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Abstract. We give here a survey of some recent results on applications of topological quasi

*-algebras to the analysis of the time evolution of quantum systems with infinitely many degrees

of freedom.

1. Introduction. Let S be a microscopic physical system with finitely or infinitely many

degrees of freedom. Its dynamical behavior is known (in principle) when the hamiltonian

operator of S, H, is given: by this we mean that, in the Schrödinger representation, the

time evolution of the system is driven by the following (partial) differential equation:

i
dΨ(~r, t)

dt
= HΨ(~r, t);

while, in the Heisenberg representation, we have to solve this operatorial differential

equation:
dA(t)

dt
= i[H,A(t)].

Here Ψ is the wave function of S, while A is any observable of the system.

For many physical systems (e.g. those with mean-field or long-range interactions),

however, no operator H can be rigorously defined. We only have a regularized operator,

HL, corresponding, for instance, to a finite volume version of S. As a consequence of this

fact, we can only know an approximate version of the dynamics of S, obtained by solving

i
dΨL(~r, t)

dt
= HLΨL(~r, t) or

dAL(t)

dt
= i[HL, AL(t)].

Then the following questions naturally arise: is it possible to remove the cutoff L? For

which systems? And how? Is this limit related to the original (i.e. the infinitely extended)

physical system?
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To deal with these questions an algebraic formulation of the dynamical description of

quantum systems was originally proposed by Haag and Kastler, [HK]: its main ingredient

is a C*-algebra of the quasi-local observables, A: to each volume V we associate the von

Neumann algebra of the observables localized in V , AV . Then we take the union of all

these algebras, Ao =
⋃
V AV , and we finally consider its completion A = Ao

‖ ‖
, where

‖ ‖ is the C*-norm induced by AV .

However, several relevant models do not fit into this algebraic set-up: in fact, already

for long-range interaction spin systems Robinson’s constraint on the potential, [BR], is

not satisfied and, as a consequence, the dynamics cannot be defined as a norm limit of

the infrared cutoffed dynamics, since the time evolution of a strictly local variable may

involve sequences of completely delocalized operators. The situation is even more difficult

for continuous systems. Moreover, in most of QM∞ systems, the hamiltonian H, when

it exists, turns out to be an unbounded operator so that the use of C*-algebras as an

underlying mathematical framework does not appear the most natural choice. To deal

with these more realistic situations, two possible approaches have been developed during

the years:

• on one hand, one can select a certain family of relevant states where the dynamics

can be defined ([DS], [TW], [MS], [BM], etc. . . );

• on the other hand, one can enlarge the algebraic set-up: this has produced sev-

eral extensions, as quasi *-algebras, [L], partial *-algebras, [AK] and CQ*-algebras,

[BT3], among others.

It may be worth recalling that the problem of performing rigorously the thermody-

namical limit of the time evolution of some local observables was the physical reason

motivating for the introduction of quasi *-algebras in Lassner’s treatment of the BCS

model of superconductivity, [L], which is based on a model first introduced in [TW]. Here

the physical system S is considered inside a box of finite volume V . Under this condition

(fixed cutoff), we can safely write, since everything is well defined, the hamiltonian of the

finite system SV , HV , and its associated Heisenberg evolution,

αtV (X) = eiHV tXe−iHV t,

where X is a local observable of the system. Here

HV =
2g

|V |
∑

i,j∈V
σ−i σ

+
j + ε

∑

i∈V
σ3
i = 2g|V |S−V S+

V + ε
∑

i∈V
σ3
i ,

where σαi is the α-component of the 2×2 Pauli matrices localized at the lattice site i ∈ V ,

g and ε are constants, and SαV = 1
|V |
∑
i∈V σ

α
i .

It is now clear that, for finite V , αtV (X) belongs to the standard C*-algebra of the

spin observables. However, to compute lim|V |→∞ αtV (X), Lassner introduced the physical

topology, τ , different from the usual topologies on C*-algebras. This was necessary since

lim|V |→∞ αtV (X) does not exist, for generic X, in the uniform, strong or weak topolo-

gies. By means of this new topology, considering explicit estimates, Lassner proved that

τ - lim|V |→∞ αtV (X) exists, for any local observable X, and it belongs to the τ -completion

of the C*-spin algebra, which turns out to be a topological quasi *-algebra.



TOPOLOGICAL QUASI *-ALGEBRAS 111

Remark. As a technical tool, both [L] and [TW] introduced in their works an effective

hamiltonian Heff which essentially shares with HV the property to reproduce the same

equation of motion when |V | → ∞:

i
dαtV (A)

dt
= [HV , α

t
V (A)]

|V |→∞−→ i
dβt(A)

dt
= [Heff , β

t(A)].

The relevance of Heff is also that the spin-spin interaction present in HV is replaced

by a simpler interaction between a spin and an external (fixed) magnetic field. It is easy

to check that, whenever Heff does not depend explicitly on time, this last equation has

the following solution: βt(A) = eiHeff tAe−iHeff t. We will return to some features of the

effective hamiltonians in Section 4.

In the past years we have extended several aspects of Lassner’s procedure to get the

rigorous definition of the algebraic dynamics, i.e. the time evolution of observables and/or

states, for a general quantum physical system. We will see how in Sections 3 and 4, where

we will always assume that a regularized hamiltonian HL (L is a model-depending cutoff)

is given, which is bounded and self-adjoint in the Hilbert space H of the physical system.

Then two possible situations may take place.

Suppose that HL converges to an operator H: this is apparently the simplest situation.

Of course we should specify the sense in which the convergence is understood. For each

fixed L, we know the solution of the dynamical problem, i.e., we know the solution of the

Heisenberg equation of motion

i
dαtL(A)

dt
= [HL, α

t
L(A)].(1)

This solution, αtL(A) = eiHLtAe−iHLt, if HL does not depend explicitly on t, is called the

regularized dynamics of the system. Then it makes sense to ask whether αtL(A) converges,

possibly in the same sense as HL converges to H, to the solution αt(A) of the (formal)

Heisenberg equation

i
dαt(A)

dt
= [H,αt(A)].(2)

It is worth stressing that even though H is a well defined self-adjoint operator, it is, in

general, unbounded. For this reason, since domain problems in general arise, we say the

(2) is formal.

The second situation is when HL does not converge (in any reasonable topology).

This is quite a common situation, typical of mean field models, so that it is quite relevant

for concrete applications. In this case, instead of αtL, it is convenient to consider the

derivations

δL(A) = i[HL, A]

that give, at the infinitesimal level, the dynamics of the system, [S], and to analyze the

convergence of δL, the properties of the limit δ (when it exists), and, in particular, its

spatiality. Also, it is quite interesting to understand whether δ produces a time evolution

αt for the system and which is the relation between αt and αtL.

Remark. The situation changes if the physical system S is open. In this case S interacts

with a reservoir R, so that the energy of S is not necessarily preserved and the time
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evolution is given by a one-parameter semigroup (and not a group!). In this case the

cutoff is introduced not on the hamiltonian of S but on the (Lindblad) generator of the

semigroup. A few examples are discussed in [BS, B3, B4].

2. Mathematical preliminaries. LetA be a vector space and Ao a *-algebra contained

in A. We say that A is a quasi *-algebra over Ao if

(i) the right and left multiplications of an element of A by an element of Ao are always

defined and linear;

(ii) an involution * (which extends the involution of Ao) is defined in A with the property

that (AB)∗ = B∗A∗ whenever the multiplication is defined.

A quasi *-algebra (A,Ao) is said to have a unit I if there exists an element I ∈ Ao such

that AI = IA = A, ∀A ∈ A. Finally, the quasi *-algebra (A,Ao) is said to be topological

if A carries a locally convex topology ξ such that (a) the involution is continuous and the

multiplications are separately continuous; and (b) Ao is dense in A[ξ] (see, for instance,

[Tr]).

The following example of a topological quasi *-algebra of operators is quite important

for concrete applications.

Let H be a Hilbert space and N an unbounded, self-adjoint operator defined on a

dense domain D(N) ⊂ H.

We call D(Nk) the domain of the operator Nk, k ∈ N, and D := D∞(N) =

∩k≥0D(Nk), which is still dense in H. On D we define a topology t as follows:

φ ∈ D → ‖φ‖n := ‖Nnφ‖, n ∈ N0,

where ‖ ‖ is the norm of H. L+(D) is the *-algebra of all the closable operators defined

on D which, together with their adjoints, map D into itself. Moreover, calling D′ the

conjugate dual space of D, endowed with the strong dual topology t′, we define the set

L(D,D′) of all the continuous linear maps from D[t] into D′[t′].
The topologies on L+(D) and L(D,D′) are introduced by means of the set C of

all positive, bounded and continuous functions f(x) on R+ satisfying the condition

supx≥0 f(x)xk <∞, ∀k ∈ N. The seminorms of the topology τ on L+(D) are

X ∈ L+(D)→ ‖X‖f,k := max
{
‖f(N)XNk‖, ‖NkXf(N)‖

}
,(3)

where k ≥ 0 and f belongs to C. Lassner proved in [L] that L+(D)[τ ] is a complete locally

convex topological *-algebra, with involution X† := X∗|D.

The seminorms of the uniform topology τL on L(D,D′) are defined by

X ∈ L(D,D′)→ ‖X‖f := ‖f(N)Xf(N)‖,(4)

where, again, f belongs to C. L(D,D′), with the topology τL, is a topological quasi

*-algebra over L+(D).

The outcome of this example is that a single operator N determines both an algebraic

and a topological structure. Moreover, since the operator N is usually defined in a natural

way once the system S is given, [B1], it follows that the mathematical framework to be

used to describe the time evolution of S is suggested by S itself.
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3. On the existence of limL eiHLtAe−iHLt. In this section we will briefly discuss three

different strategies which can be used in the analysis of the time evolution of S. First

of all we will consider some concrete models and we will use explicit estimates to show

the existence of limL eiHLtAe−iHLt, A being an observable of S. After, we will discuss a

perturbative approach and finally we will consider some fixed point results.

3.1. Explicit estimates on QM∞ models. We begin with the Almost Mean Field Ising

Model, defined by the following finite volume hamiltonian:

HV =
J

|V |γ
∑

i,j∈V
σ3
i σ

3
j ,(5)

with 0 < γ ≤ 1, [BT1]. Particularly relevant in the mathematical description of this

model is the almost magnetization operator S3
V := 1

|V |γ
∑
p∈V σ

3
p. In fact, if A is a local

observable, its regularized time evolution αtV (A) := eiHV tAe−iHV t in general depends on

t, A and S3
V .

For the reader’s convenience we sketch now the construction given in [TW, L, BT1].

The model is defined on a lattice. To the lattice site p we attach the Hilbert space C2 and

the algebra of the 2×2 matrices generated by the identity matrix and the Pauli matrices

σαp . The Hilbert space of the infinite lattice is Hspin = ⊗p∈ZC2
p, and the algebra is the

standard quasi local C*-spin algebra As.
Let now n = (n1, n2, n3) be a unit vector in R3, and put (σ ·n) = n1σ

1 +n2σ
2 +n3σ

3.

The spectrum of σ ·n, is {1,−1}. We call |n〉 its unit eigenvector in C2 associated with 1.

Let (n, n1, n2) be an orthonormal basis of R3. We put n± = 1
2 (n1± in2) and, for m =

0, 1, |m,n〉 = (σ ·n−)m|n〉. We have (σ ·n)|m,n〉 = (−1)m|m,n〉. Repeating this procedure

for each lattice site we get, starting with a sequence of vectors in R3, {n} := {np}{p∈Z},
a unit vector in Hspin defined as |{n}〉 = ⊗p|np〉. Furthermore, acting with the operators

(σp ·n−p )mp , p ∈ Z, on each |np〉, we get a new vector of Hspin, |{m}, {n}〉 := ⊗p|mp, np〉.
The set {|{m}, {n}〉, mp = 0, 1,

∑
pmp < ∞} forms an orthonormal basis in an Hilbert

space {n}-depending, which we call H{n}. On this space we define the unbounded self-

adjoint (number) operator M{n} by its action on the vectors of the basis

M{n}|{m}, {n}〉 =
(

1 +
∑

p

mp

)
|{m}, {n}〉.

Of course M{n} depends on {n}, that is on the Hilbert space where the operator acts.

As it is discussed in [BT1], the sequence {n} cannot be chosen arbitrarily. In fact, in

order to analyze the thermodynamical limit of the model, we need to consider only those

sequences such that n1
p = n2

p = 0 for almost all p ∈ Z and lim|V |→∞
1
|V |γ

∑
p∈V n

3
p exists

in R.

The algebraic setting is fixed by the operator M{n} as shown in the example of the pre-

vious section: first we put D{n} =
⋂
k D(Mk

{n}). Then we introduce the algebra L†(D{n}),
endowed with the quasi-uniform topology τ{n}. Finally we introduce a *-representation

of the C*-spin algebra As on L†(D{n}) and a topology τ0 on As as follows:

π{n}(σ
α
p ) | {m}, {n}〉 = σαp | mp, np〉 ⊗ (

∏

p
′ 6=p
⊗ | mp′ , np′ 〉) (α = 1, 2, 3),
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and

‖A‖f,k{n} := max
{
‖Mk
{n}π{n}(A)f(M{n})‖, ‖f(M{n})π{n}(A)Mk

{n}‖
}
,

where f belongs to C and k ≥ 0. With these definitions, calling A the τ0-completion of

As, we proved in [BT1] that:

• (A[τ0],As) is a topological quasi *-algebra;

• all the powers of the almost magnetization SV3 are τ0-converging in A;

• the finite volume dynamics αtV τ0-converges to a one-parameter group of automor-

phisms αt of A ;

• αt solves the τ0-limit of the finite volume Heisenberg equation of motion.

Another spin model which can be analyzed within the same algebraic framework is

the almost mean field Heisenberg model,

HV =
J

|V |γ
∑

i,j∈V

3∑

α=1

σαi σ
α
j ,

with 1
2 < γ ≤ 1, see [BT2].

A different class of models that we have considered using the same approach involves

free and interacting bosons. The formal hamiltonian H for the one mode free bosons

is simply the number operator N = a†a, a and a† being the annihilation and creation

operators for the bosons. They satisfy the canonical commutation relation [a, a†] = I.

(More precisely, N is the unique self-adjoint extension of the symmetric operator a†a.)

The construction of the topological quasi *-algebra is the same as before. Let D :=

D∞(N) = ∩k≥0D(Nk). This set is dense in the Fock-Hilbert space H constructed in the

standard way. Starting from D we can define the *-algebra L+(D). It is clear that all

powers of a and a† belong to this set. The topology in L+(D) is the usual quasi-uniform

topology:

X ∈ L+(D)→ ‖X‖f,k := max
{
‖f(N)XNk‖, ‖NkXf(N)‖

}
,(6)

where f ∈ C and k ≥ 0. We know that L+(D)[τ ] is a complete locally convex topological

*-algebra.

Let El be the subspace of H generated by all the vectors which are proportional to

(a†)lΦ0. Let also FL be the direct sum FL := E0⊕E1⊕ . . .⊕EL. Finally, let N =
∑∞

l=0 lΠl

be the spectral decomposition of the number operator N . The operators Πl are projection

operators, as are the operators QL =
∑L
l=0 Πl. The following properties are obvious:

ΠkΠl = δklΠl, Π†k = Πk; QLQM = QL, if L ≤M, Q†L = QL.

It is clear that Πk : H → Ek, and QL : H → FL. The operator QL is used to cut-off the

hamiltonian, by replacing a with aL := QLaQL. The regularized hamiltonian is simply

HL = QLNQL = NQL and the related time evolution is αtL(X) = eiHLtXe−iHLt. This

occupation number cut-off produces a self-adjoint bounded operator HL and we have

shown in [B1] that the limits of αtL(an) and αtL((a†)n) exist in L+(D)[τ ] for all n ∈ N.
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The same algebraic framework turns out to be useful also in the analysis of the thermo-

dynamical limit of the interacting model described by the following formal hamiltonian:

HV =
J

|V |
∑

i,j∈V
σ3
i σ

3
j + a†a+ γ(a+ a†)σ3

V ,

where σ3
V = 1

|V |
∑
i∈V σ

3
i . Here the algebra L+(D) must be replaced by A = B(Hspin)⊗

L+(D). The topology on A, τcomp, is generated by the following seminorms: ‖XA‖f,k,Ψ ≡
‖X‖f,k‖AΨ‖, X ∈ L+(D) and A ∈ B(Hspin). It is worthwhile to remind also that Ψ

cannot be a generic vector in Hspin, but must belong to the set

F =

{
Ψ ∈ Hspin : lim

|V |→∞

1

|V |
∑

p∈V
σ3
pΨ = σ3

∞Ψ, ‖σ3
∞‖ ≤ 1

}
.

As before, the regularized hamiltonian is obtained by replacing a with aL := QLaQL,

so that the new hamiltonian HV,L depends on two, in principle, unrelated cutoffs. The

existence of the limit of αtV,L(X) = eiHV,LtXe−iHV,Lt is ensured by the following result,

[B1]: the limit of αtV,L(a) for |V | and L both diverging exists in A[τ ]. Moreover, if the

two cutoffs satisfy the relation |V | = Lr, for a certain integer r > 1, the same holds true

also for αtV,L(σiα).

3.2. General results under given hypotheses on HL. To begin with, we consider the sim-

plest possible example in which a physical system is described by an unbounded, self-

adjoint Hamiltonian H0 on a Hilbert space H; we assume H0 ≥ I; then H0 has a spectral

decomposition

H0 =

∫ ∞

1

λdE(λ).

We define, for L ≥ 1, the projectors

Q0
L =

∫ L

1

dE(λ)(7)

and, following a suggestion taken from the boson model, we introduce the regularized

hamiltonian by:

HL = Q0
LH0Q

0
L.

Then, calling D = D∞(H0), it turns out that the operators Q0
L and HL are bounded

operators in B(H) which belong to L†(D) and they commute with each other (and with

H0, in the usual sense).

This makes it quite easy to prove the following convergence properties, with τ the

topology on L†(D) generated by the usual seminorms

L†(D) 3 A 7→ ‖A‖f,k = max{‖Hk
0Af(H0)‖, ‖f(H0)AHk

0 ‖} :

(c1) HL → H0 with respect to the topology τ ,

(c2) eitHL → eitH0 with respect to the topology τ ,

(c3) for each A ∈ L†(D), eitHLAe−itHL
τ→ eitH0Ae−itH0 .

These results extend well known facts (i.e. the possibility of exponentiating a self-adjoint

unbounded operators) using a different strategy. This may be more useful for physical
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applications, for instance when the hamiltonian is perturbed: let

H = H0 +B,(8)

where B is regarded as a perturbation of the operator H0. Practical reasons suggest to

construct the cut-off starting from H0, since H0 can always be chosen in such a way that

its spectral family {E(λ)} can be explicitly obtained (this amounts to playing with the

definitions of H0 and B, once H is given). Therefore we put

HL = Q0
L(H0 +B)Q0

L = H0Q
0
L +Q0

LBQ
0
L.(9)

The r.h.s. is well defined since Q0
LAQ

0
L is bounded for any A ∈ L†(D), [BT5]. We assume

that

(a) D = D∞(H0);

(b) D(H0) ⊆ D(B) and H = H0 +B is self-adjoint on D(H0);

(c) D∞(H0) = D∞(H).

Under these assumptions, we have:

Lemma 1. (1) The topologies tH0
and tH are equivalent on D;

(2) the topologies on L†(D) defined respectively by the set of seminorms

L†(D) ∈ A 7→ max{‖Hk
0Af(H0)‖, ‖f(H0)AHk

0 ‖}, f ∈ F , k ∈ N,
and

L†(D) ∈ A 7→ max{‖HkAf(H)‖, ‖f(H)AHk‖}, f ∈ F , k ∈ N,
are equivalent.

Next we have the following results:

(1) For each X ∈ L†(D), X = τ - limL→∞Q0
LXQ

0
L;

(2) δL(A) := i[A,HL] converges to δ(A) := i[A,H] with respect to the topology τ ;

(3) Concerning Condition (c) above, we have proved the following results:

Proposition 2. Let B be a perturbation of H0 such that H := H0 +B is self-adjoint on

D(H) = D(H0). In order that

D∞(H) = D∞(H0)

it is necessary and sufficient that the following conditions hold:

(i) B : D∞(H0)→ D∞(H0);

(ii) H is essentially self-adjoint in D∞(H0);

(iii) the topologies tH0
and tH are equivalent on D∞(H0),

Corollary 3. Let B be a perturbation of H0. Assume that B satisfies the conditions:

(i) < H0f,Bg >=< Bf,H0g >, ∀f, g ∈ D∞(H0);

(ii) H is essentially self-adjoint in D∞(H0);

(iii) ‖H0f‖ ≤ ‖Hf‖, ∀f ∈ D∞(H0).

Then D∞(H0) = D∞(H).

(4) Finally, going on with the analysis of the convergence of eiHLt, which ensures the

convergence of the Schrödinger dynamics, we have the following result:
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Proposition 4. If there exists T > 0 such that, for each f ∈ F , s ∈ N∪{0} there exists

M = M(T, f, s) such that
∫ t

0

‖f(H0)eiHL(t−t′)Hs
0‖dt′ < M, t ∈ [0, T ]

then

τ - lim
L→∞

(eiHLt − eiHt) = 0.

This assumption implies the existence of an uniform bound in L: it is trivially verified

if the perturbation B commutes with H0. Less trivial situations may be found in [BT5].

3.3. Fixed point results. This is an alternative procedure which eventually produces a

rigorous definition of the dynamics of a (closed) physical system, see [B2].

Let B be a τ -complete subspace of L+(D) and T a map from B into B. We say that T

is a weak τ strict contraction over B, briefly a wτsc(B), if there exists a constant c ∈]0, 1[

such that, for all (h, k) ∈ CN := (C,N), there exists a pair (h′, k′) ∈ CN satisfying

‖Tx− Ty‖h,k ≤ c‖x− y‖h′,k′ ∀ x, y ∈ B.(10)

In what follows we will consider equations of the form Tx = x, T being a wτsc(B).

The first step consists in introducing the following subset of B:

BL ≡ {x ∈ B : sup
(h,k)∈CN

‖Tx− x‖h,k ≤ L},(11)

L being a fixed positive real number.

Lemma 5. Let T be a wτsc(B). Then

(a) if T0 = 0 then any x ∈ B such that sup(h,k)∈CN ‖x‖h,k ≤ L1 belongs to BL for

L ≥ L1(1 + c);

(b) if ‖T0‖h,k ≤ L2 for all (h, k) ∈ CN , then any x ∈ B such that sup(h,k)∈CN ‖x‖h,k ≤
L1 belongs to BL for L ≥ L1(1 + c) + L2;

(c) if x ∈ BL then Tnx ∈ BL, for all n ∈ N;

(d) BL is τ -complete;

(e) if BL is not empty, then T is a wτsc(BL).

BL is nonempty, see [B2]. The existence of a fixed point is ensured by the following

Proposition:

Proposition 6. Let T be a wτsc(B). Then

(a) ∀x0 ∈ BL the sequence {xn ≡ Tnx0}n≥0 is τ -Cauchy in BL. Its τ -limit, x ∈ BL,

is a fixed point of T ;

(b) if x0, y0 ∈ BL satisfy the condition sup(h,k)∈CN ‖x0−y0‖h,k <∞, then τ - limn T
nx0

= τ - limn T
ny0.

For physical applications we need to consider the case in which these maps depend

on an external parameter:

Let I ⊂ R be a set such that 0 is one of its accumulation points. A family of weak τ

strict contractions {Tα}α∈I is said to be uniform if
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1) Tα : B → B ∀α ∈ I, B being a τ -complete subspace of L+(D);

2) ∀(h, k) ∈ CN and ∀α ∈ I there exist (h′, k′) ∈ CN , independent of α, and cα ∈]0, 1[,

independent of (h, k), such that

‖Tαx− Tαy‖h,k ≤ cα‖x− y‖h
′,k′ , ∀x, y ∈ B;(12)

3) c− ≡ limα→0 cα ∈]0, 1[.

We further say that the family {Tα}α∈I is τ -strong Cauchy if, for all (h, k) ∈ CN and

∀y ∈ B,

‖Tαy − Tβy‖h,k α,β→0−→ 0.(13)

We set B(α)
L ≡ {x ∈ B : sup(h,k)∈CN ‖Tαx− x‖h,k ≤ L}.

Proposition 7. Let {Tα}α∈I be a τ -strong Cauchy uniform family of wτsc(B). Then

(1) There exists a wτsc(B), T , which satisfies the following relations:

‖Ty − Tαy‖h,k → 0 ∀y ∈ B, ∀(h, k) ∈ CN
and

‖Ty − Tz‖h,k ≤ c−‖y − z‖h
′,k′ ∀y, z ∈ B,

where (h′, k′) are those of inequality (12).

(2) Let {xα}α∈I be a family of fixed points of the net {Tα}α∈I : Tαxα = xα, ∀α ∈ I. If

{xα}α∈I is a τ -Cauchy net then, denoting by x its τ -limit in B, x is a fixed point of T .

(3) If the set ∩α∈IB(α)
L is not empty and if the following commutation rule holds:

Tα(Tβy) = Tβ(Tαy), ∀α, β ∈ I and ∀y ∈ B,
then, writing

xα = τ - lim
n→∞

Tnαx
0,where x0 ∈ ∩α∈IB(α)

L ,

each xα is a fixed point of Tα, Tαxα = xα and {xα}α∈I is a τ -Cauchy net. Moreover

τ - limα→0 xα is a fixed point of T .

As an application we have proven in [B2] that, under certain technical assumptions,

the time evolution of a given operator x,

xα(t) = x+ i

∫ t

0

ds[Hα, xα(s)],

is associated with a uniform family of wτsc(L+), {Uα}, which is also τ -strong Cauchy.

This implies, because of Proposition 7, that the dynamics for the physical system can be

obtained as a τ -limit of the regularized dynamics xα(t), which is a fixed point of limα Uα.

4. Analysis of the dynamics at the infinitesimal level. In this section we discuss

the dynamics of a physical system considering the case in which no hamiltonian exists

for the system itself. We will only assume that there exists a family of regularized energy

operators, {HL}, one for each value of the cutoff L.

Let (A,A0) be a quasi *-algebra.

Definition. A *-derivation of A0 is a map δ : A0 → A with the following properties:

(i) δ(x∗) = δ(x)∗, ∀x ∈ A0;
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(ii) δ(αx+ βy) = αδ(x) + βδ(y), ∀x, y ∈ A0, ∀α, β ∈ C;

(iii) δ(xy) = xδ(y) + δ(x)y, ∀x, y ∈ A0.

Definition. Let (A,A0) be a quasi *-algebra, Dπ a dense domain in a certain Hilbert

space Hπ, and π a linear map from A into L(Dπ,Hπ) such that:

(i) π(a∗) = π(a)†, ∀a ∈ A;

(ii) if a ∈ A, x ∈ A0, then π(a)•π(x) is well defined and π(ax) = π(a)•π(x).

Here • is the weak multiplication defined in partial *-algebras, [AK]. We say that such a

map π is a *-representation of A. Moreover, if

(iii) π(A0) ⊂ L†(Dπ),

then π is a *-representation of the quasi *-algebra (A,A0).

Let π be a *-representation of (A,A0). The strong topology τs on π(A) is the locally

convex topology defined by the following family of seminorms: {pξ(.); ξ ∈ Dπ}, with

pξ(π(a)) ≡ ‖π(a)ξ‖, where a ∈ A, ξ ∈ Dπ.

Let (A,A0) be a quasi *-algebra and δ be a *-derivation of A0. Let π be a *-

representation of (A,A0).

We will always assume that whenever for x ∈ A0 π(x) = 0, then π(δ(x)) = 0.

Under this assumption, the linear map

δπ(π(x)) = π(δ(x)), x ∈ A0,(14)

is well-defined on π(A0) with values in π(A) and it is a *-derivation of π(A0). We call δπ
the *-derivation induced by π.

Given such a representation π and its dense domain Dπ, we consider the usual graph

topology t† generated by the seminorms

ξ ∈ Dπ → ‖Aξ‖, A ∈ L†(D).(15)

It is also easy to produce a representation on a quasi *-algebra. Calling D′π the con-

jugate dual of Dπ we get the usual rigged Hilbert space Dπ[t†] ⊂ Hπ ⊂ D′π[t′†], where t′†
denotes the strong dual topology of D′π. As usual we introduce L(Dπ,D′π) and L†(Dπ).

In this case, L†(Dπ) ⊂ L(Dπ,D′π). We know that each operator A ∈ L†(Dπ) can be

extended to all of D′π in the following way:

〈Âξ′, η〉 = 〈ξ′, A†η〉, ∀ξ′ ∈ D′π, η ∈ Dπ.
Therefore the multiplication of X ∈ L(Dπ,D′π) and A ∈ L†(Dπ) can always be defined:

(X ◦A)ξ = X(Aξ), and (A ◦X)ξ = Â(Xξ), ∀ξ ∈ Dπ.
With these definitions it is known that (L(Dπ,D′π),L†(Dπ)) is a quasi *-algebra, and

π represents (A,A0) into (L(Dπ,D′π),L†(Dπ)).

In [BIT] we have proved the following

Theorem 8. Let (A,A0) be a locally convex quasi *-algebra with identity I and δ be a

*-derivation of A0. Then the following statements are equivalent:

(i) There exists a (τ −τs)-continuous, ultra-cyclic *-representation π of A, with ultra-

cyclic vector ξ0, such that the *-derivation δπ induced by π is spatial, i.e. there exists
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H = H† ∈ L(Dπ,D′π) such that Hξ0 ∈ Hπ and

δπ(π(x)) = i{H ◦ π(x)− π(x) ◦H}, ∀x ∈ A0.(16)

(ii) There exists a positive linear functional f on A0 such that

f(x∗x) ≤ p(x)2, ∀x ∈ A0,(17)

for some continuous seminorm p of τ and, denoting by f̃ the continuous extension of f

to A, the following inequality holds:

|f̃(δ(x))| ≤ C(
√
f(x∗x) +

√
f(xx∗)), ∀x ∈ A0,(18)

for some positive constant C.

(iii) There exists a positive sesquilinear form ϕ on A × A such that ϕ is invariant,

i.e.

ϕ(ax, y) = ϕ(x, a∗y), for all a ∈ A and x, y ∈ A0;(19)

ϕ is τ -continuous, i.e.

|ϕ(a, b)| ≤ p(a)p(b), for all a, b ∈ A,(20)

for some continuous seminorm p of τ ; and ϕ satisfies the following inequality:

|ϕ(δ(x), I)| ≤ C(
√
ϕ(x, x) +

√
ϕ(x∗, x∗)), ∀x ∈ A0,(21)

for some positive constant C.

In order to apply this result to QM∞ we assume that there exists a (τ -τs)-continuous

*-representation π in the Hilbert space Hπ, which is ultra-cyclic with ultra-cyclic vector

ξ0, and a family of *-derivations {δn : n ∈ N} of a locally convex quasi *-algebra (A,A0)

with identity. We define a related family of *-derivations δ
(n)
π induced by π defined on

π(A0) and with values in π(A):

δ(n)
π (π(x)) = π(δn(x)), x ∈ A0.(22)

In [BIT] we have also proven the following

Proposition 9. Suppose that:

(i) {δn(x)} is τ -Cauchy for all x ∈ A0;

(ii) For each n ∈ N, δ
(n)
π is spatial, that is, there exists an operator Hn such that

Hn = H†n ∈ L(Dπ,D′π),

Hnξ0 ∈ Hπ and δ
(n)
π (π(x)) = i{Hn ◦ π(x)− π(x) ◦Hn}, ∀x ∈ A0;

(iii)

sup
n
‖Hnξ0‖ =: L <∞.

Then we have:

(a) ∃ δ(x) = τ - lim δn(x), for all x ∈ A0, which is a *-derivation of A0;

(b) δπ, the *-derivation induced by π, is well-defined and spatial;
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(c) if H is the self-adjoint operator which implements δπ, if < (Hn−H)ξ0, ξ >→ 0 for

all ξ ∈ Dπ then Hn converges weakly to H.

This result can be seen in the following way: even if the sequence {Hn} of operators

which implement {δn} does not converge, the sequence δn(X) may converge in the topol-

ogy τ . This is what happens, for instance, to mean field spin systems, when X is a local

operator, [BM]. Therefore, this limit defines a derivation δ which, under the assumptions

of Proposition 9, is spatial. This means that an effective hamiltonian Heff
π , in the sense

of [BT4], can be defined, and this simplifies the successive analysis of the finite time

evolution of the system S. We recall here that a model admits an effective hamiltonian

in the *-representation π in the sense of [BT4] if there exists a self-adjoint operator Heff
π

in Hπ(⊃ Dπ) with the property

π(δ(A)) = i
[
Heff
π , π(A)

]
, ∀A ∈ A0.

This equation is understood in the following weak sense:

< π(δ(A))φ, ψ >= i
{
< π(A)φ,Heff

π ψ > − < Heff
π φ, π(A∗)ψ >

}
,

for all φ, ψ ∈ D(Heff
π ) and for all A ∈ A0.

The conclusion we get, therefore, is that Proposition 9 produces a sufficient condition

for a model to admit an effective hamiltonian, so that all the results given in [BT4] can

be adapted to this situation.

References

[AK] J.-P. Antoine and W. Karwowski, Partial *-algebras of closed linear operators in Hilbert

space, Publ. RIMS, Kyoto Univ. 21 (1985), 205–236.

[B1] F. Bagarello, Applications of topological *-algebras of unbounded operators, J. Math.

Phys. 39 (1998), 2730-2747.

[B2] F. Bagarello, Fixed points in topological *-algebras of unbounded operators, Publ. RIMS,

Kyoto Univ. 37, (2001), 397–418.

[B3] F. Bagarello, Relations between the Hepp-Lieb and the Alli-Sewell laser models, Ann.
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