.1)-(3.7) and (3.2.1) has a unique positive
solution such that

uyp € CO([0,t.] x D1) N CYH(([0,t.] x D)\ @Q1),
us € CO([0,4.] x D2) NCH(([0,2.] x D2) \ Q2), s = 2,3,
ug € CO([0,t.] x D3) N CL(([0,t.] x D3)\ Q3), N € C([0,t.]).

Proof. We stress that jumps of all partial derivatives of wuq,...,us at the sets of their
discontinuity are bounded. Assuming that

{ul = f(t)Ul(t,Tl), U = f(t)Ug(t,Tl,Tg), ug = f(t)U3(t,T1,’7’2),
Uy = f(t)U4(taTlaT3)7 f(O) =1

and substituting for u;, ug, us, and ug in (3.1)—(3.5), we get:

(3.2.2)

(3.2.3) ﬁ(t) :/ Uidrm —|—/ Usdridrs +/ Usdrdrs,
Dy Do D3

(3.2.4) N’ = N(8'/8 = p(N)), N(0) = N
with Ny defined by (3.7),

(3:25) f= N8,
Oa T1 gala +{07 T1 ¢E27

T € Dy, t >0,
OéUl, T € 01

DU = - U — {
U4|T3=}L—Toa T € 02,

(3.2.6) Utlr=1, = [, Ualry=dr1, t > 0,
Utli=0 = u1o in Dy,
[Ui|lr=1.]=0,5s=1,2,n+1,n+2, t > 0;
Dol = —po3Us, (11,72) € Do, t > 0,
(3.2.7) Us|ry=o = ab(t,71, N)Uy, 11 € 71,1 >0,
Us|t=0 = ugo in Dy;
DoUs = —usUs, (11,72) € Da,t >0,
(3.2.8) Us|ryeo = aly, 71 €1, £ > 0,
Us|i=o = us3o in Da;
D3Uy = —puaUy, (11,73) € D3,t > 0,
(3.2.9) Uslrao = Us|ryer,, 71 €5, >0,
Usli=0 = ugo in Ds.
Integration of Eqgs. (3.2.6)—(3.2.9) along characteristics yields:
ugo(T1 — t, 70 — t) exp{— f:;_t pos(x +t — 1,2 + 11 — T2, x)da}, t < 7o,
(3.2.10) Uz = § (@U)|(t—rp, 7 —72)b(t = T2, 1 — T2, N(t — 72)) X
exp{— [ pa3(x +t — 7o, x + 71 — To, )da}, t > T;
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so11) U ugo(T1 —t, 70 — t) exp{— f;;_t ps(z 4+t — 1o, x+ 11 — T2, x)dx}, t < 7o,
(8.2.11) Us = { (QU1)|(t—rp,m —72) €XP{— fOT2 ps(x +t — 10,0 + 71 — T2, x)dT}, t > To;
fi(t,m1,73), t <713+ T,
(3.2.12) Uy = (aU1)|(t—ry—Tp,m —75—T) €XP{— fOTO ps(x +t—713 —To,x + 71—
73 — To, z)dx — f0T3 pa(r+t—73,04+ 71 — 73, 7)da}, t > 13+ Tp

with

ugo(T1 — t, 73 — t) exp{— f:;it palx +t— 13,0+ 711 — 13, 2)da}, t < T3,

f =9 uso(r —t,To + 73 — t) exp{— fTT()0+737tu3(x +t—13—Ty,x+ 11—

3 — To,w)dx — [° pa(x +t — 73,2 + 71 — 73, 2)d}, 73 < ¢ < 734 Tp;
uy0(71 — t) exp{— f;lft fr(x 4+t —m,x)dx} + f:llft Us(y +t — 1,
y, h — Tp) exp{— fyﬁ fi(x+t—m1,2)de}dy, t <71 — 75,
(3.2.13) Uy = Ui(r§ +t —1,77) exp{— f:lsl f1(z+t— 1, 2)de}+
f:fl Ugly+t—11,y,h—Ty) exp{— fyﬁ j1(x +t — 11, x)dz}dy,

[Ui(t, 7)) =0,t>71 — 75,11 € (Tf,rf“], s=0,...,4,1=1,2,3,4,

where 7{ =T} for j = 0,1,2, 73 = Ty41, 7¢ = Tpi2, Tp = 00, and

y TLE 01,
ﬁl{ul ! ¢ ! _ U4(t,T1,h*T0):0fOI' T1 §ZEQ.
pu1+ao, €07,

We must add Eq. (3.2.6), to system (3.2.10)—(3.2.13). The functions Usx(t, 71, Tp) and
Uy(t, 71, h —Tp) involved in Egs. (3.2.6), and (3.2.13) are defined as follows:

T
UQo(Tl —t,Ty — t) exp{— fTooft ,ugg(l’ +t —Tp,

x4+ 11— To,x)dz}, t < Tp,

(3.2.14) Uslryer, =
o (@U)|(t—19,m —10)b(t — To, 71 — To, N(t — Tp)) %

exp{— foTO pos(x +t — Ty, x + 11 — To, x)dw}, t = To;
fi(t, 7, h = To), t < h,
(3.215)  Utlryenozy = § (@0l —ny exp{=Jy " pa(@ +t —h,x+ 71 — h,z)do—
foh_TO pa(x +t—h+To,x+71 —h+To,z)dz}, t > h

Because of the delays T and h system (3.2.6), and (3.2.10)—(3.2.13) has a retarded
structure. Equation (3.2.13), defines Uy (¢, 1) for ¢t € [0, 71 — Tp] with 7 € [Ty, T1]. Then
from Eq. (3.2.13) we find Ui (¢, ) for ¢t € [0, — Tp] with m € [T1,T3]. Due to the
delay h, by (3.2.15), we determine Uy(t, 71, h — Tp) for t € [0, 71 — Tp] with 7y € [Ty, T3).
Now going along the axis 71 by the step h, we construct Uy (¢, 1) for t € [0, 71 — Tp] and
71 € [To, Tnto]. Finally, Eq. (3.2.13) defines Uy (¢, 1) for t € [0,71—To] and 71 € [T42, 00).
Then from (3.2.11) and (3.2.12) we find Us and Uy for t < 71 — T and all 71,79, and 73.
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It is easy to see that, for t > 7 — T,
Ui(t,m) = Ui (To+t — 71, To)v1(t, 1), v1(t, To) = 1,
(3.2.16) Us(t,71,72) = Ui (To + t — 71, To)vs(t, 71, T2),
Ug(t,m,13) = Ur(To + t — 71, To)valt, 71, 73),

where v3,v4, and vy satisfy Egs. (3.2.11)—(3.2.13) and (3.2.15) with U; replaced by wv;.
Starting with v (¢,Tp) = 1 for ¢ > 0 and using the argument above, we construct vy, vs,
and vy for t € [r — Tp, 00) with all 7.

It remains to determine Us(t,71,72), Ui(t,To), 6(t), N(t), and f(t) and then, by
(3.2.2), find w1, ue, us, and ug. Knowing, by (3.2.10),, Us for t < 75 and hence Us (¢, 11, T))
for t € [0, Tp), from (3.2.6),, we find U; (¢, Tp) € C°([0,Tp])NC* ([0, Tp)). Then, by (3.2.16),
we define Uy, Uz, and Uy for 0 < t < 71 and all 7, and, by (3.2.3), 3(t) € C([0,Tp)).
Now, by (3.2.4) and (3.2.5) we define N € C([0,Tp]) and f € C([0,Tp]), respectively.
Finally, Eq. (3.2.10) defines U; for 0 < t < Ty + 72 and all 7 and 75. Since Us(t, 71, Tp)
is known for ¢ € [0,27y], from (3.2.6), we find Ui (¢,Ty) € CO([Ty, 2Ty]) N C*((To, 210)).
Then from (3.2.16) we find Uy, Us, and Uy for ¢ € [11,To + 71] and all ;. Repeating the
procedure above, we construct Uy, Us, Us, Uy, f, N, and, by (3.2.2), u1, us, us, and uy for
t € [0,¢,]. It is easy to see that the functions uy, ug, us, and ug are continuous everywhere
and C'-functions in the domains given in theorem. This completes the proof. m

3.3. The asymptotic behavior of the general solution. In this section we examine prob-
lem (3.1)—(3.7) and (3.1.1) with general initial distributions and study the large time
behavior of its solution.

THEOREM 3. Let constants Ty < h < T1 and functions uig, . .., %a0, U1, - - -, fha, @, G0 b
be positive and: o and b € C(T1), uy € CY(Dy), pa, 3 € CH0(Dy), pg € CO(D3), uyg €
CY(D1) N LY(D1) and vy, € LY (Dy), uso,uzo € C1(D2), ugg € C*(D3). Then the large
time behavior of the solution of the linear problem (3.2.6)—(3.2.9), which in the case under
consideration does not involve N, is given by the following:

(3.3.1) Ui ~ Ui = nuiexp{Xo(To +t —71)}, i = 1,2,3,4,

where the constant n is determined in (3.8.5), v1(11), va(T1,T2), v3(T1,T2), and va(T1,T3)
are defined by Eqs. (3.1.8)—(3.1.11), and Ao is the unique real root of (3.1.8) satisfying
(3.1.4).

THEOREM 4. Let p and p' be positive for all N > 0 and p € C'([0,00)). Then under
conditions of Theorem 3 the unique solution of problem (3.1)—(3.7) and (3.1.1) has the
following large time asymptotics:

w; ~ UiN(t)(B)*l exp{—Xo71}, i =1,2,3,4,
with

B = v1(71) exp{—Ao71 }dT1 —|—/ va(71, T2) exp{—AoT1 }dT1dT2
D1 D2

+ / v3(11, 73) exp{—Ao71 }dT1dT3
D3
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and N(t) the unique solution of
(3.3.2) N'"=N(Ao = p(N)), N(0) = No = Bnexp{AoTo}.
Moreover, fori=1,2,3,4,
ui ——0if Ao < p(0),
Ui ~—— 00 if sup > p(IV) < Ap < o0,
up —— v NL(B) " Lexp{—Xo71} if Ao > 0 and there N, > 0 such that p(N.) = Ao.

Proof of Theorem 3. In the case under consideration Uy, Us, Us, and Uy of Sect. 3.2,
for t > 71 — Ty, can be written as follows:

(333) Ui:Ul(TO‘Ft*Tl,To)’Ui, 1= 1,273,4,
where Uy (t,Tp) is defined by Eq. (3.2.6),. Now we find an upper bound for Uy (¢, Tp). It
follows from (3.2.6), that

fo’ UZ(thhTO)dTl; 0<t< Tla

t+T,

S, Ut(To +t — 11, To)va (11, To)dmi+
Trny1+To
t+To

S, UL (To + t — 71, To)va (11, To)dri, t > Thyp1.

Ul(t7TO) =
U/Q(ta TlvTO)dTla te [T17T’n+1]7

Hence
t—T4
Ul(t,To) S 5/ Ul(a:,To)dx, § = 8sup ’U2(7’1,To)7 t Z Tn+1.
t—Th41 T1€E02

Now

Trt1
Ul(thO) < 7767 n= / U1(Jf, TO)dxa te [Tn+17Tn+1 + Tl]v
0

then
Try1+T1 Th+t1

Tny1+T1
Ui(t,Tp) < ¢ Ui(z, Tp)dx < ¢ Ui (z, Tp)dx —|—§/ Ui (z, Ty)dx
T,

Th Th n+1

Tny1+T1

S f’l’}(l + Tlg)a / U1(Jf, To)dx S 7’](1 + Tlf), t S (Tn—i-l —|- T17T7L+1 + 2T1],
T

and, by induction,
Tpy1+mTh

Ul(t,To) S 5 Ul(l',To)dx é fn(l—f—Tlg)m, t e (TnJrl +mT1,Tn+1+(m+l)T1]

m T1

Therefore there exists the Laplace transform f(\, Tp) of Uy (¢, Tp),

o0 TlfT()
f()\,TQ) = / Ul(t,T()) exp{ft)\}dt = / dTl / Uz(t,Tl,To) exp{ft)\}dt
0 o 0

[eS)
+/d7‘1/ Ul(TO+t—Tl,T())’UQ(Tl,T())eXp{—t)\}dt
o T1—"T0

=I(\) + R\ f(\ To),
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where
T1—To
10) = / dry /O Us(t, 71, To) exp{—tA}dt, R(\) = / va(r1, Tp) exp\(To — 1)}
Hence
(3.3.4) FONTY) =TI\ (1= R(N) L

Roots of R(\) are discussed in Sect. 3.1. The function I()\) is analytic and using the
method of a rectangle contour integral (see [1]), we evaluate the inverse Laplace transform
obtaining

(335) Ul(t,TQ) ~ ﬁl (t,TQ) = neXp{t)\o}, n = _I()\O)/R/()\O)

with Ao the unique real root of Eq. (3.1.3) satisfying (3.1.4). Now, by (3.3.3), (3.3.1)
follows.

Proof of Theorem 4. Differentiating (3.2.3) and (3.2.6), with respect to ¢ and tak-
ing into account the continuity of Uy, Us, Us, and U at the sets of discontinuity of
o UL, . ..,0:Uy, we get

(336) ﬂl - 8tU1dTl + atUg,dTldTQ + 8tU4dT1dT3
D; Dy D3

and

(337) U{ (t,TQ) = /8tU2(t,7-1,T0)d7'1.

The method used to derive Eqgs. (3.3.4) and (3.3.5) may be applied to Eq. (3.3.7) to
obtain

| vt m esp-aya = L - )

T1—To
LY = / dn / O,Us (1, 71, To) exp{—tA}dt.
o 0
Hence, for large time,
Ui (t,To) ~ —I1(Ao)(R'(Xo)) " exp{tAo}
where, by (3.3.3) with ¢ = 2, (3.1.3), and (3.2.6), with t =0,
Il()\o) = /{Ug(Tl — To, 71, To) eXp{)\o(To — Tl)} — UQ(O, 71, To)}dTl + )\0]()\0) = )\0](/\0)
This and (3.3.5) give
(3.3.8) Ui(t, Ty) ~ MUy (t,Tp)

and, by (3.3.6) and (3.3.2), 5'/8 ~ Ao for large time. Therefore Eq. (3.3.2) is the asymp-
totic form of (3.2.4). Finally, from Egs. (3.3.1), (3.2.3), (3.2.5), (3.2.2), and (3.3.2) the
conclusion follows. m
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4. The dispersing population dynamics model. In this section we generalize the
model in Sect. 3 by including random spatial diffusion in 2, an open bounded domain
in R™ with extremely inhospitable boundary 99 (or without migration across it), and
examine separable and steady-state solutions in the case of constant diffusion modulus x
and stationary vital rates.

The general model reads as follows:
@11141 - ,%Aul = —Vl(t, T1,, N)ul—

07 T1 gﬁlv 07 T1 €627
+

T €D,z eQt>0,
a(taTlaxaN)ula T €01

Ug|rs=h—Ty, T1 € T2,
(4.1) Ul =1, = [ uo|r=mydr1, t >0,z € Q,

Ut|i=0 = u1p in Dy x €,

[Ui]r=7.] =0,t>0,2€Q, s=1,2,n+1,n+2,
Bui|po =0,t >0, 7 € Dy;

Doug — kAugy = —(v2 + v3(t, 71, 72,2, N))ug, (11,72) € Do, z €Q, t >0,

Uz |ry=0 = a(t, 1,2, N)b(t, 71,2, N)uy, 71 €01, t >0, 7 € Q,

(4.2) _ L
U0 = g0 in Do x €,
Bus|pa = 0,t >0, (11, 72) € Do;
Doug — kAuz = —v3(t, 71, 72,2, N)us, (11,72) € Do, . € Q, t > 0,
(4.3) Ug|ry=0 = a(t,ﬁ;:c,N)_ul, nmeET,zeN t>0,
uzlt=o = uzp in Do x €,
Buslaq =0, (11,72) € Da, t > 0;
Dauy — KAug = —vy(t, 71, 73,2, N)ug, (11,73) € D3, . € Q, t > 0,
(4.4) Usg|ry=0 = ’LL3‘7—2:10, 71_6 7,t>0,z€9Q,
Uslt=0 = Usap In D3 x Q,
Buyloa =0, (11,73) € D3, t > 0;
(4.5) N = widm +/ usdrdrs +/ ugdmdrs, t >0, z € Q,
D; Dy Ds

where A is the Laplace operator in R™, B = ~(t,2)0, + 72(t, x) with nonnegative 7,
and 72 and such that v4 + v5 > 0 on 02, and 0, the outward normal derivative on
0f). We emphasize that o does not depend on N. Starting with the initial distributions
U1g, - - -, Ugo satisfying corresponding compatibility conditions, we want to describe the
evolution of uy, ug, ug, and uy satisfying (4.1)—(4.5).

4.1. Separable solutions. In this section we restrict ourselves to the case of constant s
and vital rates given by (3.1.1) and seek solutions of Egs. (4.1)—(4.5) in the form

(411) U; = f(t,x)ﬂio, f(O,{E) = fo(iC), Uip = U’Ui exp{)\o(TO - ’7'1)}, 1= 172,374

with a positive constant U and functions vy, ...,vs and the constant Ay determined in
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Sect. 3 by (3.1.8)—(3.1.11), (3.1.3), and (3.1.4). Direct substitution in (4.1)—(4.5) gives
(412) N = fﬂ, 6 = ﬂlod’rl +/ ﬂQOdTldTQ + / ﬂgod’l’ld’rg,
D1 D2 D3

and

ON = (Ao — p(N))N +KAN, t >0, z € Q,
(4.1.3) N(0,z) = Bfo(x), z € Q,

BN|pq =0, t > 0.

The solvability of problem (4.1.3) with the homogeneous Dirichlet boundary condition
(71 = 0, 72 = 1) and the asymptotic behavior of its solution are well known (see, e.g.,
[2], [5], [9], [10]). Let Ay > 0 be the first eigenvalue of the Dirichlet problem for —A in
Q. The asymptotics of N enables us to formulate

THEOREM 5. Let 00 € C?+° § € (0,1) and fo € C°(Q) be positive in Q and folaq = 0.
Then under the conditions of Theorem 1 problem (4.1)—(4.5) and (3.1.1) with the ho-
mogeneous Dirichlet boundary condition has a one-parameter class of separable solutions
defined by Eqs. (4.1.1)-(4.1.3) and (3.1.8)—(3.1.11). Any separable solution, positive in
Q, is such that

(ui(t,-), ua(t, ), us(t, "), us(t,-)) P 0 uniformly on (D1 x ©, Dy x Q, Dy x Q, D3 x )
—00

if Ao < kA1 4y with v = infn>o p(N). If Ao > kA1 and there exists N, > 0 such that
p(Ny) = Ao, then
(ur(t, ), ua(t, ), us(t, ), ua(t, -)) —— (Tio, Tao, Uso, Uao) N /B

t—o0
uniformly on (D x Q, Dy x Q, Do x Q, D3 x ), where N(x) is the solution of
(4.1.4) —kAN = N(Xo — p(N)),  Nlga =0,
positive in Q.

This theorem is analogous to that of Langlais [5] proved for the Gurtin and MacCamy
model [3]. Equation (4.1.4) shows that Ao is an eigenvalue of the Dirichlet problem for
—KkA+ p(N )I in Q, where I is the identity operator. The structure of separable solutions
of model (4.1)—(4.5) and (3.1.1) with the homogeneous Neumann boundary condition

(71 =1, 72 = 0) is given by

THEOREM 6. Let Ty < h < Ty and functions fo,p1, ..., e, a, and b be positive, p €
CY(RY) and such that p > 0 for N # 0 and p’ > 0 for N >0, fo € C°(Q), 0, foloa = 0,
a,b e 01(51), H1 € CO(El), Mo, i3 € 01’0(52), Mg € Cl’o(ﬁg), and 0N) € C2+6, 0 €
(0,1). Then problem (4.1)-(4.5) and (3.1.1) with the homogeneous Neumann boundary
condition has a one-parameter class of nonnegative separable solutions of type (4.1.1).
Any nonnegative (nontrivial) separable solution is such that:

(up(t, ), ua(t, ), us(t,-), us(t, ) —— 0 uniformly on (Dy x Q, Dy x Q, Dy x Q, D3 x Q)
t—oo

if Ao < 0.
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If Ao > 0 and there exists N, > 0 such that p(N,) = Ao, then
(ui(t,-),ua(t, ), us(t, ), ua(t,-)) T (W10, W20, U0, Uso ) N« / B
uniformly on (D x Q, Dy x Q, Do x Q, D3 x ).

The proof is based on the asymptotic behavior of problem (4.1.3), which for p(N) =
aN with a a constant is given in Sect. 5.7 of [9]. The asymptotics of N in the general
case of p(N) can be obtained by the same method.

REMARK 1. Let U = fo(x)alo(Tl),uio = fo(x)ﬂio(Tl,TQ),i = 2,3,’(1,40 = fo($)ﬂ40(7’1,
73), where fo(z) satisfies the condition of Theorem 5, u,o satisfies the conditions of The-
orem 1 for ujo, and puj, o, b, p satisfy conditions of Theorem 1. Then problem (4.1)-(4.5),
(3.1.1) with the homogeneous Dirichlet boundary condition has a separable solution of
the form wy = f(t,2)Ur(¢,11), s = f(t,2)Us(t, 71, 72),% = 2,3, us = f(t,2)Us(t, 11, 73),
£(0,2) = fo(x),Ujli=0 = Gj0,7 = 1,...,4, whose asymptotic behavior can also be deter-
mined.

4.2. Steady-state solutions. In this section we consider the stationary case of problem
(4.1)—(4.5), (3.1.1). In this case all functions in (4.1)—(4.5), (3.1.1) are independent of ¢
and, hence, u; = u;o for all ¢ > 0 with unknown wu;g.

THEOREM 7. Let 9Q € C?t°. Then under the conditions of Theorem 1 any nontriv-
ial steady-state solution of problem (4.1)-(4.5), (3.1.1) with the homogeneous Dirichlet
condition is separable, i.e. any separable solution has the form (ui,...,us) = (Tig,-- -,
Ty0)N /B with Ty, . .. U, B, and N(z) defined in (4.1.1), (4.1.2), and by (4.1.4), re-
spectively.

Proof. We use the Langlais method [5]. Let uq,...,us, and N represent a nontrivial
steady-state solution of (4.1)—(4.5) and let n; and w;(x), j > 1, w; > 0 in Q be the

eigenvalues and eigenfunctions of the Dirichlet problem for —xAw; + p(N(z))I in Q,
that is

(4.2.1) —kAw; + p(N(z))w; = njw; in Q,  wjlag = 0.
Then for uy,...,us € L*(Q) we have

uy = 302 ujwi(a)vig () exp{n; (To — 1)}, vi;(To) = 1,
(4.2.2) up = Y00 uijwi(x)vig (1, 72) exp{n; (To — 1)}, i = 2,3,

Uy = Z;il w;w;(x)vaj (11, 73) exp{n;(To — 71)}
where the constants u;; and functions v; are to be determined. Direct substitution of
(4.2.2) into (4.1)-(4.5) gives Egs. (3.1.7) with v, replaced by vs; and equations ;{1 —
fg v9; (11, To) % exp{n;(To — 71)}dr1} = 0 for ui;. Solving these equations for v;, we get
vs; = vs with v, defined by (3.1.8)—(3.1.11). Therefore equations for u;; become

Ulj{l - /UU2j(7'1a Ty) exp{n; (To — T1>}d7'1} = 0.

This means that either u;; = 0 or n; = Ag, and we conclude that for at most one
j we have u1; # 0 because (3.1.3) has a unique real root Ag. For this j, n; = A¢. Thus
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the series (4.2.2) have at most one non-zero term and w1, ...,us represent a separable
solution. The proof is complete.

COROLLARY. When Ag < kA1 + 7y then there exists no nontrivial steady-state solution of
the Dirichlet problem for (4.1)-(4.5), (3.1.1).

5. Discussion. In this paper we presented two asexual density-dependent population
dynamics models with age-dependence and child care. One of them includes the random
diffusion in a bounded domain with an extremely inhospitable boundary (or without mi-
gration across it), while in the other the population is assumed to be non-dispersing.
In both cases the population consists of the young (under maternal care), juvenile,
and adult classes. The analysis is performed for the case when death moduli of the
juvenile and adult classes in both models are decomposed into the sum of two terms.
The first presents death rate by the natural causes, while the other describes the en-
vironmental influence depending on the total size of juvenile and adult classes. It is
assumed that young offspring are protected from density related increases of mortal-
ity dependent on N directly and that their death rate consists of their natural one
independent of N plus the death rate of their mothers. Adult individuals have the
reproductive and post-reproductive age grades. Individuals of reproductive age are di-
vided into fertile singles (having no offspring under maternal care at the given time),
mothers (taking care of offspring), and temporarily sterile singles (individuals for whom
child care time is over but whose age still is in the sterility interval after delivery).
Such splitting of the population is natural for some species of animals, that form pairs
only for period of mating. For some species the temporarily sterile singles may be ne-
glected.

A global existence and uniqueness result is established for the non-dispersing popu-
lation model (3.1)—(3.7) with vital rates (3.2.1). The assumption that « is independent
of N is caused by technical reasons. From Egs. (3.2.11)—(3.2.15) and (3.2.3) we see, that
involving of N into the set of arguments of a leads to a nonlinear integro-differential
equation for N of type (3.2.4) with § depending on N.

In the case of vital rates of type (3.1.1) the separable solutions of model (3.1)—(3.7)
and the long time asymptotics of the unique solution of this model with vital rates
(3.1.1) and the general initial distributions are studied. It is shown, that this asymp-
totics is a separable solution of the same model. It is known (see, e.g., [6], [7], [12], and
references there) that this assertion is true for the asexual Sharpe-Lotka-McKendrick-
von Foerster model, as well. Any steady-state solution of the dispersing population
model (4.1)—(4.5) (as in the case of the asexual Sharpe-Lotka-McKendrick-von Foerster
model) with the homogeneous Dirichlet boundary condition has the separable struc-
ture.

The child care is included by adding the death rate of mothers to the natural death
rate of their offspring and by letting young offspring be protected from the Verhulst
density factor. The last assumption is of a technical type which enabled us to split the
models of limited population into the models of non-limited one plus equation for N and,
of course, let the existence of separable solutions.
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