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Abstract. In this note a commutant lifting theorem for vector-valued functional Hilbert spaces
over generalized analytic polyhedra in C" is proved. Let T' be the compression of the multiplica-
tion tuple M, to a *-invariant closed subspace of the underlying functional Hilbert space. Our
main result characterizes those operators in the commutant of 7" which possess a lifting to a mul-
tiplier with Schur class symbol. As an application we obtain interpolation results of Nevanlinna-
Pick and Carathéodory-Fejér type for Schur class functions. Our methods apply in particular to
the unit ball, the unit polydisc and the classical symmetric domains of types I, IT and III.

In a paper from 1967 Sarason observed that commutant lifting results for contractions
can be used to solve interpolation problems for bounded analytic functions on the unit
disc. This idea was considerably extended in the work of Sz.-Nagy and Foiag on Hilbert
space contractions (see, for example, [21, 31]). Each contraction T € B(H) of type C.o
is, up to unitary equivalence, the compression of the multiplication operator with the in-
dependent variable M, € B(H?(D, E)) on a vector-valued Hardy space to a closed linear
subspace M C H?(D, E) which is invariant for the adjoint M. A functional version of
the commutant lifting theorem, suitable for applications to interpolation problems, says
that each operator X in the commutant of the compression T' = Py, M,|M dilates to a
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multiplication operator M given by a bounded analytic function f € H> (D, B(E)) with
| X || = || f]loo- Since the commutant of the multiplication operator M, on H?(DD, E) con-
sists precisely of all multiplication operators M with f € H>(D, B(E)), the above result
can be seen as the Cy-case of the abstract commutant lifting theorem for contractions.

If one replaces the Hardy space on the unit disc by the Hardy space on the open unit
ball B in C" and uses the commuting n-tuple M, = (M,,,..., M, ) € B(H*(B, E))"
consisting of the multiplication operators with the coordinate functions instead of the
operator M, on H?(DD, E), then the multivariable analogue of the above functional form
of the commutant lifting theorem is no longer true. An easy way to show this, is to use
the well-known fact that the ball version of the classical Nevanlinna-Pick theorem for
functions in H*°(B) is wrong (see e.g. [24]).

By von Neumann’s inequality, the supremum norm of a bounded analytic function f
in H*(D, B(E)) can be described as

[fllse = sup{|lF(T)l; T € B(H) with ||T]| <1}.

Here H is a fixed separable, infinite-dimensional Hilbert space, and the operator f(7') is
formed with the help of an appropriate vector-valued analytic functional calculus which
will be explained below.

If one substitutes B for D and replaces single contractions by the class of all n-
contractions as introduced by Arveson in [8], then the space of all analytic functions
f € O(B,B(E)), for which the norm defined by the supremum in the above formula
is finite, forms a contractively embedded Banach subalgebra of H>°(B, B(E)). For this
class of analytic functions, interpolation results of Nevanlinna-Pick or Carathéodory-Fejér
type have been obtained, and closely related versions of the above functional form of the
commutant lifting theorem can be proved (see [6, 13, 16, 19, 27]). Based on Agler’s char-
acterization [1] of Schur class functions on the open unit polydisc D" in C", corresponding
interpolation and commutant lifting results have been proved over the unit polydisc in [2]
and [12]. Non-commutative commutant lifting theorems for row conctractions have been
proved by Popescu in [25, 26]. As an application commutative versions of the Sarason
dilation theorem have been obtained by the same author over the unit ball (see e.g. [28]).

In the present paper we replace the ball and unit polydisc by a bounded analytic
polyhedron of the form

D={zeW; ld>) <1} cC,

where d : W — CP+9 is a matrix-valued analytic function on an open neighbourhood W of
D in C". Instead of contractions we use the class C of all commuting n-tuples 7' € B(H)"
on a fixed separable, infinite-dimensional Hilbert space H such that o(7) C W and
|ld(T)]| < 1. Since in this situation the Taylor spectrum o (T') of T is contained in D, the
formula
1flls = sup{[[f(T)|; T € C}

can be used to define a contractively embedded Banach subalgebra S(d, B(E)) of
H*>(D, B(E)), called the Schur space on D. We replace the Hardy space by Hilbert
spaces H of analytic functions on D defined by a suitable reproducing kernel function
C'. Our main result (Theorem 3.7) shows in particular that, for each M}-invariant finite-
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dimensional subspace M C ‘H® FE, the operators X in the commutant of the compression
T = Py M,|M € B(M)", which possess a lifting to a multiplication operator M given
by a Schur class function f € S(d, B(FE)) with Schur norm || f||s < 1, can be characterized
by a positivity condition which is formulated in terms of the reproducing kernel C' and
the boundary function d of the domain D.

The results obtained in this way apply in particular to the ball, the polydisc and,
furthermore, to all classical symmetric domains of type I, I and III. Indeed, in these
cases suitable examples of reproducing kernel Hilbert spaces satisfying all our conditions
are known to exist. As an application we derive interpolation results for functions f in
S(d, B(E)) of Nevanlinna-Pick and Carathéodory-Fejér type on these domains.

The paper continues joint work [4, 5] of the first named author with D. Timotin on
von Neumann type inequalities and intertwining lifting results over suitable domains in
C™. We make essential use of a recent result of Ball and Bolotnikov [11] which gives
various characterizations of Schur class functions on polynomial polyhedra.

0. Preliminaries. Let H and K be complex Hilbert spaces. We write B(H, K) for the
set of all bounded linear operators from H to K and H ® K for the Hilbertian tensor
product of H and K. For an open set U in C™ and a given Banach space X, we denote
by O(U, X) the Fréchet space of all analytic X-valued functions on U. If T € B(H)" is
a commuting tuple of bounded linear operators on H, then ¢(T') is defined as the Taylor
spectrum of T, and we write ® : O(c(T)) — B(H), f — f(T), for Taylor’s analytic
functional calculus of 7. For the definition and basic properties of these notions from
multivariable operator theory, we refer the reader to [18] or [32].

For given Hilbert spaces F and F, and each open neighbourhood U of o(T"), there is
a unique continuous linear map

®p . . OU,B(E,E,)) =~ OU)®B(E,E,) — B(H® E,H ® E,)

with the property that ®g g, (f® A) = f(T) @ Afor f € O(U) and A € B(E, E.). For
simplicity, we write again f(T) instead of ®g g, (f). If S C C" is an arbitrary subset,
then we define S = {z € C"; z € S}. For f € O(U, B(E, E,)), the function

is analytic again. An elementary exercise, using the corresponding scalar-valued result
and the density of the linear span of all elementary tensors, shows that the identity
f(T*) = f(T)* holds for all functions f € O(U, B(E, E.)).

If p, q are positive integers, then we identify the space B(H?, H?) of all bounded linear
operators from H? to H? with the space B(H)P? of all (p x ¢)-operator matrices with
entries in B(H). For p = ¢, we regard the map

P
tr: B(H)»? — B(H HZA
Jj=1
as a generalization of the ordinary trace for scalar matrices.

Let A be an arbitrary set. An operator-valued function K : AXA — B(H) is called pos-

itive definite if ) j=1({K(Ai, Aj)ei, ¢j) > 0 whenever s is a positive integer, A1, ..., As € A
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and ci,...,cs € H. By a well-known theorem of Kolmogorov and Aronszajn a function
K : A x A — B(H) is positive definite if and only if there is a Hilbert space G and a
function k : A — B(H,G) such that K (A, u) = k(u)*k(X) for A\, u € A.

1. Functional Hilbert spaces. Let D C C™ be an open set with 0 € D. Throughout
this note we shall denote by H a fixed functional Hilbert space consisting of analytic
functions on D. More precisely, H is a Hilbert space consisting of complex-valued analytic
functions on D such that all point evaluations

dw:H—=C, fr flw) (we D)
are continuous. For each point w € D, there is a unique function C,, € H such that

(f;Cuw) = f(w) — (f €H).

The map D — H, w — C,, is weakly anti-analytic, and hence it is anti-analytic as a
map with values in H. Consequently, on the open set A = {(z,w); z,w € D} C C*", we
can define an analytic function C' : A — C by

C(z,w) = Cx(z).

In addition, we shall suppose that the domain D and the functional Hilbert space H
satisfy the following conditions:

(i) H contains the constant functions and ||1]| =1,

(ii) the coordinate functions are multipliers of H, and the tuple Z = (Z1,...,2,) €
B(H)™ consisting of the multiplication operators Z; : H — H, f — z;f, has the
property that 0(Z) = D,

(iii) D is polynomially convex and the polynomials form a dense subset of H,

(iv) the function C has no zeros, Cp = 1 and C~! extends to a holomorphic function
defined on an open neighbourhood of A.

Typical examples of analytic functional Hilbert spaces satisfying all these conditions are
the Bergman (or Hardy) spaces on the classical symmetric domains (see Chapter IV
in [22]).

For a given Hilbert space E, we shall identify the Hilbertian tensor product H ® F
with a linear subspace of the space O(D, E) of all E-valued analytic functions on D via
the injective linear map

JiH®E— O(D,E), (jh)(z)=(6:®1g)(h).
Let E,E be fixed Hilbert spaces, and let f € O(U, B(E, E))) be an analytic function
defined on an open set U O D. Then the multiplication operator
Ty HQE—-HRE, h— fh
is well defined and continuous linear. To verify this, it suffices to show that
(f(2)h)(z) = f(2)h(z)  (heH®E, z€D),

where f(Z) is formed with the operator-valued analytic functional calculus explained in
the preliminaries. Since both sides of the above equation depend in a continuous bilinear
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way on f and h, it suffices to consider the case where f € O(U) and h € H. To settle
this case, one can use the observation that Z7C, = z;C, (1 <j < n) to deduce that

(F(2)h)(2) = (h, [(Z)"C.) = (h, J(Z*)C.) = (h, [(2)C.) = f(2)h(2).
For given Hilbert spaces F and E,, we consider the multiplier space
M(E,E.)={f € O(D,B(E,E,)); fH®E CH® E.,}.

By the closed graph theorem each function f € M(FE, E,) induces a continuous linear
multiplication operator T : H ® E — H ® E,, g — fg. The space M(E, E,) becomes a
Banach space relative to the multiplier norm || f|| = |7

A closed subspace M C ‘H ® E will be called *-invariant if (Z; ® 1g)*M C M for
j=1,...,n.

LEMMA 1.1. Suppose that M C H® E is a *-invariant closed subspace.
(a) The compression T = Py (Z @ 1g)|M € B(M)™ is a commuting tuple on M such
that o(T) C D such that
f(Z@1g) M c M and f(T)=Pyuf(Z®1p)|M
holds for each function f € O(D).
(b) Forhe H® E, z€ D and x € E, we have the identity
(h,C, ®@z) = (h(z2),x).
(c) For f e M(E,E,),z€ D and x € E, it follows that
T7(C.®2) = C. ® f(2)"z.

Proof. (a) Since the adjoint T* = Z* ® 15| M is a commuting tuple, the same is true for
T. The approximate point spectrum of 7™ satisfies

0r(T*) Cor(Z*®1g) Co(Z* @ 1) =0(Z*) ={z; 2 € D}.
Since the Taylor spectrum is always contained in the polynomially convex hull of the
approximate point spectrum ([30]), we conclude that o(7) C D. Let f € O(D). Since
o(Z*®@1g)Ua(T*) C {z; z € D}, the space M is invariant for f(Z*®1g) = f(Z®1p)*.
Hence it follows that (cf. Lemma 2.5.8 in [18])

FI) = H(T7) = f(Z" @ 1) M = f(Z®1g)"|M.

(b) The observation that both sides of the claimed identity are continuous linear in A
reduces the assertion to the case of elementary tensors h = hg ® y, ho € H and y € F,
where it is obvious.

(c) Apply part (b) to see that

(9, Tf(C. @) = (f(2)9(2),x) = (9, C= @ f(2)"x)
forgc H®FE,z€ Dandz € E,. m
For a commuting tuple T' € B(H)" on a Hilbert space H, we denote by
My = (Ly, Ry+) € B(B(H))*"

the commuting (2n)-tuple consisting of the tuple Ly = (Lp,, ..., Lz, ) of left multiplica-
tion operators L7, : B(H) — B(H), X + T;X, and of the tuple Ry~ = (Rry,..., Rr:)
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of right multiplication operators Rr» : B(H) — B(H), X — XT7. It is well known (see
[17]) that o(M7) = o(T) x o(T*). For a given analytic function f € O(o(T) x o(T™)),
we use the notation

f(T,T7) = f(Mr)(1m) € B(H).
Suppose that 7' € B(H)"™ and S € B(K)™ are commuting tuples of bounded operators
on Hilbert spaces H and K and that X € B(H, K) intertwines T' and S componentwise

in the sense that

Then the operator Ax : B(H) — B(K), A — XAX*, intertwines the multiplication
tuples My € B(B(H))*" and Mg € B(B(K))?" componentwise. If f is an analytic
complex-valued function on an open neighbourhood of (¢(7') x o(T*)) U (c(S) x o(5*)),
then

Axf(My) = f(Mg)Ay  (Lemma 2.5.8 in [18]).

LEMMA 1.2. With the notation from above, we obtain the identity
1
c
where P € B(H® E) denotes the orthogonal projection onto the subspace of all constant
functions.

(Z®1g,(Z®1E)*) = Pg,

Proof. Our hypothesis that Cy = 1 implies in particular that
Ppf=f0) (feHE).

Let U D o(Z) and V D 0(Z*) be open neighbourhoods. To prove the assertion it suffices
to show that, for any function f € O(U x V), the identity

(f(Z®1p, Z" @ 1E)Cr®@ 2,0 ®y) = f(1, A)C(p, N)(2,y)

holds for all A\, u € D and x,y € E. Since both sides of this equation are continuous linear
in f, we may suppose that f = g ® h with ¢ € O(U) and h € O(V). In this case, we
obtain that

f(Z®lg, Z*® 1) = g(Lzg1p) MRze15) (InsE)
= Lyze1p) Br(z-01p) (Iner) = 9(Z ®1p) MZ* ® 1k)
= (9(Z2) M(Z")) ® 1.
Thus the proof is completed by the observation that
(h(Z)Cx, 9(Z2)"Cu) = h(X) g(p) (Cx,CL) = (g @ h) (11, ) Cp, A). m
Let M C H® F and M, C H ® E, be *-invariant closed subspaces. Then
T=Py(Z®1g)IM € B(M)", T.=Py (Z®1g,)|M. € B(M,)"

are commuting n-tuples with o(7") U o(T,) C D. For every function f € O(A) and every
operator X € B(H ® E), the identity

f(M7)(Py X|M) = Pu[f(Mze1,)(X)]|M
holds. Indeed, it suffices to check this identity for functions f of the form
f=g9®h,  geO(U),heO(V),
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where U D o(Z) and V D o(Z*) are fixed open neighbourhoods. In this case the assertion
easily follows as an application of Lemma 1.1(a).

PROPOSITION 1.3. For every operator X € B(M, M,) which intertwines the commuting
tuples T € B(M)" and T, € B(M.,)™ componentwise, we have the identity

(GOEICEXME) = (PoXh,X°K)

for all h,k € M,.

Proof. Using Lemma 1.2 we obtain the identity
1
C

which is equivalent to the assertion. m

() (XX) = A ( HIT) ) = Ax(ParPelan),

2. Fractional transforms and the Schur class. Throughout this section we make the
assumption that the open set D C C” is a generalized analytic polyhedron in the sense
that there are an open neighbourhood W of D and an analytic matrix-valued function
d = (djx) : W — B(C?,CP) = CP? such that d(0) = 0 and

D={zeW; ||d(2)| <1}.
Let us fix a separable infinite-dimensional Hilbert space H. For a given commuting tuple
X € B(H)™ with 0(X) C W, the operator-valued analytic functional calculus of X
applied to the function d gives rise to the matrix-operator

d(X) = (d;x(X)) € B(H, H?).

Using the spectral mapping theorem for Taylor’s analytic functional calculus, one can
prove the following result.

LEMMA 2.1. Let X € B(H)™ be a commuting tuple with c(X) C W. Then

sup [ld(2)]| < [|d(X)]|. =
z€o(X)

This result was proved in [5] for the case that the coefficients d;; of d are polynomial
functions. Since the same proof, without any changes, applies to our more general situ-
ation, we omit the details. Note that, if ||d(X)|| < 1 in the setting of Lemma 2.1, then
o(X) C D. Hence, for any operator-valued analytic function f € O(D, B(E, E,)) with
given Hilbert spaces F and FE,, we can form the operator

f(X)e BH® E, H® E,).
Define C as the set of all commuting tuples X € B(H)™ with ¢(X) C W and ||d(X)| < 1.
For f € O(D,B(E,E.)), we call

[flls = sup{[lF(X)]l; X €C}

the Schur norm of f. Since, for each point z € D, the n-tuple z1 = (z11g,...,2,1H)
belongs to C and since f(z1) = 1y ® f(z) for each function f € O(D,B(E,E.)), it
follows that || f|ls > || fllc,p for each such function f.
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The linear space
S(d, B(E, E.)) = {f € O(D, B(E, E.)); || f|ls < o0}
becomes a Banach space if equipped with the Schur norm | - ||s. Its unit ball
Sa(E, Ey) ={f € O(D, B(E, E.)); || flls <1}
is called the B(E, E.)-valued Schur class on D (with respect to d). In the scalar case

E = E, = C, we simply write S, instead of S;(C, C).
Let L and L, be Hilbert spaces, and let the matrix operator

U= (a 2) €B(L®E, L. ®E.)
c

be a contraction. We shall use the well-known and elementary fact that, for each bounded
operator X € B(L,, L) with || X|| < 1, the operator

d+c(l;, — Xa)™'Xb € B(E, E.)
is a contraction again. Fix an arbitrary Hilbert space K. With L = K? 2 CP ® K and
L,=K1=C?® K, and with X replaced by dx(z) = d(2) ® 1k (z € D), we see that the
analytic function fyy : D — B(FE, E,) defined by

fu(z) =d+c(lgr —dg(2)a) tdg(2)b

is sup-norm bounded by one. To keep the notation simpler, we shall usually write d(z)

instead of dx (z) again.
For the case that d is a polynomial function, the following result is contained in [5].

PROPOSITION 2.2. Let K be a Hilbert space. Suppose that the matriz operator

b

U= (a d) € BK* & E, K'& E,)
c

is a contraction. Then fy € S4(E, E,).

Proof. For completeness, we indicate the elementary proof. It suffices to observe that, for

any given tuple X € C, the operator

fuX)=1g®@d+ (1lg®c)(lugrr —dx(X)(1g ®a)) 'dx(X)(1g ®@b)

is a contraction again. The reason is that the matrix-operator obtained from U by replac-
ing its coefficients by the tensor products with the identity operator on H is a contraction
again. m

Our next aim is to derive some useful characterizations of Schur class functions, which
in particular show that the converse of Proposition 2.2 holds. For the case that the
coefficients of d are polynomial functions, this result is contained in [11]. Since our setting
is slightly more general, we indicate the main ideas.

LEMMA 2.3. Let A€ B(H") = B(H)"" be a positive operator. Then
[A]l < r [JtrAl.
Proof. Using the Cauchy-Schwarz inequality for the positive definite map
{1,...,7}> = B(H), (i,j)— Aj;
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one obtains the estimate
A ill < (1Al Az D2 < max [| A |
for i,j =1,...,r. On the other hand, for any fixed index k € {1,...,r}, we have

| Arell < ”SL‘IP miaX<Aii337x> < [[trA]l.
z||=1

To complete the proof it suffices to recall that ||A|| < rmax [|Aj;||. =
dri

Let 6 : S — B(C*,C") be a map on an arbitrary set S such that ||§(z)|| < 1 for z € S.
LEMMA 2.4. Suppose thatT': S x S — B(H") is positive definite such that
F:S—B(H), F(2)=t((1—6()3())T(2))
18 sup-norm bounded by one. Then the estimate
ID(z,w) | < r((1 = [16(z)[I*)(1 = [[6(w)]*) =/
holds for all z,w € S.
Proof. By Lemma 2.3 we obtain that

Tz, )l < (1= 6(2)d(2)") 7 2IPII(1 = 6(2)(2)*) /2T (2, 2) (1 = 8(2)d(2)*) /2|
<71 =d(2)3(2)") THIIE ) < r(1 = 6(2)]1%) "

for all z € S. To complete the proof it suffices to apply the Cauchy-Schwarz inequality
to the positive definite map I'. m

After these preparations we can prove our version of the theorem from Ball and
Bolotnikov [11].

THEOREM 2.5. Let S C D and f : S — B(FE, E,) be arbitrary. Then the following are
equivalent:

(i) f extends to a map in Sy(E, E.);
(ii) there is a positive definite map I' : S x S — B(E?) such that

1= f(w)"f(z) = te((1 — d"(2)d" ()" )T (z,w)) (2w € S);
(iii) there exist a Hilbert space G and a map G : S — B(E,G1?) such that
1= f(w)"f(z) = G(w)"(1 — d(w)"d(2))G(2) (z,w € 9);

(iv) there exist a Hilbert space K and a unitary operator

U= (a db) €EBKP®E KI®E,)
C

such that f(z) = d+ cd(2)(1ka — ad(z))"'b for z € S;
(ii)" there is a positive definite map ' : S x S — B(EY) such that

1 — f(w)f(2)* =tr((1 — d"(2)*d"(w))T(z,w)) (z,w € S);
(iii)" there exist a Hilbert space G and a map G : S — B(GP, E.) such that
1= f@)f(2) = Glw)(1 - dw)d(z))G(:)" (2w € S);



92 C. AMBROZIE AND J. ESCHMEIER

(iv)’ there exist a Hilbert space K and a unitary operator U as in condition (iv) such
that f = fu on S.

Proof. (i) = (ii). Let f € Sq(E, E.) be a Schur class function, and let S C D be finite.
Set §(z) = d*(z). Suppose that dim(F) < oco. It suffices to show that in this case there
is a positive definite map I' as in condition (ii). Then the general case can be deduced
by choosing, for each finite set M C D and each finite-dimensional subspace F' C E, a
positive definite map I'p; p : M x M — B(F?) such that

Pp(l = f(w)" f(2)|F = tr((1 = 6(2)6(w)")Tar,p (2, w))
holds for z,w € M. The trivial extensions Ay p : D x D — B(EY) defined by setting
Ay p=0o0n (D x D)\ (M x M) and
Ay p(z,w) =Ty p(z,w)Pra  (z,w € M)
form a net in the compact Hausdorff space
[T dxeBE; X <r(zw)} rwor),
(z,w)eDxD

where r(z, w) are suitable real numbers which can be chosen with the help of Lemma 2.4
and Twor refers to the weak operator topology. It is elementary to check that the limit "
of any convergent subnet of (A r) will give a representation of 1 — f(w)* f(z) on D x D
as in condition (ii).

Thus suppose that S C D is finite and that dim(E) < co. To prove that (i) implies
(ii) in this case we use a separation argument due to Agler [1]. The set V = B(E)%*%
of all functions S x S — B (E) is a finite-dimensional normed space with respect to the
sup-norm. It suffices to show that the function

F:8x8— B(E), F(zyw)=1- f(@w)"f(z)
belongs to the subset C' C V consisting of all functions g € V' for which there is a positive
definite map I' : § x § — B(EY) such that
9(z,w) = tr((1 = 6(2)0(w)")I'(z,w)) (z,w € S).

By Lemma 2.4 the set C is a closed proper cone in V. Assume that F' ¢ C. Since F' and
the elements of C' are self-adjoint with respect to the involution on V' defined by

9" (z,w) = g(w,2)",
a well-known separation theorem (Theorem 2.7 in [23]) allows us to choose a linear
functional L : V — C such that L > 0 on C \ {0} and L(F) < 0. Let Hy = B(E,C)° be
the vector space of all functions g : S — B(FE,C). For g, h € Hy, define a function g x h
in V by
g x h(z,w) = h(w)"g(2).

All functions of the form g x g, g € Hy, belong to C. Indeed, by Schur’s theorem the map
I': S xS — B(FE) defined by

oo

D(z,w) = Y ({(dk1(2)k, (da(w))k)er) " g(w)* g(2)

m=0
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is positive definite and satisfies
g% g(2,m) = tr((1 - 8(2)8(w) )miT(z w)m) (2w € ),

where m; : EY9 — FE is the projection onto the first coordinate. Thus Hj is a finite-
dimensional Hilbert space relative to the inner product

(9,h) = L(g x h).

The tuple X € L(Hy)" defined by (X;g)(z) = zjg(z) for z € S and j = 1,...,n is
commutative with o(X) = S. Since for each non-zero element h € H{ the relation

B2 = lla(X )l = L (Z( de )(dki) ™ (w) ) ha(@)"hy () )

ij=1
— L(u{(1 = 3(:)50)" )0 () > 0
holds with I'y,(z, w) = (h;(w)*h;(2))1<i,j<q, We conclude that ||d(X)| < 1.
Since by hypothesis f € S;(F, E,), it follows that ||f(X)|| < 1. For fixed vectors
g,h € Hy and z,y € E, the identity
(u(X)g @ z,v(X)h @ y) nywr. = L(u(z)z,v(W)Y) B, g X h(z, w))
holds for each pair of functions u,v € O(D, B(E, E,)). It suffices to check this assertion

for elementary tensors u = ug ® A, v = vg ® B, which is straightforward.
Fix an orthonormal basis (¢;)_,of £ and define, for j =1,...,r,

fi:S— B(E,C), fi(z)x=/ x¢j).
Then f; x f; = (-, e;)e; on S x S. The identity

T

F(sz) = Z <F(va)ei’ej> <'7€i>eja

ij=1

valid for all (z,w) € S x S, implies that

L(F) = L(i(fj < ) = Y s F@enfi x fi(zw)
= [ Ssef

This contradiction completes the proof of the implication (i) = (ii).

(i) = (ii). Suppose that I' is given as in condition (ii). Then there is a Hilbert
space G and amap G : S — B(FE?,G) such that T'(z,w) = G(w)*G(z) for z,w € S. Write
G(2) = (G1(2),...,G,4(2)) and define

G:S— B(E,GY), G(z)=(G1(2),...,Gq(2))".
Then, with 6(z) = d’(z), we obtain that

tr((1 = 0(2)0(w)")T'(z,w)) = ZGj(w)*Gj(Z) - Gi(w (Z

i,j=1 k=1

— G(w)* (1 — d(w)d())G(2)

ij=1

e l0(S 00

> 0.

HoQE.

w)dy; (2 )Gj(z)

for z,w € S.
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(iii) = (iv). Let G be a map as in condition (iii). Then, for z,w € S and =,y € E,
we obtain the identity
(d(2)G(2)z, d(w)G(w)y)gr + (z,y) & = (G(2)z, G(w)y)gs + (f(2)z, f(w)y) p. -

Hence there exist a Hilbert space K O G and a unitary operator U of the form described

in condition (iv) such that
/() = (o)

for all z € S and = € E. By solving the corresponding system of linear equations
ad(2)G(z) + b= G(z), cd(2)G(z)+d= f(2),
we obtain that, for all z € S,
f(2) =d+ cd(2)(1ga — ad(z))"'b.
(iv) = (iv)’. Suppose that U represents f as in condition (iv). Using the identity
(1ga —ad(2)) ™' = 1ga + a(lgr —d(2)a) " d(2)
we see that
f(z) =d+cd(2)b+ cd(2)a(lgr — d(2)a)~rd(2)b
=d+ c(lgr — d(2)a)~1d(2)b.
In Proposition 2.2 we proved that (iv)’ implies (i). Completely analogous to the above

arguments one can prove the implications (i) = (ii)’ = (iii)’ = (iv)’. Thus the proof of
Theorem 2.5 is complete. m

3. A commutant lifting theorem. Let H be a functional Hilbert space consisting
of analytic functions defined on an open set D in C" such that H and D satisfy the
conditions described at the beginning of §1. As in §2 we suppose that there is an open
neighbourhood W of D and an analytic function d : W — B(CY, CP) such that d(0) = 0
and

D={zeW; [ld(z)] <1}

As typical examples one can choose the Bergman and Hardy spaces on the unit ball, the
unit polydisc or the classical symmetric domains of types I, IT and III (see [22]).

For 0 < r < 1, the set W,. = {z € W; ||d(2)]| < 1/r} is an open neighbourhood
of D. Recall that the operator-valued analytic functional calculus of the multiplication
tuple Z = (Z1,...,Z,) € B(H)™ gives rise to the matrix operator d(Z) € B(HY, HP).
Throughout this section we make the additional assumption that

[d(Z)] < 1.

Let £ and E. be arbitrary Hilbert spaces. It is well known ([14], [15]) that a function
f € O(D,B(E,E,)) belongs to the closed unit ball of M(E, E,) with respect to the
multiplier norm || f|| = ||7%| if and only if the induced map

K;:DxD—B(E), (5w) Cw3)(ls - fw)f(z)")

is positive definite.
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LEMMA 3.1. Let E and E. be Hilbert spaces. Then S(d, B(E,E,)) C M(E, E,) and

ITr Il < I flls
for all f € S(d, B(E, E,)).
Proof. Let f € Sy(E, E,) be a Schur class function. By Theorem 2.5 there are a Hilbert
space G and a map G : D — B(G?, E,) such that
1= f(w)f(2)" = G(w)(1 = d(w)d(z)")G(2)" (z,w e D).

Multiplying both sides of this equation with C(w,Zz) and using the above multiplier
characterization twice, first for d and then for f, yields the assertion. m

A second important consequence of the hypothesis that ||d(Z)| < 1 is the following
result, which should be compared with Lemma 3.2 in [12].

LEMMA 3.2. Let K and E. be Hilbert spaces. Suppose that a € B(KP?,K9) and ¢ €
B(KP E.) are bounded operators with a*a + c¢*c < 1g». Then, for x € KP, the function
Qx: D — FE, defined by

(Q2)(2) = c(1gr — dg (2)a) 'z
belongs to HRQ E,. The map 2 : KP - H® E,, © — Quz, is a linear contraction such that
Q(C.®Yy) = (1gr —a*dg(2)*) 'y (2 € D,y € E,).

Proof. Define a = 13y ® a € B(H ® K?,H ® K9). Let us fix an arbitrary real number r
with 0 < r < 1. Then the operator

0=6=rd(Z)®1xk e BH'®@ K, H* @ K) 2 B(H® K, H ® K?)
satisfies ||d,-|| < r. By the remarks preceding Lemma 1.1 the functions

w=uw,: W, — B(KP,E,), zw c(l—rdg(z)a)"?,
o=, : W, — B(K?), z~ (1+7rdg(z)a)(l —rdg(z)a)~?!

induce multipliers T,, € M (K?, E,) and T,, € M (K?). Our hypotheses on a and ¢ imply
that
T, +T} 1
% = 5[(1+da)(1 - 6a) L+ (1 — a0%) 711 + a*6%)]
=(1-a*6") (1 -a**5a)(1 —da) ™t > (1 —a*6*) (1 —r?a*a)(l —da)~!
>r?2(1—a*6") Ty @ )1y @ ¢)(1 — da) ! = r*T7T,,.
In particular, it follows that
2 *
|| T, (Co )" < (1/2)((Ty, + T )Co @ x, Co @ x) = ||||?
for 0 <r < 1and z € KP. Since, for x € KP, y € E, and z € D, we have
(To,,(Co @ x),C: @ y) = (z,w,(2)"y) = {wr(2)z, y),

it follows that the limit lim, 11 (7, (Co ® x), h) exists for z € K? and h in the linear span
of all vectors C, ® y, z € D and y € E,. Because of

T 7., (Co ® 0)] < o]
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the above limit exists for all x € K? and h € H ® E, and can be represented by a linear
contraction ' : K? — H ® FE., in the sense that

(Y, h) =Tm(T,,, (Co @), h) (v € KP,h e He E.).

In view of the identity
() (2),y) = limdwr (2)a, ) = ((2)(2), )

it is clear that Q = Q' € B(K?,’H ® E.) is a well-defined contraction. The proof is
completed by the observation that

(@ (C: @y),2) = (y, (Q2)(2)) = (1 - a’dk(2)") "'y, 2)
holds for all elements y € E,, x € KP and z € D. n

Let F and E, be complex Hilbert spaces. Suppose that M C H® F and M, C HQ E,
are x-invariant closed subspaces. Denote by

M, € B(M,)"

the compressions of Z ® 1g and Z ® 15, to M and M,, respectively. Our aim is to find
positivity conditions that characterize those operators X : M — M, which intertwine T'
and T, and which possess a lifting to a multiplier 7 : H ® £ — 'H ® E, with a Schur
class symbol f.

For this purpose, we fix an orthonormal basis (ex)x>0 of H consisting of polynomials
such that C[z] is the linear span of the polynomials ej. To see that such a sequence (ex)r>0
exists, it suffices to recall that by hypothesis the polynomials form a dense subset of H
and to apply the Gram-Schmidt orthonormalization procedure to the family 2z (o € N").
Define Ay = e, (Tx) € B(M,) for k > 0. In addition to our previous hypotheses we make
the assumption that the set

Mo = {x € M.; Y |45l < oo}
k>0
is dense in M,. We shall see later that this condition is automatically satisfied in some

important cases. Note that My C M, is a linear subspace which is invariant for each
operator in the commutant of 7). For any given operator B € B(M.,), the map
B:Myx My—C, B(z,y)=) (AyBAjz,y)
k>0
is a well-defined sesquilinear form. More generally, let p > 1 be a fixed natural number.
Then, in exactly the same way, the p-fold direct sums A,(f ) e B (M?) can be used to
associate with each operator B € B(MY) a sesquilinear form
B:M!x MP —C, B(zx,y) = Z(A,gp)BAz(p)x,y>.
k>0

For 1 <14 < p, we denote by

Lt Mo — MP,  x— (di2))_,
mi MY — M., (x;)5_, =

the canonical inclusions and projections.
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LEMMA 3.3. Let B = (B;;) € B(MY) be a given operator. Then, for p,c = 1,....q,
w,v=1,...,p and all vectors x,y € My, we obtain the identities

() Blu,1uy) = (Buw)™(2,y),

(b) B(d"(T.)* (tp), (1) (toy)) = Y (Big) ™ (djp(T2) @, di (T2)"y).

ij=1
Proof. (a) By definition we have ]
B, tuy) = im,&p’BAz“’)w), (1)) = i<Ak<wuBLV>A2x,y> = (B)™ (z,y).
k=0 k=0
(b) Define C = d'(T.)* € B(M.,)?9. Then as an application of part (a) we obtain that
B(C(1pz), Clioy)) = zp: B(1(Cjp), 1i(Cioy)) = Zp: (Bij)™ (Cjp, Ciy)-
i,j=1 t,5=1

Thus the proof is complete. m
For B = (B;;) € B(MY), we define a sesquilinear form 7B : My x M, — C by setting
p P4
z,y) =Y (Bij)~(@,y) = > > (Biy)™ (djr(T.) x, di(T2) ).
j=1 i,j=1k=1

LEMMA 3.4. Let T = (-, y)y € B(M?Y) be a positive rank-one operator given by a vector
y € MY. Then there is a linear map S = Sy : My — HP such that

(i) T (z,z) = ||S$H2 |d(Z)*Sz||? for all x € My,

(i) (Sz,q) < Zq] >for all x € My and q = (g;) € C[z]P.

Proof. For z € Mé’, the map t, : C[z] — C, ¢ — (z,q(T.)P)y), is antilinear such that

(oo} (oo}
S ftalen)? =Y (AP TA Pz, 2) = D(x,2) < oo
k=0 k=0

Hence we obtain a well-defined linear map ¢ : M} — H by setting

x) = th(ek)ek
k=0

By definition it follows that (t(z), ex) = t,(ex) for all k& € N. Since C[z] is the linear span
of the polynomials e; (k € N) and since each function f € O(D) is the uniform limit of
polynomials on an open neighbourhood of D, we obtain that

(t(x), f) = (@, f(T.)Py)
for v € M} and f € O(D). Furthermore, for x,2’ € M, we have
(t(z), t(a")) = T(x,a").
The observation that, for r,s € O(D) and x € M], the identity
{t(r(Tw) Wa), s) = (r(T.)* Pz, s(T)Py)
= (z, (rs) (L) Py) = (t(x),rs) = (r(Z2)*t(x),s)
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holds, allows us to conclude that the intertwining relation
tor(T.)* P =r(Z) ot
holds on M]. Write ¢ as a row operator ¢ = ({1,...,t,) € B(M},H) and define

S:My—HP, xw— (tjz)i_,.

Using Lemma 3.3 (a) we obtain that
(t(ejx), t(x’)) = T(eja, 12’) = (D)~ (x,2)
fori,5=1,...,p and z,2’ € My, and hence that
(Di)™ (djn (L) @, di(T)*w) = (K (T2)*Pej), t(din(T)* P i)
= (djr(2)"(Sx);, din(2)" (Sw)i)

foralli,j=1,...,p,k=1,...,q and z € My. Adding up we find that
P

Z Z i) (din(To) x, di(To)"w) = > ((d(Z)d(Z))i;(Sw);, (Sx)s)
1,0=1k=1 i,j=1
= [|d(Z)* S=||?

for all © € Mj. Now, condition (i) follows from the observation that

p
E jj (EiIJ:

j=1 J

((Sz);, (Sz);) = [|Sz||*

p
:1

for all vectors © € M. At the same time we find that

(Sz,q) = Z(t(ij), a) = 2_{t%, g;(T.)"y)
= (i (Ty) = (2, as(T)ys )
Jj=1 Jj=1

for x € My and ¢ = (g;) € C[z]". =

It follows from Lemma 3.4 that 71" is a positive semi-definite sesquilinear form for
each positive rank-one operator I' € B(MY). Our next aim is to show that I has to be
zero if 7" = 0.

LEMMA 3.5. Suppose that T = (-, y)y € B(MY) is a positive rank-one operator. If 7T = 0,
then I' = 0.

Proof. Choose a linear map S : My — HP as in Lemma 3.4. The hypothesis that 7' =0
means precisely that

(Sz, Sz) = (d(2)d(Z)* Sz, Sz) (x € My).

Since d(Z)d(Z)* € B(HP) is a positive contraction, it follows that d(Z)d(Z)*S = S.
Because of d(2)*(Co ® o) = Cp @ (d(0)*a) = 0 for o € C? we find that

(Sz, Co @ a) = (Sx— d(Z2)d(Z2)* Sz, Co@a) =0
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for z € My and « € CP. Since Cyy = 1, part (ii) of Lemma 3.4 allows us to conclude that

P
0=(Sz,Ch®a)= < Za]yj> Z (z,y;)

for € My and o = (a;) € CP. Using the density of M we deduce that y =0. m

The fact that each positive operator A € B(MY) can be represented as the limit of a
strongly convergent, increasing series of positive rank-one operators allows one to improve
the above results considerably.

PROPOSITION 3.6. Let A € B(M?Y) be a positive operator. Then A >0, and TA = 0 if
and only if A = 0.

Proof. Define v = A'/? and fix an orthonormal basis (u;)ic; of MZ. Then the orthogonal
projections m; = > je s uj)uj, J C I finite, form an increasing net of positive operators
converging strongly to the identity operator. Fix a vector z € M{ and a real number ¢ > 0.
Then there is a natural number k = k:(x ¢) such that

< A(z,z) — Z pAA*(p) ,x) < g/2.
=0
For k fixed, we can choose a finite set Jy C I such that

k
0< Z((WA;(p)x,’yA;(p)@ - (W(;"/A;(p)x,'yA;(p)@) <e/2
j=0
for all finite sets J C I containing .Jy. Hence, for the same sets .JJ, we have
k
0<A(z,z) - Z('wrfyA;(p)x, A;(p);@ < €.
j=0

Thus we obtain that 0 < A(x,z) — (y7,7)~(z,z) < ¢ for all finite sets J O Jo. Conse-
quently we have shown that lim;(ym;v)~(z,z) = A(z, x) for all z € M.

Fix a vector z € M. Since, for all J C [ finite, the operators ym ;v = Zj€J<-, YU )YUj
are finite sums of positive rank-one operators, Lemma 3.4 shows that the expressions

P q

Tym) (@ @) = Y (ymy) ™ (e, ge) = Y (ymsy) ™ (@) v, d'(T)* wee)

j=1 k=1
form an increasing net of non-negative real numbers. But then

T(A)(z,z) = 11511 T(ymyvy)(z, ) > 0.

If this limit is zero for each « € My, then 7((-,yu;)yu;) =0 (j € I), and by Lemma 3.5
also yu; = 0 for all j € I. This observation completes the proof. m

Let as before T € B(M)™ and T, € B(M,)™ be compressions of Z® 1g and Z® 1,
to *-invariant closed subspaces M C H ® FE and M, C ‘H ® F,, respectively. Under the
hypothesis that the set

Moz{ EM*,ZHek :r:||2<oo}
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is dense in M., we characterize those operators X € B(M, M,) intertwining T and T,
that possess a lifting to a multiplier with Schur class symbol.

THEOREM 3.7. Let X € B(M, M,) be a bounded operator such that XT; = T.;X for
i=1,...,n. Then the following conditions are equivalent:

(i) there ezists a function F € Sy(E, E.) such that X Pyy = Pa, Tr;
(ii) there exists a positive operator I' = (I';;) € B(MY) such that
P

é(MT)leX ZFM szlk o) Tisdsin(T)"s

1,j=1k=1

(iii) there exist a Hilbert space K and a unitary operator

d
such that if F(2) = d+ c(1xr — dx(2)a) " 'dk (2)b, then X Pyy = Py, Tr.

U= (a b) € B(KP®E, K'® E,)
C

Proof. The equivalence of conditions (i) and (iii) follows from Theorem 2.5.

To prove the implication (ii) = (iii), suppose that I € B(M.)? is a positive operator
as in condition (ii). Define Ky = MF and L = I''/2. Write L = (L1, ..., L,)" € B(Ky, MF)
as a column operator. Then I';; = L;L} for 1 <, j < p and, using Proposition 1.3, we
obtain the identity

D q 9
| Po.hl? = [P X B = (50, 12 = || (D Ejdin()n) |
=1 -
for all h € M,. Hence the map
p
q
(ZL;djk(T*)*h)k_l ® (Pg.h) — (Lh)’_, @ (PsX*h)
j=1 -

defines an isometry V' from the linear subspace of K @ E, consisting of the vectors on
the left-hand side into the space K @ E. Choose a Hilbert space K D K and a unitary
operator U € B(KPOFE, K1®E,) such that U* extends V. Let a, b, ¢, d be the coefficients
of U (as in condition (iii) of Proposition 3.7). Defining ®; = L;Px, € B(K,M,) for
7 =1,...,p we obtain that

P q
a*(Z@}‘djk(T*)*h)k:l + ¢ P h = (DIh)_
J;l .
b* ( 3 @;djk(T*)*h) o+ d"Pp.h=PpX"h
j=1
for all h € M,. According to Lemma 3.2 the unitary operator U induces a contraction
Q=(Q,...,9,) : K» > H® E, uniquely determined by

Q(C, @) = (1gr —a*dg(2)*")"'c*z (2 € D, = € E,).

It follows that
a*dg(2)* W (C, @) + ¢z = W (C, @ ),
b dx(2)*Q*(C. ®@x) + d*v = Pp T}, (C. ® )
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for z € E, and z € D. Since the vectors C, ® x span ‘H ® E, topologically, the identity

die (2)"Q(C, @ z) = (ZQ* (2 ®1E*)(Cz®x))q

k=1

implies that

p
q
a*(ZQ;f dn(2)* ® 1E*)h)ki1 + ¢ Poh = (),

J;l ,
(ZQ; H(2) @ 1E*)h) 4+ d*Pg.h=PTih
Jj=1
for all h € H ® E.. Define ®; = Py, Q; € B(K, M.) and V; = ®; — &} € B(K, M.) for
j=1,...,p. Then (<I>;-)*h = Q7h for h € M,. Taking the difference of the representations
of ®*h and (27h obtained above, and by using the fact that

(djr(2)" @ 1g,)|M. = dji(T%)",

we conclude that
p
(3 \I/;fdjk(T*)*h)Zzl — (WRP_, (he M),
j=1
Since a* is a contraction, we find that
Z [wrh|* < Z H qu d; (T hH (h € M,).
J=

Hence A = (\IJZ\IJJ)” € B(M?) is a positive operator such that

Ajj— szzk AZJdJk( W) < 0.

1 1,7=1k=1

M@

j
By Proposition 3.6 the positivity of the operator A implies the positivity of the induced
sesquilinear form 7A = My x My — C. Using the definition of 7A one obtains that 7A
is negative. Hence 7A = 0, and again by Proposition 3.6, it follows that A = 0. But then

Comparing the above representations of PgX*h and PgT}, h, we obtain that
Then, for any constant function x € £ C 'H ® E and any multiindex o € N”, we have
(X*h, (Z*® 1g)x) = (T*X*h,z) = (X*T*h, )
= (T, Tih, ) = (Z** @ 1g Ty, h,x) = (Tj, b, (2% @ 1g)T).
Since H ® E is spanned topologically by the elements of the form 2* @ x (« € N,
r € E), we find that X*h = T}, h for each h € M,. Thus the proof of the implication
(ii) = (iii) is complete.
We complete the proof of Theorem 3.7 by showing that (iii) = (ii). Suppose that

F = Fy for a unitary matrix operator as in condition (iii). The hypothesis that X Py, =
Py, T is easily seen to be equivalent to the condition that 75 M, C M and X* = Tj|M..
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Exactly as in the previous part of the proof, we apply Lemma 3.2 to the first column of
the matrix operator U to define a contraction Q = (Q,...,9Q,) : K» — H ® E,. The
same arguments as in the proof of the implication (ii) = (iii) show that

v ((i 05 (d;r(2)" © 1E*)h)Z:1 @ (PE*h)) = (Q*h) @ PpThh
j=1

for each h € H® E.,. Using Proposition 1.3 and the fact that U* is isometric, we see that
(&(Mr,)(1 = XX*)h, h) = ||Pp. | — | PEX*N]?

= [|o*h|? - H(fQ?dMT*)*h)Z:lHQ
j=1

for all h € M.,. Now it is elementary to check that condition (ii) holds with
Thus the proof of Theorem 3.7 is complete. m

REMARK 3.8. The hypothesis that My C M, is dense is only used to prove that (ii)
implies (iii) in Theorem 3.7. We do not know whether this implication remains true
without this hypothesis. For p = 1, no condition on M is needed. Indeed, in this case,
one obtains exactly as in the above proof a positive operator A € B(M.,) such that

A - de )Ady(T.)* <0.

To prove that (ii) implies (iii) one has to show that A = 0. By a well-known argument
(see the proof of Theorem 3.10 in [9] it suffices to check that the row contraction d(7}) €
B(M.,)? is pure, i.e., that

SOT- hm Ed(T )( ) =0,

where Yqr,) : B(M.) — B(M.), X — Y], dp(T.)Xdi(T.)*. But this follows easily
from the observation that

Eilv(Z®lE*)( ) (Z

forzx € E, and w € D.

N
Jik(Z @15.)) (Cw@a) 0

Our final aim in this section is to describe typical cases in which the set
Mo = {a € M., Z lew(T2)"2|* < oo}

is automatically dense in M,.

LEMMA 3.9.  Suppose that o(T,) C D. Then the series > .- ex(Ty)er(Ty)* is norm
convergent.

Proof. The condition that o(7,) C D implies that o(Mr,) = o(T:) x o(T7) C A. Since
the series C(z,w) = > 7~ ex(2)éx(w) converges uniformly on all compact subsets of A,
we obtain the representation C(T,T7) = > 7o ex(Ti)er(Ti)*. m

A similar situation occurs when M, is finite-dimensional.
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LEMMA 3.10. Let M, C H® E, be a finite-dimensional x-invariant subspace. Then the
- o0 * -
series Y o er(Ty)er(Ty)* is norm convergent.

Proof. Note that the set
L= {A € B(M*);Zek(T*)Aek(T*)* converges}
k=0

is a linear subspace of the finite-dimensional normed space B(M.). Because of

SOT-) er(Z @ 1p,)Po.ex(Z ®15,)" =SOT-Y (- ex)er) ® 1n, = Iuae.
k=0 k=0

it suffices to show that the operator C; = Py e;(Z ® 1g,)Pr.e;(Z ® 1g,)*| M, belongs
to L for each fixed natural number j. But this easily follows from the identity

er(T:)Cier(T)" = e;(T)Cre; (To)"
valid for all k > 0. =

By applying the previous lemma to the scalar case E, = C, one finds that the series
Yoo er(Ti)er(T,)* is also norm convergent on any *- invariant subspace M @ E, of
‘H ® E, determined by a finite-dimensional Z*-invariant subspace M C H.

REMARK 3.11. (a) If M, is the closed linear span of an arbitrary family of x-invariant
subspaces M; C H® E, (i € I) such that, for each i, the subset

oo
{w€ Mis Y llew(Pas, (2 @ 15)|M)w|* < o0} € M,
k=0
is dense, then My C M, is dense. In particular, if

M, = \/(Ker(x —TH% AeDand o € N*),

then Lemma 3.9 implies that My C M, is dense.

(b) On the other hand, there are elementary examples showing that in general the
set My can be quite small. Let H be the Hardy space on the unit disc D in C and choose
(ex)k>0 = (Zk)k20~ Each C.p-contraction T € B(H) on an arbitrary Hilbert space H is, up
to unitary equivalence, the compression of Z®1p, € B(H®E,) to a x-invariant subspace,
where E, is a suitably chosen Hilbert space (Theorem VI.2.3 in [31]). In particular, this
applies to the adjoint 7' = M € B(L2(D)) of the Bergman shift defined on the Hilbert
space L2 (D) of all square integrable analytic functions on . But an elementary exercise
shows that

oo oo

{£er2m) Y llenm I < oo} = {f € L2); DI+ fI < o0} = {0}.

k=0 k=0

4. Interpolation for Schur class functions. The above results can be used to solve
interpolation problems for Schur class functions. For simplicity, we only treat the scalar-
valued case, that is, in the following we make the assumption that ¥ = F, = C.

Let H be a functional Hilbert space consisting of analytic functions on an open set

D ={zeW; [ld(z)| <1}
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in C™ such that H and D satisfy all hypotheses described at the beginning of Section 3.
We fix a finite subset S C D and suppose that, for each s € S, a finite set A, C N" is
given with the property that, for each a € A, we have

{yeN* vy <a}cCA,.

Here the order relation v < « is defined componentwise. For each s € S, let (¢s.4)aca,
be a fixed family of complex numbers. Our aim in the following is to find conditions that
characterize the existence of functions f € S; in the Schur class such that

FO(s)/al =50 (s €S,a€A).

Since every Schur class function f € S; is a multiplier of H with [|T|| < 1, we find
at least sufficient conditions for the existence of interpolating functions with multiplier
norm or supremum norm bounded by one.

Since by the closed graph theorem the inclusion mapping H C O(D) is continuous,
for each point w € D and each multiindex o € N, there is a unique function C$ € ‘H
with the property that

(£.Co) = FDw)/al (f €H).
To simplify the notation we write f(o)(w) = f(®) (w)/a! for f € O(D),w € D and e € N".
Let (er)ren be an orthonormal basis of H. Then

Clz,w) =Y ex(2)ér(w),
k=0

where the series converges uniformly on compact subsets of A = {(z,w);z,w € D}.
Hence, for a € N” and z,w € D, we find that

(05C)(z,@) = Y (%)™ (@)en(z) = Y (9%x) (w)ex(2) = alCy(2).
k=0 k=0

Since, for z,w € D, the identity

holds, it follows that

(0°C2)(w) = (0°C(z, ) (W) = lC(z).
LEMMA 4.1. Let f € O(D) be a multiplier of H. Then the identity
TiCh = > flamn@)Cy

0<v<a

holds for all points w € D and each multiindex o € N™.

Proof. It suffices to observe that
TjCOu(2) = (O, T1C:) = (O @) = Y fiayW)Ch(2)

0=«

for all z,w e D and a € N". m
By Lemma 4.1 the subspace
M =M, =LH{CY; s€ Sand a € A,}
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is invariant for the commuting tuple Z* € B(H)". As before, we denote by T € B(M)" the
compression of Z to M. Since the generating vectors C'¢* for M are linearly independent,
there is a unique operator X € B(M) such that

* Yo =
X7C¢ = E , Cs,a—C3
0<y<a

for all s € S and a € A;. The existence of a Schur class function f € S5 with
fa)(s) =csa  (s€Sandac€ A,)

is equivalent to the existence of a function f € S; with T}‘M C M and T;|M =X*.Ttis
elementary to check that X7; = T;X for j = 1,...,n. Hence Theorem 3.7 can be applied
to characterize the solvability of the above interpolation problem.

Our aim is to prove this interpolation result in a form which directly generalizes the
classical theorem known for the case of the unit disc. For this aim, let P denote the
orthogonal projection from H onto the constant functions. Then we obtain that

PCY={(C& 1)y =001 (s€S, acis).

Using Lemma 4.1 and the results from Section 1, one easily finds that

1 * « —
<6(MT)(1 - XX )Ctﬁ, Cy > = 5(0“5)7(070) — Cs,aCt,8

for all s,t € S and a € A, 3 € A;. Our result is formulated in terms of a scalar matrix
G = (Gpo)p,0en, Where A is the index set

A {p—(],SOé) .]_1 .-,pandSGS,OZEAs}.
THEOREM 4.2 (Carathéodory-Fejér problem). For S C D finite and finite families

(Cs.a)aca, (s€S5) as above, the following are equivalent:
(i) there is a function f € Sy with f(*)(s)/a! = cso for all s € S and o € Ay;
(ii) there is a positive semidefinite matric G = (G,o)p,0cca of complex numbers such
that the equations

8(0.8),(0.0) — Cs.aCt.8 = ¥ G(js.c)(1t.8)
J=1

P q
- >y (Z ik) (a—0) (s dgk)w—A)(t))G(z‘,s,é)(a‘,t,w

0<6<a 4,j=1 k=1
0<A<B

hold for all s,t € S and o € A, B € A;.

Proof. By Theorem 3.7 the validity of condition (i) is equivalent to the existence of a
positive operator I' = (I';;) € B(M?) such that

1 ) p P4
&(Mr)(1- XX )= Tj— Z > dig(T)Ty5d;(T)".
j=1 j=1k=1
Each coefficient I';; € B(M) has a representatlon of the form
I;CY = Y TPG,5)C (teS.BeA.

u€ES,vEA,
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By applying both sides of the first equation to the vector C’tﬂ , and then forming the inner
product with CZ, one obtains the identity

0(,8),(0,0) — Cs,aCt,f = Z [ZFW J,7)Caw)(8,7)

u€es, VGA Jj=1

- Z 3 Y it OV T ) Cls 5,7

i,j=1 k=1 0<6<a
0<A<B

for all 5,t € S and o € A, € A;. The scalar matrix G = (G5),0cn With coefficients
defined by
G(i,s,a)(j,t,,@) = Z Fzﬁu(ivj)c(oz,u) (S’ﬂ)
u€ES,VEA,

clearly satisfies condition (ii). The positivity of the matrix operator I' = (I';;) € B(M?)
is equivalent to the positive semidefiniteness of the matrix G. To check this, it suffices
to observe that, for every vector m = (m;) € MP with m; = 3~ g 5 4, v(j,tﬂ)Ctﬁ for
i=1,...,p, the identity

P
E (Lijmj,m;) = E GopUpls
i,j=1 p,0€EN

holds. Thus it is clear that condition (i) implies condition (ii).

If conversely, a positive semidefinite matrix G as in condition (ii) is given, then the
last equality can be used to define a positive matrix operator I' € B(MP). By reversing
the above arguments one finds that I" satisfies the equation contained in condition (ii) of
Theorem 3.7 if the operator X is defined as above. m

In the particular case that A; = {0} for each s € S, the preceding result yields a
solution of the Nevanlinna-Pick problem for Schur class functions. The same result and
various similar characterizations, even for an arbitrary subset S C D, are contained in
Theorem 2.5. As an example we state the result below, for which we also cite [5].

THEOREM 4.3. Let S C D be an arbitrary subset, and let (cs)scs be a family of complex
numbers. Then there is a Schur class function f € Syg with f(s) = c¢s for all s € S if and
only if there is a positive definite function I = (I';;) : S x S — B(CP) = CP? such that

1-— CSEt = erj(t, 8) — Z Z dik(t)djk(t)Fij(t, 8)

i,j=1k=1
holds for all s,t € S.

Proof. The assertion follows directly from the equivalence of conditions (i) and (i)’ in
Theorem 2.5. m
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