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Abstract. This paper will give a brief survey of ideas related to ‘elements of finite closed descent’

in certain kinds of topological algebra.

1. Introduction. Let E be a topological vector space (over R or C ) and let T : E → E

be a linear mapping. Consider the decreasing sequence of subspaces,

E ⊇ TE ⊇ T 2E ⊇ . . . .
The mapping T is said to have finite closed descent (or FCD) (on E) iff there is some

integer N ≥ 0 such that TnE is dense in TNE (so that TnE = TNE) for every n ≥ N .

Remarks. 1. If T is continuous , the FCD-property has the simpler formulation: T has

FCD iff there is some N ≥ 0 such that TN+1E = TNE.

2. The reason that we do not restrict attention to continuous operators is for the

statement of the ‘Density Lemma’ (i.e. Theorem 5) below.

An important special case arises in considering elements of algebras. Thus, let A be

an algebra, topologized as (at least) a topological vector space and let x ∈ A; define

Lx : A→ A by Lx(y) = xy (y ∈ A). Then the element x is said to have left-FCD iff the

operator Lx has FCD on A.

Remarks. 1. If A is a topological algebra (i.e. multiplication is, at least, separately

continuous) then an element x of A has left-FCD iff there is an integer N ≥ 0 with

xN ∈ xN+1A.

2. There is, of course, an analogous notion of ‘right-FCD’. If the algebra A is commu-

tative, we just say that ‘x has FCD’.

Examples. 1. If T is either invertible or nilpotent then, trivially, T has FCD.
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2. Every continuous linear map T : E → E with dense range has FCD.

3. Every bounded normal operator T on a Hilbert space has FCD, it being elementary

that imT = imT 2.

4. Let Ω be a compact Hausdorff space and let A = C(Ω), the standard commutative

Banach algebra of all continuous, complex-valued functions on Ω, with the uniform norm.

Then every f in A has FCD, it being elementary that Af = Af 2 (because f and f2 have

the same zero set).

5. Let V be the Volterra algebra, i.e. V = L1[0, 1], with multiplication being the

‘chopped-off’ convolution, denoted by ∗. For each non-zero f in V , let α(f) = inf supp f .

Then it is well-known that V ∗ f = V if and only if α(f) = 0, while if α(f) > 0 then f

is properly nilpotent. Thus V is an example of a commutative, radical Banach algebra in

which every element has FCD.

6. Let A = A(∆) be the usual disc algebra. Then it is elementary to see that, if f

is not identically zero, but f−1(0) ∩ int ∆ 6= ∅, then f does not have FCD. But e.g., if

g(z) = 1− z, then g does have FCD.

7. Let F ≡ C [[X]] be the algebra of all formal power series in the variable X, with

complex coefficients; then F is an example of a commutative Fréchet algebra (see §5),

with the topology of coefficientwise convergence. Then the sequence

F ⊃ XF ⊃ X2F ⊃ . . .
is a properly decreasing sequence of closed ideals of F , so that X is not an element of

FCD.

Before going any further, there is an obvious question: why consider the property of

finite closed descent?

The first appearance of the condition (though, in the original statement, the property

had not been given a name) was in the following theorem (as in the last paragraph, we

shall write F = C [[X]]).

Theorem 1 (see [1]). Let R be a commutative, unital Banach algebra and let x ∈ R. The

following are equivalent :

(i) there is a homomorphism θx : F → R with θx(X) = x;

(ii) x ∈ radR and x has FCD.

Remarks. 1. In case (i) and (ii) hold, the homomorphism θx is injective if and only if

x is not nilpotent. From this fact, it is immediate that θx cannot be both injective and

continuous (with respect to the standard Fréchet topology of F).

2. In view of Example 5, if we take R = V+, the unitization of the Volterra algebra

V , and any non-nilpotent element x of V , then there is an injective homomorphism

θx : F → R with θx(X) = x.

2. Stable elements. It will be useful to introduce a purely algebraic idea, whose relation

to the FCD property will appear shortly. The definition to be given relates to homological

properties of the inverse-limit functor (see discussion in [3]); but that aspect will not be

discussed here.
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Let V be a vector space and let T ∈ L(V ), the algebra of all linear endomorphisms

of V . We say that T acts stably on V iff for every sequence (vn) of elements of V , there

is a sequence (xn) in V , such that

xn = T (xn+1) + vn (n ≥ 1).

Examples. 1. If T (V ) = V , then evidently T acts stably.

2. If T is nilpotent, then it is also clear that T acts stably, for, given (vn), we may

take xn = vn + Tvn+1 + T 2vn+2 + · · · .
Non-trivial examples will appear later.

As with the definitions of FCD, an important special case arises when T is taken to

be multiplication by an element of an algebra.

Let A be an algebra and let x ∈ A. Then x is said to be a left-stable element iff Lx
acts stably on A.

Remark. There is, of course, an analogous notion of ‘right-stable element’. If the algebra

A is commutative, we just say that ‘x is stable’.

There are two simple lemmas relating to stable action, which will be used later. Their

proofs could be exercises for an interested reader.

Lemma 2. Let V be a vector space and T ∈ L(V ). The following are equivalent :

(i) T acts stably on V ;

(ii) for every k ≥ 1, T k acts stably on V ;

(iii) for some k ≥ 1, T k acts stably on V .

If V is a vector space, T ∈ L(V ) and if U is a T -invariant subspace of V , then T

naturally induces linear endomorphisms of U and of V/U ; we shall simply say that T

acts on U and on V/U .

Lemma 3. Let V be a vector space, let T ∈ L(V ) and let U be a T -invariant subspace

of V . Then:

(i) if T acts stably on V , then it also acts stably on V/U ;

(ii) if T acts stably on both U and on V/U , then T acts stably on V .

The definition of stable action is a special case of the definition of a so-called stable

inverse-limit sequence; it will be helpful to make a few comments about this more general

case. An inverse-limit sequence of vector spaces and linear mappings, is a sequence of the

following type:
V : V1

T1←− V2
T2←− V3

T3←− · · · ,
each Vn being a vector space, and each Tn : Vn+1 → Vn a linear mapping (the symbol V
just gives a name to the sequence).

The sequence V is called stable iff, for every sequence (vn), where vn ∈ Vn (n ≥ 1),

there are elements xn ∈ Vn such that xn = Tn(xn+1) + vn (n ≥ 1).

In terms of this more general definition, it is then clear that the linear mapping

T : V → V acts stably on V iff the sequence

V
T←− V

T←− V
T←− · · · ,

formed by iterating the action of T , is a stable inverse-limit sequence.



76 G. R. ALLAN

The main reason for introducing the more general stability definition is to be able to

use another special case. Let V be a vector space and let

V : V1 ⊇ V2 ⊇ V3 ⊇ . . .
be a decreasing sequence of subspaces of V . Then the sequence V is called a stable sequence

of subspaces of V provided that it is stable regarded as an inverse-limit sequence

V : V1
j1←− V2

j2←− V3
j3←− · · · ,

in which each jn is an inclusion mapping.

Explicitly, the decreasing sequence (Vn) of subspaces of V is stable iff for every choice

of vn ∈ Vn (n ≥ 1), there are un ∈ Vn such that un = un+1 + vn (n ≥ 1).

There is the following very simple lemma that connects the two special cases.

Lemma 4. Let V be a vector space and let T ∈ L(V ). If T acts stably on V , then

(TnV )n≥1 is a stable sequence of subspaces of V .

Proof. Let T act stably on V and let vn ∈ TnV (n ≥ 1). Then, for each n we have

vn = Tn(yn) for some yn ∈ V .

By the stable action of T , there is then a sequence (xn) in V such that xn = Txn+1+yn
for every n. Define un = Tn(xn) (n ≥ 1) and we see at once that, for each n,

un = Tn(xn) = Tn+1(xn+1) + Tn(yn) = un+1 + vn.

It follows that (TnV ) is a stable sequence of subspaces of V .

That the algebraic notion of stability is related to the topological-algebraic notion of

FCD begins to emerge with the following result.

Theorem 5 (Density Lemma). Let V be a vector space and let V = (Vn)n≥1 be a stable

sequence of subspaces of V . Let p be a seminorm on V . Then there is an integer N ≥ 1

such that Vn is p-dense in VN for every n ≥ N .

Using Lemma 4, there is then the following immediate corollary:

Corollary 6. Let V be a vector space, let T ∈ L(V ) and suppose that T acts stably

on V . Then, for any seminorm p on V , T has FCD with respect to p.

To get implications in the other direction, from FCD properties to stability, we begin

by recalling the abstract Mittag-Leffler theorem (which is a generalized Baire-Category

result).

Theorem 7 (Mittag-Leffler). Let

X1
f1←− X2

f2←− X3
f3←− · · ·

be a sequence of (non-empty) complete metrizable topological spaces and continuous map-

pings, such that, for all n ≥ 1, fn(Xn+1) is dense in Xn. Then there is a dense subset,

say D, of X1 such that, for every d ∈ D, there is a sequence (xn)n≥1, with xn ∈ Xn,

x1 = d and xn = fn(xn+1) for all n ≥ 1.

Corollary 8. Let V be a complete-metrizable topological vector space, and let T : V →
V be a continuous linear mapping with T (V ) = V . Then T acts stably on V .



ELEMENTS OF FINITE CLOSED DESCENT 77

Proof. Let (vn) be a sequence in V and, for each n ≥ 1 define fn : V → V by fn(x) =

T (x) + vn (x ∈ V ). Evidently fn(V ) = V for all n, so that the sequence

V
f1←− V

f2←− V
f3←− · · ·

satisfies the hypothesis of Theorem 7. Hence there is a sequence (xn) in V such that

xn = fn(xn+1) = T (xn+1) + vn, for all n. This completes the proof.

Corollary 9. Let V be a complete-metrizable topological vector space, and let T : V →
V be a continuous linear mapping that has FCD. Then T acts stably on V .

Proof. By hypothesis, there is an integer N ≥ 1 such that T nV = TNV for all n ≥ N .

Let S = TN and let Y = S(V ); then Y is a closed, S-invariant subspace and

Y ⊇ S(Y ) ⊇ TN (TNV ) = TN (V ) = Y.

By Corollary 8, S acts stably on Y . Also, since S(V ) ⊆ Y , S acts on V/Y as the

zero-operator, which action is trivially stable.

By Lemma 3 (ii), S acts stably on V and so, by Lemma 2, T acts stably on V .

Theorem 10. Let E be a Banach space and let T be a bounded linear operator on E.

Then T acts stably if and only if it has FCD.

Proof. This follows immediately from Corollaries 6 and 9.

The special case for Banach-algebra elements now follows at once.

Corollary 11. Let A be a Banach algebra and let x ∈ A. Then x is left-stable if and

only if it has left-FCD.

Corollary 12. (i) Let E be a Banach space and let T ∈ B(E) have FCD. Let p be an

arbitrary seminorm on E; then T also has FCD with respect to p.

(ii) Let A be a Banach algebra and let x be an element of A that has left-FCD. Then

x also has left-FCD with respect to an arbitrary (linear-space) seminorm on A.

Proof. (i) By Theorem 10, T acts stably on E. But then, by the corollary to the Density

Lemma (Corollary 6), T acts stably with respect to p.

(ii) This is a special case of (i).

The next corollary gives the somewhat surprising result that the property of having

FCD is preserved by an arbitrary (i.e. not necessarily continuous) homomorphism of

Banach algebras.

Corollary 13. Let A,B be Banach algebras and let F : A→ B be a homomorphism (not

necessarily continuous). Let the element x of A have left-FCD; then F (x) has left-FCD

in B.

Proof. Define a seminorm p on A by p(a) = ‖F (a)‖B. By Corollary 12(ii), x has left-FCD

with respect to p.

Thus there is an integer N ≥ 0 and a sequence (ak)k≥1 in A, such that

0 = lim
k→∞

p(xN − xN+1ak) = lim
k→∞

‖F (x)N − F (x)N+1F (ak)‖B.

Thus F (x) has left-FCD in B.
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The stability viewpoint is closely connected to the embedding of formal power series

in commutative algebras. Thus, let A be a commutative algebra with identity and let

x ∈ A. We define two ideals that are associated with the element x; the first is simply

I(x) =
⋂
n≥1Ax

n. The second, I0(x), is defined by saying that a ∈ I0(x) if and only if

there is a sequence (an)n≥0 in A such that a0 = a and an = an+1x for all n ≥ 0. Evidently

I0(x) ⊆ I(x), and it is simple to see that I0(x) = I(x) if and only if Lx
(
I(x)

)
= I(x). (As

before, Lx is the operation of (left) multiplication by x.) This property holds, in particular,

if A is a commutative topological algebra and x is an element of A having FCD. (It also

holds if A is a commutative Fréchet algebra and the element x has the weaker property

of ‘locally finite closed descent’; the definition is in §4.) In a purely algebraic context, I

do not know whether, for a stable element of a commutative algebra, it is always true

that I0(x) = I(x); probably it is false, but I do not know a counter-example.

Let A be a commutative algebra, let x ∈ A and let πx : A → A/I0 be the quotient

mapping.

Theorem 14. Let A be a commutative, unital algebra and let x ∈ A. Then x is stable

if and only if there is a homomorphism Ψx : A[[X]] → A/I0(x) such that both Ψx(X) =

πx(x) and also Ψx(a) = πx(a) for every a ∈ A.

In this case, the homomorphism Ψx is uniquely determined, im Ψx = A/I0(x) and

ker Ψx = (X − x)A[[X]].

Proof. See [4] Theorem 3.4 (slightly improved through Lemma 3.1 of that paper).

3. Further significance of the FCD property. The FCD condition has also arisen

in:

(i) work of Dales and Esterle on the Kaplansky problem (1976 et seq; see [6], [7], [8],

[9], [10] and other references given in [5]);

(ii) work of Marc Thomas on the Singer-Wermer conjecture (see [11] and [12]).

As an example of (i):

Theorem 15 (Esterle). Let R be a commutative, unital Banach algebra. The following

are equivalent :

(i) radR contains a non-nilpotent element of FCD ;

(ii) there is an injective homomorphism of C [[X]] into R;

(iii) (with CH) there is a discontinuous homomorphism C(Ω) → R (for some/every

infinite, compact Ω);

(iv) (with CH) for every commutative, complex algebra D which is an integral domain

of cardinality 2ℵ0 and which has at least one character, there is an injective homomor-

phism from D into R.

Remarks. 1. The equivalence of (i) and (ii) repeats Theorem 1; (iv) includes (i), except

that (iv) needs CH (or, at least, some set-theoretic axiom beyond ZFC). The CH is used

in the implications (i) ⇒ (iii), (i) ⇒ (iv).

2. The most convenient place to study this theorem, and many related matters is [5]

(whose Theorem 5.7.30 includes our Theorem 15).
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4. Fréchet algebras and FCD. There has already been reference at this meeting to

Marc Thomas’s work on Fréchet algebras, where FCD-type concepts also arise. We shall

look quickly at the appropriate modifications when going from Banach to more general

complete metrizable topological algebras, primarily Fréchet algebras.

Terminology . We follow the terminology of the Polish school, by using the term B0-algebra

for a complete metrizable, locally convex topological algebra.

A Fréchet algebra is a multiplicatively convex B0-algebra (whose topology may, there-

fore, be defined by an increasing sequence of submultiplicative seminorms).

First, consider stability : this concept is purely algebraic, and no change is needed. It

is easy to see that part of Corollary 11 extends even to B0-algebras:

Theorem 16. Let A be a B0-algebra and let x ∈ A. If x has (left-)FCD, then x is

(left-)stable.

Proof. This is immediate from Corollary 9.

But, in contrast to the Banach-algebra case, the converse is false, even for commutative

Fréchet algebras

Example. Let F = C [[X]]; then X is a stable element of F but does not have FCD.

However, if x is a (left-)stable element of any algebra A, the Density Lemma (The-

orem 5) shows that x does have (left-)FCD relative to any single seminorm on A. This

hints at the ‘correct’ notion (which will just be given for algebras).

Definition. Let A be a B0-algebra and let x ∈ A. Say that x has (left-) locally finite

closed descent (LFCD) if and only if, for every continuous seminorm p on A, x has

(left-)FCD relative to p.

Remarks. 1. If (pn)n≥1 is an increasing sequence of continuous seminorms on A that

define its topology, then the condition that x have (left-)LFCD is equivalent to x having

(left-)FCD with respect to each pn. For, if p is any continuous seminorm on A, there is

some k ≥ 1 and C > 0 with p ≤ Cpk. Then there is an integer N(k) such that, with a

hopefully obvious notation, for every j ≥ N(k),

xN(k)A ⊆ xjA pk ⊆ xjA p
.

2. If A is a Fréchet algebra then, in (1), we may take each pn to be submultiplicative.

So the condition then reduces to the requirement that, for each k ≥ 1, there is an integer

N(k) ≥ 0 such that

xN(k) ∈ xN(k)+1A
pk
.

3. If A is a Banach algebra, then x has (left-)LFCD if and only if it has (left-)FCD.

Theorem 17. Let A be a B0-algebra and let x ∈ A. Then x is (left-)stable if and only if

x has (left-)LFCD.

Corollary 18. Let A be a B0-algebra, let x ∈ A and let x have (left-)LFCD. Let p be

an arbitrary seminorm on A. Then x has (left-)FCD relative to p.
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It now becomes important to realize that, for a general Fréchet algebra, there is a

possibility that does not arise for Banach algebras—namely a property that is interme-

diate between nilpotence and topological nilpotence. For simplicity, we will now restrict

to commutative Fréchet algebras .

Thus, let R be a commutative Fréchet algebra and let x ∈ R; we say that x is locally

nilpotent iff, for each continuous seminorm p on R, there is an integer k(p) ≥ 1 with

p(xk(p)) = 0.

Remarks. (i) As for the FCD condition, if (pn)n≥1 is a defining sequence of seminorms

for the topology of R, then x is locally nilpotent iff, for all n ≥ 1, there is an integer

kn ≥ 1 with pn(xkn) = 0. (If pn is submultiplicative then clearly pn(xk) = 0 for all

k ≥ kn.)

(ii) If x is locally nilpotent then x has LFCD and also x is topologically nilpotent (i.e.

Spx = {0}).
(iii) If R is a Banach algebra, then x ∈ R is locally nilpotent iff x is nilpotent.

(iv) In the Fréchet algebra F = C [[X]], the element X is locally nilpotent but is not

nilpotent.

We have a satisfactory generalization of Theorem 1.

Theorem 19. Let R be a commutative, unital Fréchet algebra and let x ∈ R. The fol-

lowing are equivalent :

(i) there is a homomorphism θx : F → R with θx(X) = x;

(ii) x ∈ radR and x has LFCD.

In case (i) and (ii) hold then:

(a) θx is injective iff x is not nilpotent ;

(b) θx is a continuous, injective homomorphism iff x is locally nilpotent and non-

nilpotent (in which case, also, θx has closed range, is a homeomorphism onto its range,

and is uniquely defined by the requirement that θx(X) = x).

Proof. See [2] Theorems 7 and 5.

(v) Let R be a commutative Banach algebra and let x ∈ R have FCD; thus there is an

integer N ≥ 1 such that Rxn = RxN for all n ≥ N . An application of the Mittag-Leffler

theorem then shows that also I(x) = RxN . It follows that x is nilpotent iff I(x) = 0.

It may then be deduced that, if R is a commutative Fréchet algebra and if x ∈ R has

LFCD, then x is locally nilpotent iff I(x) = 0.

Lemma 20. Let A,B be commutative Fréchet algebras, θ : A→ B a homomorphism (not

necessarily continuous). Then:

(i) if x ∈ A has LFCD, then θ(x) has LFCD in B;

(ii) if θ is injective, and if x ∈ A has LFCD, but is not locally nilpotent, then also

θ(x) is not locally nilpotent.

Corollary 21. Let Ω be a compact Hausdorff space, R a commutative Fréchet algebra

and let θ : C(Ω) → R be an injective homomrphism. Then every element of im θ \ {0}
has LFCD, but is not locally nilpotent.
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Theorem 22 (M. K. Kopp (2002)). Let Ω be an infinite, compact Hausdorff space and let

R be a commutative, unital Fréchet algebra, whose radical contains a non-locally nilpo-

tent element of LFCD. Then (subject to CH) there is a discontinuous homomorphism

C(Ω)→ R.
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