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Abstract. A time-discrete 2-sex model with gestation period is analysed. It is significant that

the conditions for local stability of a nontrivial steady state do not require that the expected

number of female offspring per female equal unity. This is in contrast to results obtained by

Curtin and MacCamy [4] and the author [10].

1. Introduction. Age, physiological factors, density dependence, gestation period and

the mating pattern are some of the key factors that one would want to include in a

realistic, mathematical model of the dynamics of a 2-sex population. However the need

for mathematical tractability imposes constraints on the number of factors that a single

model can accommodate. Mating pattern, physiological factors and the gestation period

appear to have been the least favoured. A brief comment on some related works provides

the context for the present paper.

Gurtin and MacCamy [4] introduced a 1-sex (all female), age-structured, continuous

time model in which the birth and death moduli are dependent on the total population.

Their result on the existence and stability of a steady state, apart from its importance

to demography, indicates the importance of density dependence.

Allied with age and physiological factors is maturation. Castillo-Chavez [1] introduced

a 1-sex model in which an abstract physiological factor is allowed for, whilst age and

maturation are discretized. There are just two age grades: egg and adult. Gestation and

density dependence are taken account of. There is a partial differential equation with a

non-local boundary condition, similar to Gurtin and MacCamy’s, except for a time lag

owing to the period of gestation.

Dash and Cressman [3] developed a 2-sex discrete time model in which polygamy is

allowed for. The age-structure consists of a number of pre-reproductive age-grades and a
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single adult age-grade. In order to study the effect of polygamy a specific function was

chosen to represent the polygamous mating pattern. No account is taken of gestation.

Caswell [2] discussed 2-sex models with discrete time and age-grades. No account is

taken of physiological factors and gestation period. However, within the specific mating

functions chosen, he investigated the effects of competition for mates. This is a form

of selective density dependence. The author had recourse to numerical simulation to

understand the part played by some parameters in the emergence of certain bifurcations.

Skakauskas [7, 8] tried to accommodate quite a number of factors, gestation included,

in his models. They are 2-sex with continuous time and age variables. In addition pair

formation is non-permanent and mortality of infants is subject to parental care. His main

focus is the existence of separable solutions although existence of steady states is also

investigated.

Sowunmi’s [9, 11] models of 2-sex populations have continuous time and age variables.

While [9] is female-dominant, [11] is unconstrained, allows for polygamy, maturation,

gestation and density dependent effects, but ignores physiological factors. In contrast to

other authors polygamy is allowed for in a way that does not require the specification of

a particular mating function. However in the study of the stability of steady states [13],

detail of the contributions of the different factors is sacrificed to mathematical tractability.

Discretizing a model has the obvious advantage of getting round some of the mathe-

matical complexities at little or no cost to reality of the model. It is in order to understand

better the conditions for stability of equilibrium states in Sowunmi’s [13] model that the

author decided to study discrete time models of 2-sex populations with gestation period.

2. A special time discrete model. Suppose there is a population of males and females.

Let each species be divided into three classes: pre-reproductive, reproductive and post-

reproductive. Assume that membership of each class depends only on age. For the females

there is only one age-grade within the pre-reproductive class, two in the reproductive and

one in the post-reproductive class. Correspondingly for the males let the number of age-

grades be 2,2, 0 respectively. Females either belong to the gestating subclass, or do not.

That is they are either pregnant or not. Let these subclasses be denoted by the letters,

(fg) and (fng) respectively. There is a finite age limit, the species life span, which no

member of the population ever exceeds.

Let U0, U1, U2, U3 be the male age-grades in order of seniority. Let V0, V1, V2, V3 be

the age-grades of the (fng) in order of seniority whilst W1,W2 are the (fg) age-grades

in the same order. Figs. 1 and 2, below, represent the life cycle graphs of the male and

female populations respectively.

U0 −→ U1 −→ U2 −→ U3

Fig. 1

V0 −→ V1 −→ V2 −→ V3

↓ ↑
W1 −→ W2

Fig. 2

W1 and W2 are the gestation stages. It is not possible to get pregnant and deliver at

the same age. It is the case that pregnancy begins at V1, and then the member moves
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immediately to W1; delivers at W2 and then moves immediately to V2. No pregnancy can

begin at V2 since delivery would then have to be post-reproductive.

2.1. Notations and governing equations. Following from the assumptions in the Intro-

duction, we now introduce the following notation and definitions. Let u0(r) be the pop-

ulation of U0 at time r ≥ 0. The functions u1, u2, u3, v0, v1, v2, v3, w1, w2 are similarly

defined.

Let πs1(r) be the probability at time r that a male in age-grade Us will survive till

time r+ 1, thus attaining age-grade Us+1. πs2(r) and πs3 for appropriate numerical values

of s can be defined in like manner for the (fng) and (fg) respectively. In the general

autonomous case the π’s depend on time r implicitly through the functions ui, vj , wk.

Mortality is then said to be density dependent.

The age-specific birth rate of males/females is the average number of male/female

offspring per individual mother at a given age. Since only females in age-grade W2 can

deliver, we denote by β3
1(r) and β3

2(r) the age specific birth rates at time r of male and

female offspring respectively. Like the π’s the β’s could also depend on the component

populations.

The population is renewed through interaction between the males in U2 and U3 on

one hand and the females in V1 on the other. We assume the existence of an interaction

function, F21, such that the total number of pregnancies, which occur at time r through U2

and V1 is given by F21(u2(r), v1(r)). F31 is likewise defined. Each function is assumed to

be as smooth as may be required later. More especially the functions satisfy the following:

(F1) F21(0, v) = F21(u, 0) = F31(0, v) = F31(u, 0) = 0.

(F2) Each is a monotone increasing function of either of its variables.

(F3) There exist positive constants k1(2, 1), k2(2, 1), k1(3, 1), k2(3, 1) such that

3∑

s=2

Fs1(us(r), v1(r)) ≤ min

[ 3∑

s=2

k1(s, 1)us(r),

3∑

s=2

k2(s, 1)v1(r)

]
.

The above inequality is the Generalised Law of the Minimum (Sowunmi [11]) adapted

to this particular model. The law follows from the notion of saturability. It is satisfied by

two of the marriage functions listed in Caswell [2].

We are now ready to formulate the governing equations of the model. Let the duration

of the gestation period be chosen as the projection interval. At time zero there is an initial

population of pregnant females (fg) who will deliver within the interval [0, 1). Thereafter

delivery will come from those that became pregnant from time zero onwards.

From Fig.1 and the preceding definitions we have the following equations for the male

species when r ∈ N.

u0(r + 1) = β3
1(r + 1)π1

3(r){F21(u2(r), v1(r)) + F31(u3(r), v1(r))},(1)

u1(r + 1) = π0
1(r)u0(r),(2)

u2(r + 1) = π1
1(r)u1(r),(3)

u3(r + 1) = π2
1(r)u2(r).(4)
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For r = 0 we proceed as follows. Let w2(0) be the initial population of W2. Since these

must have got pregnant in the preceding interval, it follows that

u0(0) = β3
1(0)w2(0).(5)

Furthermore, u1(0) = u10, u2(0) = u20 and u3(0) = u30, where us0 is specified for

s = 1, 2, 3.

For the female population we use Fig. 2 to obtain (when r ∈ N)

v0(r + 1) = β3
2(r + 1)π1

3(r){F21(u2(r)v1(r)) + F31(u3(r), v1(r))},(6)

v1(r + 1) = π0
2(r)v0(r)− {F21(u2(r + 1), v1(r + 1)) + F31(u3(r + 1), v1(r + 1))},(7)

v2(r + 1) = v1(r)π1
2(r) + π1

3(r){F21(u2(r − 1), v1(r − 1)) +(8)

+F31(u3(r − 1), v1(r − 1))},
v3(r + 1) = v2(r)π2

2(r).(9)

For v0(0) we have, as for the males,

v0(0) = β3
2(0)w2(0),(10)

vs(0) = vs0, s = 1, 2, 3,(11)

where vs0 is arbitrary, but non-negative.

Finally for the (fg), using Fig. 2, we have

w1(r + 1) = F21(u2(r + 1), v1(r + 1)) + F31(u3(r + 1), v1(r + 1)),(12)

w2(r + 1) = π1
3(r)w1(r)− {F21(u2(r − 1), v1(r − 1)) +(13)

+F31(u3(r − 1), v1(r − 1))}π1
3(r),

w1(0) = w10,(14)

w2(0) = w20.(15)

Both prescribed values should likewise be non-negative.

We shall consider only the situation of density independence. Thus the birth and

death rates will be assumed not to depend on any of the population components. In this

case we can solve eqns. (1) - (9) for the u’s and v’s, then substitute these values in the

right hand side of the eqns. (12) - (13) to obtain w’s.

For the sake of continuity we shall however not alter the notations in any way. We

shall investigate the local stability of nontrivial equilibria, assuming they exist.

2.2. Density independence. As in [5] we shall try to express all other variables in terms

of u0, v0. From eqns. (2) - (4) we have

u2(r + 1) = π1
1(r)π0

1(r − 1)u0(r − 1),(16)

u3(r + 1) = π2
1(r)π1

1(r − 1)π0
1(r − 2)u0(r − 2).(17)

Substitution for u2, u3 from eqns (16) - (17) in eqn (7) yields an equation, which expresses

v1(r+ 1) as an implicit function of v0(r), u0(r− 2), u0(r− 1). The equation is obviously

satisfied when all the variables vanish. Let the interaction functions F21, F31, be C1

throughout their domain. At any equilibrium of the system of equations (1) - (15) the

relations will be independent of r. Thus all the ten variables of the model will assume
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values, which are independent of r. Suppose there is a nontrivial equilibrium. Then u0, v0

are both non-zero, equal to U, V , say. Hence the said equation holds when U is substituted

for u0(r− 1) and u0(r− 2), and V for v0(r). Recall that the parameters are independent

of r. Then by the Implicit Function Theorem the equation is at least locally solvable,

provided
∂F21(U, V )

∂v1
+
∂F31(U, V )

∂v1
+ 1 6= 0.(18)

By the property (F2), the derivatives in (18) are non-negative, hence (18) is satisfied

everywhere in R2
+. Hence there exists a function Ψ1, defined in an open neighbourhood

of (V, U, U) in R3
+, such that

v1(r + 1) = Ψ1(v0(r), u0(r − 1), u0(r − 2)).(19)

Similarly from eqns. (8) - (9) we have

v2(r + 1) = Ψ2(u0(r − 2), u0(r − 3), u0(r − 4), v0(r − 1), v0(r − 2)),(20)

v3(r + 1) = π2
2(r)Ψ2(u0(r − 3), u0(r − 4), u0(r − 5), v0(r − 2), v0(r − 3)).(21)

Substituting for u2(r), u3(r), v1(r) in equations (1) and (6) from eqns (16, 17, 19) yields

a simultaneous pair of difference equations with delay in the two unknowns u0, v0. Since

u0(r + 1)

v0(r + 1)
=
β3

1

β3
2

= m,

say, we can write eqn. (6) as

(22) v0(r + 1) = β2
2(r + 1)π1

3(r)×
(F21(π1

1(r − 1)π0
1(r − 2),mv0(r − 2),Ψ1(v0(r − 1),mv0(r − 2),mv0(r − 3)))

+F31(π2
1(r − 1)π1

1(r − 2)π0
1(r − 3)mv0(r − 3),Ψ1(v0(r − 1),mv0(r − 2),mv0(r − 3)))).

Eqn. (22) can be written more briefly as

v0(r + 1) = γ(v0(r − 1), v0(r − 2), v0(r − 3)).(23)

Higher order difference equations are analogous to higher order ordinary differential equa-

tions. The latter can be transformed to first order systems by a well-known device, the

analogue of which we now employ to reduce eqn. (23) to a system of difference equations

without delay.

We define functions x, y, z as follows:

x(r) = v0(r − 1),

y(r) = x(r − 1) = v0(r − 2),

z(r) = y(r − 1) = x(r − 2) = v0(r − 3).

Hence the equivalent first order system of difference equations is given by

v0(r + 1) = γ(x(r), y(r), z(r)),

x(r + 1) = v0(r),

y(r + 1) = x(r),

z(r + 1) = y(r).

(24)
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Corresponding to the steady state solution (U, V ) of eqn. (23) there is the solution v0(r) =

x(r) = y(r) = z(r) = V of (24). Consideration of the local stability of the steady

state solution (V, V, V, V ) of eqn. (24) yields the following characteristic equation in λ :

λ4 − γxλ
2 − γyλ − γz = 0, where the derivatives of γ are evaluated at (V, V, V ). The

sufficient condition for local stability of the steady state solution of eqn. (24) is therefore

that all the roots of this characteristic equation have moduli less than unity. The following

are the necessary and sufficient Jury conditions (cf. [6], Appendix 2) appropriate to the

quartic:

γz < 1,(25)

±γy < 1− γx − γz,(26)

γy + γxγz < |1− γ2
z |,(27)

(γx + γyγz)(γy + γxγz) < |(1− γz)2 − (γy + γxγz)
2|.(28)

For brevity in writing we shall adopt the tensor notation for covariant differentiation of

the derivatives of the interaction functions Fij . For example F21,1(u2, v1) abbreviated to

F21,1 denotes ∂F21

∂v1
(u2, v1). Hence in terms of the parameters of the model, the coefficients

of the quartic are:

γx = β3
2π

1
3π

0
2

{
F21,1 + F31,1

1 + F21,1 + F31,1

}
,(29)

γy = β3
1π

1
3π

1
1π

0
1

{
F21,2

1 + F21,1 + F31,1

}
,(30)

γz = β3
1π

1
3π

2
1π

1
1π

0
1

{
F31,3

1 + F21,1 + F31,1

}
.(31)

Note that all the derivatives are evaluated at (U, V ).

We therefore have the following result:

Theorem 1. Given a 2-sex time discrete population model in which the male sex has

2 pre-reproductive, 2 reproductive and 0 post-reproductive age-grades and the female sex

has 1 pre-reproductive, 2 reproductive and 1 post-reproductive age-grades; the gestation

period equals the projection interval; the birth and death rates are density independent.

Given also that the interaction functions F21, F31 are continuously differentiable. Suppose

a non-trivial equilibrium exists, then necessary and sufficient conditions that it is locally

asymptotically stable are given by the inequalities (25) - (28) subject to (29) - (31).

3. Comments. Conditions (25) and (26) are easy to interpret.

(F21,1 + F31,1)(β3
2π

1
3π

0
2 − 1) < 1 + β3

1π
1
3π

1
1π

0
1(±F21,2 − π2

1F31,3).(32)

In particular

(F21,1 + F31,1)(β3
2π

1
3π

0
2 − 1) < 1− β3

1π
1
3π

1
1π

0
1(F21,2 + π2

1F31,3).(33)

The term β3
2π

1
3π

0
2 is the productive rate of female offspring for the female population.

In the Gurtin and MacCamy model [4] as well as my female-dominant model [9], this

factor has to be equal to unity at a steady state. In the case being studied, this is not
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required. The reproductive rate could be less than or greater than unity if the remaining

factors in the inequalities (32) or (33) are suitably chosen. If the left hand side of (33) is

positive, implying that the females are more than reproducing themselves then its right

hand side must be positive. This imposes a constraint on the production of male offspring.

On the contrary if the females less than reproduce themselves then the constraint on the

production of male offspring is relaxed.

The closest 2-sex, time-continuous models to mine are by Skakauskas [7, 8]. The

difference consists in a further differentiation of the pre-reproductive and reproductive

age-grades and the choice of a particular, saturable interaction function, namely the

harmonic mean. I am not aware of a study of the steady states of any Skakauskas’ 2-sex,

age-structured models with gestation period, whether time continuous or discrete.

It is possible to study the special case in Section 2 differently, by taking the system of

delayed difference eqns. (1) - (11), and transforming it to an equivalent system without

delay. Although there would be eleven equations in eleven unknowns the characteristic

equation for the stability of equilibrium would be of degree six in contrast to the quartic

obtained in this paper. This brings to mind a similar behaviour observed in my paper

[10]. Perturbing the system of partial differential equations for the 2-sex dominant models

introduced in [9] led to a sixth degree characteristic equations, whilst perturbing the

system of four integral equations derived from the partial differential equations led to a

quartic characteristic equation. Either way, in the case of Gurtin and MacCamy 1-sex

model, the characteristic equation remains quadratic.
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