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Abstract. We characterize unital topological algebras in which all maximal two-sided ideals are
closed.

1. Introduction. In a unital Banach algebra all maximal two-sided ideals are obviously
closed. The problem of characterizing other classes of topological algebras with the same
property has been investigated by a number of authors. For example for a complex uni-
tal commutative Fréchet algebra that property is equivalent to being a Q-algebra ([5],
Proposition 17); for a complex unital commutative complete locally m-convex algebra
for which the set of all non-zero continuous linear multiplicative functionals is compact
in the Gelfand topology our property is equivalent to any proper finitely generated ideal
being non-dense ([17], Proposition 2). However there are also non-Q-algebras with that
property ([9], p. 81). In this note we provide a characterization of that property in terms
of compactness of the structure space and properties of finitely generated ideals. We
also show that every proper finitely generated two-sided ideal in a complex unital locally
m-pseudoconvex Fréchet algebra is contained in a closed maximal two-sided ideal of A if
A is topologically almost commutative or commA # A.

Unless otherwise stated the result is valid in both the real and the complex case.
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2. Definitions and notation. By a topological algebra we mean an algebra A that
is also a topological vector space such that the multiplication operation is separately
continuous.

We call a topological algebra A locally pseudoconvez if it has a base of neighborhoods
of zero consisting of balanced and pseudoconvez sets, that is of sets U for which pU C U,
whenever |u| <1, and U + U C AU for some A > 2. In such an algebra the topology can
be defined by a family {py : A € A} of kx-homogeneous seminorms with ky € (0, 1], where
a seminorm p is called k-homogeneous if p(ua) = |i|*p(a) for any a € A and any scalar u
([13], p. 4). If A is also metrizable then one can select a countable family {p : A € A} of
kx-homogeneous seminorms. A locally pseudoconvex algebra A is locally m-pseudoconvex
if every seminorm py in the family {p): A € A} is submultiplicative, is locally convex,
if ky = 1 for each A € A, and k-normed if the topology of A can be define by a single
k-homogeneous norm. A metrizable and complete algebra is called a Fréchet algebra.

For a unital ring A, M(A) denotes the set of all maximal two-sided ideals in A. The
space M(A) is equipped with the hk-topology: S C M(A) is closed if S = H(K(S)),
where K (S) is the intersection of all ideals in S and H(I) = {M € M(A):I C M} for
any two-sided ideal I of A. If A is also equipped with a compatible topology we consider a
subset m(A) of M(A) consisting of closed ideals, we use small letters h and k to indicate
operations H and K restricted to m(A).

A unital topological algebra A is called simplicial (with respect to two-sided ideals)
or normal in the sense of Michael ([11], p. 68) if every closed two-sided ideal of A is
contained in a closed maximal two-sided ideal of A. For an algebra A let radA denote
the topological radical ([3], p. 27) of A, (a1,...,a,) the two-sided ideal of A generated
by ai,...,a, € A, and commA the commutator ideal of A, that is, the closure of the
two-sided ideal of A generated by the set {ab — ba : a,b € A}. A is an topologically almost
commutative algebra if A/radA is commutative.

3. Topological algebras in which all maximal two-sided ideals are closed. The
next theorem characterizes topological algebras with closed maximal ideals.

THEOREM 1. Let A be a unital topological algebra. Then M(A) = m(A) if and only if

(i) every proper finitely generated two-sided ideal of A is contained in a closed mazimal
two-sided ideal of A, and
(ii) m(A) is compact in the hk-topology.

To prove the theorem we will need the compactness of M (A), that fact is well known
but typically it is presented only for certain classes of algebras or topological algebras
(e.g. [8], p. 301, [12], p. 84, or [16]). Below we show that the standard arguments work
for an arbitrary unital ring.

PROPOSITION 1. Let A be a ring with a unit e. Then the space M (A) is compact in the
hk-topology.

Proof. Assume F = {Fj : j € J} is a nonempty family of hk-closed subsets of M (A) with
Njes Fj = @. We have
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o= ()F=()HEK(F;)=){Me M(A): K(F;) C M}
jeJ JjeJ jeJ
:{MGM(A):K(Fj)CMforallj}:{MGM ): | K(Fy) c My
JjeJ

so the two-sided ideal generated by . e
there are elements aq, . .., a, (not necessarily all different) of UjeJ K(F;) and by,. .., by,
by..., bl in A with 7 blagby = €; let Fy, ..., F, € F be such that a, € K(F}) for
k=1,2,...,n. It follows that the two-sided ideal generated by |J,_, K(F}) is equal to

the entire ring A and consequently we can reverse the last sequence of equalities:

K(Fj) is equal to the entire ring A. Hence

@z{MeM(A): OK(Fk)CM}:{MGM(A):K(Fk)CMfork:I,...,n}
k=1

- ﬁ{MGM(A):K(Fk) CM}= (n]HK(Fk): ﬁF
k=1 k=1 k=1

which shows that M(A) is compact. m

Proof of Theorem 1. Assume M(A) = m(A). In a unital algebra any proper two-sided
ideal is contained in a maximal ideal. Hence, if M(A) = m(A) any proper two-sided
ideal is contained in a closed maximal two-sided ideal. Since M (A) is compact in the
hk-topology so is m(A).

Assume now A is a unital topological algebra which satisfies the conditions of the
Theorem and let My € M(A). Put

Z(a)ﬁ{Mem(A):aeM}, for a € M.

Since for any ai,...,a, € My we have I 4 (a1,...,an) C My # A, by the first condi-
tion there is an ideal M € m(A) with {a1,...,a,} C I C M. Hence M € (;_, Z(ay),
so {Z(a) : a € My} is a collection of hk-closed subsets of m(A) having the finite inter-
section property. By (ii) there is a closed maximal two-sided ideal My € (,cpy, Z(a).
The ideal M; contains all elements of My so My C Mj, however My is maximal so
My = M, € m(A) ]

COROLLARY 1. Let A be a unital simplicial (with respect to two-sided ideals) algebra. If

(a) no proper finitely generated two-sided ideal of A is dense in A, and
(b) m(A) is compact in the hk-topology,

then M(A) = m(A).
Proof. Let I be a proper finitely generated two-sided ideal in A. Since cl4(I) is a closed

two-sided ideal in a simplicial algebra A, by (a) there is M € m(A) with cla(I) C M.
Hence A has the property (i) of Theorem 1 and consequently M (A) = m(A). =

EXAMPLE 1. We construct a commutative unital normed algebra A such that both M (A)
and m(A) are compact but different. Let A be the space of all C* (real or complex valued)
functions f defined on the real line R such that both restrictions f|_. 0 and f[1 o) are
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polynomials. We equip A with a submultiplicative norm:

[fII = sup {[f(#)] : 0 <t <1}.

Notice that ||-|| is indeed a norm rather then just a seminorm since if f = 0 on the
unit segment, then all the derivatives of f at the points 0 and 1 are equal to zero and
consequently f = 0 on the entire line.

Let I be a maximal proper ideal of A. Assume there is f € I which does not vanish
on [0, 1]. If p, is a sequence of polynomials convergent uniformly to 1/f on [0, 1] then the
sequence fp, converges in A to the unit of that algebra, so I is not closed. On the other
hand if all of the functions from I vanish somewhere on [0, 1] then the sup norm closure
of I in the Banach algebra C'[0,1] is a proper ideal so I C {f : f(x;) = 0} for some z;
in [0, 1]. Hence m(A) can be identified with the unit segment.

We show that the hk-topology on [0, 1], denoted by 7pk, coincides with the usual
topology 7stq of that segment. Clearly any hk-closed set is closed in the standard topology
SO Thi C Tstq- On the other hand, since for any 0 < a < b < 1 there is a function fy € A
such that fo(t) # 0 exactly when a < t < b, we have hk([0,1]\(a,b)) = [0, 1] \(a,d) so all
of the segments (a, b) are hk-open; as such segments form a basis of 754 we get Tstq C Thi.

Hence m(A) = [0,1] while M(A) is much bigger containing as a proper subset all
of R.

4. Properties of locally m-pseudoconvex Fréchet algebras. The next theorem
shows that the first condition considered in the previous section is valid for a large class
of topological algebras.

THEOREM 2. Let A be a complex wunital locally m-pseudoconvexr Fréchet algebra.
If commA # A or A is topologically almost commutative then every proper finitely gen-
erated two-sided ideal in A is contained in a closed maximal two-sided ideal of A.

The idea of proof comes from [6]; we first will need the following lemma ([8], p. 233).

LEMMA 1. Let A and B be topological algebras with unit elements e s and eg, respectively
and let h be a homomorphism from A onto a dense subset of B with h(ea) = ep. Assume
Alyevey Oy, ClyevosCn € A and dy,...,d, € B are such that

chav =e4 and Zdvh(av) =epg.
v=1 v=1
Then for any neighborhood O of zero in B there exist by, ..., b, € A such that

vaav =ey and h(b,) €d, + O, forv=1,...,n.

v=1
Proof of Theorem 2. Assume A is a complex locally m-pseudoconvex Fréchet algebra with
a unit element e4 and the topology given by a family {p, : n € N} of k,-homogeneous
submultiplicative seminorms, with k, € (0,1], for n € N. We may also assume ([7],
Proposition 4.6.1), that

1
pn(a)ﬁ < pnyi(a)f+1, forneN,a€ A, knp1 < k. (1)
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Put
g { A/commA if commA # A

AJ/radA  if A is topologically almost commutative,

let k : A — B be the canonical homomorphism, and let
0n(0) Linf {pn(a) : k(a) =ba € A}, neN, be B.

Since commA and radA are closed two-sided ideals, B is a commutative complex locally
m-pseudoconvex Fréchet algebra with a unit element e = k(e4) and the topology given
by the family {¢, : n € N} of k,-homogeneous submultiplicative seminorms. Furthermore

by (1)
G (D)™ < guir(B)™51, forneN, be B, knsr < kn. 2)
Next for n € N let m,, be the canonical homomorphism of B onto B, 4 B/kerg,, and let
rn, be the quotient k,-homogeneous norm on B,,. Let B be the completion of B,,, let Tn
be the extension of r, to a k,-homogeneous norm on Bn, and denote by p, : B — B,
the composition of 7, with the embedding into B,.
For m < n we have B,, C B,, and by (2)

T (T () Fr = gy (D)o < g (B) o = 1 (7 (B)) %, b E B, m < n. (3)
For n,m € N with m < n let
fmn : Bn = B,  be defined by fr, n (7, (b)) = 0 (b).

By (3) the homomorphism f,, is a uniformly continuous map from B, onto B,, ([7],
Theorem 4.3.11) so it can be contlnuously extended to a homomorphism fm n from the
commutative k,-Banach algebra B onto a dense subalgebra of k,,-Banach algebra B
([10], Proposition 5, p. 129). We have

Fim = frm © s and T (Fron (b)) Frw < P (bp)®r, forl<m < m, by € By, (4)

To finish the proof assume I is a finitely generated ideal in A and let ay,...,as € A
be such that I = (aq,...,as). Suppose that

(pn(r(a1)), ..., pn(K(as))) = B,, forall n € N,
and let B’f, ceey BZ € B, be such that

Z BZUn(K(av)) = pn(K(ea)) = €B,"

Put d"~! = f,_; ,(b"). We have

> Ay o1 (6(a0) = pa1((ea)) = e, -

v=1

Hence by Lemma 1, with A = B,, B = B,,_1, O = {z € Bp_1 : Tn—1(x) < 27"}, and
h = fn—1n there are d7,...,d} € By, such that

Y dipn(s(ay) = ep, (5)
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and
Foot(facin(d) —d <2 neN v=1,...,s.
By (4) form<nm—landv=1,...,s
fM(fm,n(CZZ) - fm,n—l(dgil)) = 7zm(fm,n—l(f~n—1,n(‘i2)) - fm,n—l(dgil))

m(fm,n—l(fn—l,n(dz;) - dg—l))

Il
Rl

N

©F gy gae1yyEm 1 B
< (Fo1(fro1n(dy) —dy™)) -1 < <_>
therefore, since k; < k,, for | > n, for any n < p < ¢ we get

B @) = Fu ) € Y o) = Fruma@ ) < Y (Qi)_ <y (1)

t=p+1 t=p+1 t=p+1

Hence, as ) ;- ($)" is convergent, (frmi1(d¥H))ien is a Cauchy sequence in B, for any
ne€Nand v=1,...,s; as B, are complete we may put

lim fo (@) L& € B,
l—o0o
By (4) (&})nen € lim {Bn, fmm,N} for each v =1,...,s. Since
B3 b (pn(b) € im{By, frn, N}

is a surjective topological isomorphism ([2], pp. 1822, or [7], Theorem 4.5.3) there are
elements eq,...,es € A such that

pn(K(ey)) = én = llinso famu (@), for all v and n. (6)

Therefore by (5) and (6) for each n € N we get
(St ) =B )
v=1 v=1

(3 (e (5(02)) — ()

Fn(z llfgo fan@Z“)ﬂn("(%)) - ,un(/f(eA)))
v=1

= lim 7, (fn,ml ( Zi: A i (w(ay)) — Mn+l(“(€A)))) =0,

hence I = A. So for every proper finitely generated ideal I of A there is ng € N such
that fin, (k(1)) # Bp,. Because jin, (k(I)) is an ideal in a complex unital commutative
kn,-Banach algebra B, there is a nontrivial continuous multiplicative linear functional
©o on By, such that g, (k(I)) C kergg ([14], Proposition 4.3, or [15], Theorem 4.1). Let
¢ = @0 O ln, © k. Then ¢ is a nontrivial continuous linear multiplicative functional on A,
kero is a closed maximal two-sided ideal in A and I C ker¢. m
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COROLLARY 2. Assume A is a complex unital locally m-pseudoconver Fréchet algebra
that is topologically almost commutative, or such that commA # A. Then M(A) = m(A)
if and only if m(A) is compact in the hk-topology.

5. Simplicial algebras with compact topological strong structure space. In this
section we discuss the second condition listed in Theorem 1. The following proposition
generalizes Corollary 3.9 of ([1]); notice that every commutative Q-algebra satisfies the
condition (7) below.

PROPOSITION 2. Let A be a unital simplicial algebra. If
CIA( U M) C U M, (7)
Mem(A) MeM(A)

then m(A) is compact in the hk-topology.

Proof. Suppose m(A) is not compact and let (F,) er be a family of hk-closed subsets
of m(A) with the finite intersection property and such that (|, cp F-y = @. Let J be the
two-sided ideal in A generated by {k(F,) : v € T'}. Since A is simplicial, if cl4(J) # A
then cla(J) C M for some M € m(A). As k(Fy) C cla(J) C M for every v € T, then
M € h(k(F,)) = F, for each v € T', which contradicts our assumption. Hence cl(J) = A.

Fix a € A and a neighborhood of zero O in A. Let O’ be a neighborhood of zero in A
such that O’a C O. Since A is unital (e4 + O') N J # @ and we can find 0 € O’, n € N,
Yis---5Yn € I and a4, € k(F,,) such that

eqa+o= Za% € Zk(F%).
k=1 k=1
Let M, € (_; Fy,. Since M, € F,, = h(k(F,,)) so k(F,,) C M,, and we get

eat+oeM,C U M.

Mem(A)
Hence
(ea + O) ﬂ ( U M) # @, for any neighborhood O of zero in A.
Mem(A)
Consequently
eAECIA( U M) c U M

Mem(A) MeM(A)
which is impossible. =
COROLLARY 3. Assume A is a complex unital locally m-pseudoconvexr Fréchet algebra

that is topologically almost commutative, or such that commA # A. If A satisfies the
condition (7) then M(A) =m(A).

PROPOSITION 3. A commutative unital simplicial topological algebra A is a Q-algebra if
and only if it satisfies (7) and M(A) = m(A).
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Proof. If A is a commutative Q-algebra then M(A) = m(A) and (7) holds because
A\InvA is equal to the union of all ideals from M (A). If A is a commutative unital topo-
logical algebra and M (A) = m(A) then the union of all ideals from m(A) and the union
of all ideals from M (A) coincides; by (7) the last union is closed so A is a Q-algebra. m

It is clear that every @Q-algebra is simplicial. The next result characterizes those sim-
plicial algebras which are Q-algebras.

THEOREM 3. Let A be a commutative unital simplicial algebra. Then A is a Q-algebra if
and only if A satisfies (7) and condition (a) of Corollary 1.

Proof. 1f Ais a commutative Q-algebra then M(A) = m(A) and Upsepra) M = A\InvA
is closed in A.

Assume A is a commutative unital simplicial algebra and [ is a proper finitely gen-
erated ideal in A. If A satisfies the condition (a) of Corollary 1 then there is an ideal
M € m(A) such that I C M. By Theorem 1 and Proposition 2 we have M(A) = m(A).
Hence, by (7) InvA = A\ Uy epr(a) M is open in A and consequently A is a Q-algebra. m

COROLLARY 4. Let A be a commutative unital complex locally m-pseudoconver Fréchet
algebra. Then A is a Q-algebra if and only if A satisfies (7).

Proof. By Theorem 4.2 of [4] algebra A is simplicial and by Theorem 2 it satisfies condi-
tion (a) of Corollary 1. Hence the result follows from Theorem 3. m
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