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Abstract. We characterize unital topological algebras in which all maximal two-sided ideals are

closed.

1. Introduction. In a unital Banach algebra all maximal two-sided ideals are obviously

closed. The problem of characterizing other classes of topological algebras with the same

property has been investigated by a number of authors. For example for a complex uni-

tal commutative Fréchet algebra that property is equivalent to being a Q-algebra ([5],

Proposition 17); for a complex unital commutative complete locally m-convex algebra

for which the set of all non-zero continuous linear multiplicative functionals is compact

in the Gelfand topology our property is equivalent to any proper finitely generated ideal

being non-dense ([17], Proposition 2). However there are also non-Q-algebras with that

property ([9], p. 81). In this note we provide a characterization of that property in terms

of compactness of the structure space and properties of finitely generated ideals. We

also show that every proper finitely generated two-sided ideal in a complex unital locally

m-pseudoconvex Fréchet algebra is contained in a closed maximal two-sided ideal of A if

A is topologically almost commutative or commA 6= A.

Unless otherwise stated the result is valid in both the real and the complex case.
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2. Definitions and notation. By a topological algebra we mean an algebra A that

is also a topological vector space such that the multiplication operation is separately

continuous.

We call a topological algebra A locally pseudoconvex if it has a base of neighborhoods

of zero consisting of balanced and pseudoconvex sets, that is of sets U for which µU ⊂ U ,

whenever |µ| ≤ 1, and U + U ⊂ λU for some λ ≥ 2. In such an algebra the topology can

be defined by a family {pλ : λ ∈ Λ} of kλ-homogeneous seminorms with kλ ∈ (0, 1], where

a seminorm p is called k-homogeneous if p(µa) = |µ|kp(a) for any a ∈ A and any scalar µ

([13], p. 4). If A is also metrizable then one can select a countable family {pλ : λ ∈ Λ} of

kλ-homogeneous seminorms. A locally pseudoconvex algebra A is locally m-pseudoconvex

if every seminorm pλ in the family {pλ : λ ∈ Λ} is submultiplicative, is locally convex,

if kλ = 1 for each λ ∈ Λ, and k-normed if the topology of A can be define by a single

k-homogeneous norm. A metrizable and complete algebra is called a Fréchet algebra.

For a unital ring A, M(A) denotes the set of all maximal two-sided ideals in A. The

space M(A) is equipped with the hk-topology: S ⊂ M(A) is closed if S = H(K(S)),

where K(S) is the intersection of all ideals in S and H(I) = {M ∈M(A) : I ⊂M} for

any two-sided ideal I of A. If A is also equipped with a compatible topology we consider a

subset m(A) of M(A) consisting of closed ideals, we use small letters h and k to indicate

operations H and K restricted to m(A).

A unital topological algebra A is called simplicial (with respect to two-sided ideals)

or normal in the sense of Michael ([11], p. 68) if every closed two-sided ideal of A is

contained in a closed maximal two-sided ideal of A. For an algebra A let radA denote

the topological radical ([3], p. 27) of A, 〈a1, . . . , an〉 the two-sided ideal of A generated

by a1, . . . , an ∈ A, and commA the commutator ideal of A, that is, the closure of the

two-sided ideal of A generated by the set {ab− ba : a, b ∈ A}. A is an topologically almost

commutative algebra if A/radA is commutative.

3. Topological algebras in which all maximal two-sided ideals are closed. The

next theorem characterizes topological algebras with closed maximal ideals.

Theorem 1. Let A be a unital topological algebra. Then M(A) = m(A) if and only if

(i) every proper finitely generated two-sided ideal of A is contained in a closed maximal

two-sided ideal of A, and

(ii) m(A) is compact in the hk-topology.

To prove the theorem we will need the compactness of M(A), that fact is well known

but typically it is presented only for certain classes of algebras or topological algebras

(e.g. [8], p. 301, [12], p. 84, or [16]). Below we show that the standard arguments work

for an arbitrary unital ring.

Proposition 1. Let A be a ring with a unit e. Then the space M(A) is compact in the

hk-topology.

Proof. Assume F = {Fj : j ∈ J} is a nonempty family of hk-closed subsets of M(A) with⋂
j∈J Fj = ∅. We have
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∅ =
⋂

j∈J
Fj =

⋂

j∈J
HK(Fj) =

⋂

j∈J
{M ∈M(A) : K(Fj) ⊂M}

= {M ∈M(A) : K(Fj) ⊂M for all j} =
{
M ∈M(A) :

⋃

j∈J
K(Fj) ⊂M}

so the two-sided ideal generated by
⋃
j∈J K(Fj) is equal to the entire ring A. Hence

there are elements a1, . . . , an (not necessarily all different) of
⋃
j∈J K(Fj) and b1, . . . , bn,

b′1, . . . , b
′
n in A with

∑n
k=1 b

′
kakbk = e; let F1, . . . , Fn ∈ F be such that ak ∈ K(Fk) for

k = 1, 2, . . . , n. It follows that the two-sided ideal generated by
⋃n
k=1K(Fk) is equal to

the entire ring A and consequently we can reverse the last sequence of equalities:

∅ =
{
M ∈M(A) :

n⋃

k=1

K(Fk) ⊂M
}

= {M ∈M(A) : K(Fk) ⊂M for k = 1, . . . , n}

=

n⋂

k=1

{M ∈M(A) : K(Fk) ⊂M} =

n⋂

k=1

HK(Fk) =

n⋂

k=1

Fk,

which shows that M(A) is compact.

Proof of Theorem 1. Assume M(A) = m(A). In a unital algebra any proper two-sided

ideal is contained in a maximal ideal. Hence, if M(A) = m(A) any proper two-sided

ideal is contained in a closed maximal two-sided ideal. Since M(A) is compact in the

hk-topology so is m(A).

Assume now A is a unital topological algebra which satisfies the conditions of the

Theorem and let M0 ∈M(A). Put

Z(a)
df
= {M ∈ m(A) : a ∈M} , for a ∈M0.

Since for any a1, . . . , an ∈ M0 we have I
df
= 〈a1, . . . , an〉 ⊂ M0 6= A, by the first condi-

tion there is an ideal M ∈ m(A) with {a1, . . . , an} ⊂ I ⊂ M . Hence M ∈ ⋂nk=1 Z(ak),

so {Z(a) : a ∈M0} is a collection of hk-closed subsets of m(A) having the finite inter-

section property. By (ii) there is a closed maximal two-sided ideal M1 ∈
⋂
a∈M0

Z(a).

The ideal M1 contains all elements of M0 so M0 ⊂ M1, however M0 is maximal so

M0 = M1 ∈ m(A).

Corollary 1. Let A be a unital simplicial (with respect to two-sided ideals) algebra. If

(a) no proper finitely generated two-sided ideal of A is dense in A, and

(b) m(A) is compact in the hk-topology,

then M(A) = m(A).

Proof. Let I be a proper finitely generated two-sided ideal in A. Since clA(I) is a closed

two-sided ideal in a simplicial algebra A, by (a) there is M ∈ m(A) with clA(I) ⊂ M .

Hence A has the property (i) of Theorem 1 and consequently M(A) = m(A).

Example 1. We construct a commutative unital normed algebra A such that both M(A)

and m(A) are compact but different. Let A be the space of all C∞ (real or complex valued)

functions f defined on the real line R such that both restrictions f|(−∞,0] and f|[1,∞) are
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polynomials. We equip A with a submultiplicative norm:

‖f‖ = sup {|f(t)| : 0 ≤ t ≤ 1} .
Notice that ‖·‖ is indeed a norm rather then just a seminorm since if f = 0 on the

unit segment, then all the derivatives of f at the points 0 and 1 are equal to zero and

consequently f = 0 on the entire line.

Let I be a maximal proper ideal of A. Assume there is f ∈ I which does not vanish

on [0, 1]. If pn is a sequence of polynomials convergent uniformly to 1/f on [0, 1] then the

sequence fpn converges in A to the unit of that algebra, so I is not closed. On the other

hand if all of the functions from I vanish somewhere on [0, 1] then the sup norm closure

of I in the Banach algebra C [0, 1] is a proper ideal so I ⊂ {f : f(xI) = 0} for some xI
in [0, 1]. Hence m(A) can be identified with the unit segment.

We show that the hk-topology on [0, 1], denoted by τhk, coincides with the usual

topology τstd of that segment. Clearly any hk-closed set is closed in the standard topology

so τhk ⊂ τstd. On the other hand, since for any 0 ≤ a < b ≤ 1 there is a function f0 ∈ A
such that f0(t) 6= 0 exactly when a < t < b, we have hk([0, 1] \(a, b)) = [0, 1] \(a, b) so all

of the segments (a, b) are hk-open; as such segments form a basis of τstd we get τstd ⊂ τhk.

Hence m(A) = [0, 1] while M(A) is much bigger containing as a proper subset all

of R.

4. Properties of locally m-pseudoconvex Fréchet algebras. The next theorem

shows that the first condition considered in the previous section is valid for a large class

of topological algebras.

Theorem 2. Let A be a complex unital locally m-pseudoconvex Fréchet algebra.

If commA 6= A or A is topologically almost commutative then every proper finitely gen-

erated two-sided ideal in A is contained in a closed maximal two-sided ideal of A.

The idea of proof comes from [6]; we first will need the following lemma ([8], p. 233).

Lemma 1. Let A and B be topological algebras with unit elements eA and eB , respectively

and let h be a homomorphism from A onto a dense subset of B with h(eA) = eB. Assume

a1, . . . , an, c1, . . . , cn ∈ A and d1, . . . , dn ∈ B are such that
n∑

v=1

cvav = eA and
n∑

v=1

dvh(av) = eB .

Then for any neighborhood O of zero in B there exist b1, . . . , bn ∈ A such that
n∑

v=1

bvav = eA and h(bv) ∈ dv +O, for v = 1, . . . , n.

Proof of Theorem 2. Assume A is a complex locally m-pseudoconvex Fréchet algebra with

a unit element eA and the topology given by a family {pn : n ∈ N} of kn-homogeneous

submultiplicative seminorms, with kn ∈ (0, 1], for n ∈ N. We may also assume ([7],

Proposition 4.6.1), that

pn(a)
1
kn 6 pn+1(a)

1
kn+1 , for n ∈ N, a ∈ A, kn+1 6 kn. (1)
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Put

B
df
=

{
A/commA if commA 6= A

A/radA if A is topologically almost commutative,

let κ : A→ B be the canonical homomorphism, and let

qn(b)
df
= inf {pn(a) : κ(a) = b, a ∈ A} , n ∈ N, b ∈ B.

Since commA and radA are closed two-sided ideals, B is a commutative complex locally

m-pseudoconvex Fréchet algebra with a unit element eB = κ(eA) and the topology given

by the family {qn : n ∈ N} of kn-homogeneous submultiplicative seminorms. Furthermore

by (1)

qn(b)
1
kn 6 qn+1(b)

1
kn+1 , for n ∈ N, b ∈ B, kn+1 6 kn. (2)

Next for n ∈ N let πn be the canonical homomorphism of B onto Bn
df
= B/kerqn and let

rn be the quotient kn-homogeneous norm on Bn. Let B̃n be the completion of Bn, let r̃n
be the extension of rn to a kn-homogeneous norm on B̃n, and denote by µn : B → B̃n
the composition of πn with the embedding into B̃n.

For m 6 n we have Bn ⊂ Bm and by (2)

rm(πm(b))
1
km = qm(b)

1
km 6 qn(b)

1
kn = rn(πn(b))

1
kn , b ∈ B, m 6 n. (3)

For n,m ∈ N with m 6 n let

fm,n : Bn → Bm, be defined by fm,n(πn(b)) = πm(b).

By (3) the homomorphism fmn is a uniformly continuous map from Bn onto Bm ([7],

Theorem 4.3.11) so it can be continuously extended to a homomorphism f̃m,n from the

commutative kn-Banach algebra B̃n onto a dense subalgebra of km-Banach algebra B̃m
([10], Proposition 5, p. 129). We have

f̃l,n = f̃l,m ◦ f̃m,n, and r̃m(f̃m,n(b̃n))
1
km 6 r̃n(b̃n)

1
kn , for l 6 m 6 n, b̃n ∈ B̃n. (4)

To finish the proof assume I is a finitely generated ideal in A and let a1, . . . , as ∈ A
be such that I = 〈a1, . . . , as〉. Suppose that

〈µn(κ(a1)), . . . , µn(κ(as))〉 = B̃n, for all n ∈ N,
and let b̃n1 , . . . , b̃

n
s ∈ B̃n be such that

s∑

v=1

b̃nvµn(κ(av)) = µn(κ(eA)) = eB̃n .

Put d̃n−1
v = f̃n−1,n(b̃nv ). We have

s∑

v=1

d̃n−1
v µn−1(κ(av)) = µn−1(κ(eA)) = eB̃n−1

.

Hence by Lemma 1, with A = B̃n, B = B̃n−1, O = {x ∈ B̃n−1 : r̃n−1(x) < 2−n}, and

h = f̃n−1,n there are d̃n1 , . . . , d̃
n
s ∈ B̃n such that

s∑

v=1

d̃nvµn(κ(av)) = eB̃n (5)
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and

r̃n−1(f̃n−1,n(d̃nv )− d̃n−1
v ) < 2−n, n ∈ N, v = 1, . . . , s.

By (4) for m 6 n− 1 and v = 1, . . . , s

r̃m(f̃m,n(d̃nv )− f̃m,n−1(d̃n−1
v )) = r̃m(f̃m,n−1(f̃n−1,n(d̃nv ))− f̃m,n−1(d̃n−1

v ))

= r̃m(f̃m,n−1(f̃n−1,n(d̃nv )− d̃n−1
v ))

6 (r̃n−1(f̃n−1,n(d̃nv )− d̃n−1
v ))

km
kn−1 6

(
1

2n

) km
kn−1

therefore, since kl 6 kn for l > n, for any n 6 p < q we get

r̃n(f̃n,q(d̃
q
v)− f̃n,p(d̃pv)) 6

q∑

t=p+1

r̃n(f̃n,t(d̃
t
v)− f̃n,t−1(d̃t−1

v )) <

q∑

t=p+1

(
1

2t

) kn
kt−1

6
q∑

t=p+1

(
1

2

)t
.

Hence, as
∑∞
t=0( 1

2 )t is convergent, (f̃n,n+l(d̃
n+l
v ))l∈N is a Cauchy sequence in B̃n, for any

n ∈ N and v = 1, . . . , s; as B̃n are complete we may put

lim
l→∞

f̃n,n+l(d̃
n+l
v )

df
= ẽnv ∈ B̃n.

By (4) (ẽnv )n∈N ∈ lim←−
{
B̃n, f̃m,n,N

}
for each v = 1, . . . , s. Since

B 3 b 7→ (µn(b)) ∈ lim←−{B̃n, f̃m,n,N}
is a surjective topological isomorphism ([2], pp. 18–22, or [7], Theorem 4.5.3) there are

elements e1, . . . , es ∈ A such that

µn(κ(ev)) = ẽnv = lim
l→∞

f̃n,n+l(d̃
n+l
v ), for all v and n. (6)

Therefore by (5) and (6) for each n ∈ N we get

pn

( s∑

v=1

evav − eA
)

= r̃n

(
µn

(
κ
( s∑

v=1

evav − eA
)))

= r̃n

( s∑

v=1

µn(κ(ev))µn(κ(av))− µn(κ(eA))
)

= r̃n

( s∑

v=1

lim
l→∞

f̃n,n+l(d̃
n+l
v )µn(κ(av))− µn(κ(eA))

)

= lim
l→∞

r̃n

(
f̃n,n+l

( s∑

v=1

d̃n+l
v µn+l(κ(av))− µn+l(κ(eA))

))
= 0,

hence I = A. So for every proper finitely generated ideal I of A there is n0 ∈ N such

that µn0
(κ(I)) 6= B̃n0

. Because µn0
(κ(I)) is an ideal in a complex unital commutative

kn0
-Banach algebra B̃n0

there is a nontrivial continuous multiplicative linear functional

ϕ0 on B̃n0
such that µn0

(κ(I)) ⊂ kerϕ0 ([14], Proposition 4.3, or [15], Theorem 4.1). Let

φ = ϕ0 ◦ µn0
◦ κ. Then φ is a nontrivial continuous linear multiplicative functional on A,

kerφ is a closed maximal two-sided ideal in A and I ⊂ kerφ.
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Corollary 2. Assume A is a complex unital locally m-pseudoconvex Fréchet algebra

that is topologically almost commutative, or such that commA 6= A. Then M(A) = m(A)

if and only if m(A) is compact in the hk-topology.

5. Simplicial algebras with compact topological strong structure space. In this

section we discuss the second condition listed in Theorem 1. The following proposition

generalizes Corollary 3.9 of ([1]); notice that every commutative Q-algebra satisfies the

condition (7) below.

Proposition 2. Let A be a unital simplicial algebra. If

clA

( ⋃

M∈m(A)

M
)
⊂

⋃

M∈M(A)

M, (7)

then m(A) is compact in the hk-topology.

Proof. Suppose m(A) is not compact and let (Fγ)γ∈Γ be a family of hk-closed subsets

of m(A) with the finite intersection property and such that
⋂
γ∈Γ Fγ = ∅. Let J be the

two-sided ideal in A generated by {k(Fγ) : γ ∈ Γ}. Since A is simplicial, if clA(J) 6= A

then clA(J) ⊂ M for some M ∈ m(A). As k(Fγ) ⊂ clA(J) ⊂ M for every γ ∈ Γ, then

M ∈ h(k(Fγ)) = Fγ for each γ ∈ Γ, which contradicts our assumption. Hence cl(J) = A.

Fix a ∈ A and a neighborhood of zero O in A. Let O′ be a neighborhood of zero in A

such that O′a ⊂ O. Since A is unital (eA +O′) ∩ J 6= ∅ and we can find o ∈ O′, n ∈ N,

γ1, . . . , γn ∈ Γ and aγk ∈ k(Fγk) such that

eA + o =

n∑

k=1

aγk ∈
n∑

k=1

k(Fγk).

Let Mo ∈
⋂n
k=1 Fγk . Since Mo ∈ Fγk = h(k(Fγk)) so k(Fγk) ⊂Mo, and we get

eA + o ∈Mo ⊂
⋃

M∈m(A)

M.

Hence

(eA +O)
⋂( ⋃

M∈m(A)

M
)
6= ∅, for any neighborhood O of zero in A.

Consequently

eA ∈ clA

( ⋃

M∈m(A)

M
)
⊂

⋃

M∈M(A)

M,

which is impossible.

Corollary 3. Assume A is a complex unital locally m-pseudoconvex Fréchet algebra

that is topologically almost commutative, or such that commA 6= A. If A satisfies the

condition (7) then M(A) = m(A).

Proposition 3. A commutative unital simplicial topological algebra A is a Q-algebra if

and only if it satisfies (7) and M(A) = m(A).
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Proof. If A is a commutative Q-algebra then M(A) = m(A) and (7) holds because

A\InvA is equal to the union of all ideals from M(A). If A is a commutative unital topo-

logical algebra and M(A) = m(A) then the union of all ideals from m(A) and the union

of all ideals from M(A) coincides; by (7) the last union is closed so A is a Q-algebra.

It is clear that every Q-algebra is simplicial. The next result characterizes those sim-

plicial algebras which are Q-algebras.

Theorem 3. Let A be a commutative unital simplicial algebra. Then A is a Q-algebra if

and only if A satisfies (7) and condition (a) of Corollary 1.

Proof. If A is a commutative Q-algebra then M(A) = m(A) and
⋃
M∈M(A)M = A\InvA

is closed in A.

Assume A is a commutative unital simplicial algebra and I is a proper finitely gen-

erated ideal in A. If A satisfies the condition (a) of Corollary 1 then there is an ideal

M ∈ m(A) such that I ⊂ M . By Theorem 1 and Proposition 2 we have M(A) = m(A).

Hence, by (7) InvA = A\⋃M∈M(A)M is open in A and consequently A is a Q-algebra.

Corollary 4. Let A be a commutative unital complex locally m-pseudoconvex Fréchet

algebra. Then A is a Q-algebra if and only if A satisfies (7).

Proof. By Theorem 4.2 of [4] algebra A is simplicial and by Theorem 2 it satisfies condi-

tion (a) of Corollary 1. Hence the result follows from Theorem 3.
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