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Abstract. In this paper we suggest a general framework of the spectral mapping theorem in
terms of parametrized Banach space bicomplexes.

1. Introduction. In this paper we suggest a general framework of spectral mapping
properties. The proposed scheme generalizes the main ideas of noncommutative spectral
mapping properties developed in the Lie algebra context [7], [1], [2]. But our approach is
expressed in terms of parametrized Banach space (bi)complexes without using a noncom-
mutative operator family a and (holomorphic) functions f(a) of the operator family a.
By replacing the joint spectrum o (a, f(a)) of the operator family (a, f(a)) with the spec-
trum of a certain parametrized Banach space bicomplex connecting given parametrized
Banach space complexes, we prove the forward and backward spectral mapping theorems
in the general case. Note also that the proposed framework is applied in [5] to various
noncommutative functional calculi (see [2], [4]) obtained for the nilpotent operator Lie
subalgebras.

2. Banach space complexes. All linear spaces considered are complex. The linearly
ordered set Z of integers suplemented with the largest (resp., lowest) element {co} (resp.,
{—00}) is denoted by Z (resp., Z), N is the set of all positive integers. Let B(X,Y’) be the
(semi)normed space of all bounded linear operators between (semi)normed spaces X and
Y furnished with the operator (semi)norm and let B(X) = B(X,X).If T € B(X,Y) then
T* € B(Y*, X*) denotes the dual operator. Let BS be the category of all Banach spaces
and bounded morphisms. We use the notation X®Y for the projective tensor product
of XY € BS and we write X @n for the n-fold projective tensor product of X. The
direct sum X @Y is endowed with the sum-norm. One defines functors B(Y,?), B(?,Y)
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and ?®Y from BS to itself. Let S be an infinite set and let { be a nontrivial (that is,
MNarey M = ) ultrafilter in S. The ultrafilter 4 is said to be countably incomplete [9]
if there exists a countable partition {S, : n € N} of S such that S, ¢ 4, n € N. In
the sequel, by an ultrafilter we mean a nontrivial countably incomplete ultrafilter. The
ultrapower of a Banach space X (resp., Banach space operator T') with respect to an
ultrafilter 4l is denoted by Xy (resp., Ty(). Note that the space X is embedded into Xy
as a closed subspace and Ty extends T preserving its norm, that is, || Ty|| = ||T||. The
assignment X — Xy, T — Ty defines a functor 7¢ : BS — BS.

A chain Banach space complex is defined as a pair (X,0), where X = {X,, : n € Z}
are objects and 0 = {d,, : n € Z} are morphisms in BS, such that d,,_1d,, = 0 for all n.
We also write (X,0) as a sequence:

dpn—1 d
e X X, Xy e—

A cochain Banach space complex is defined as a sequence
RN Xn—l dn_:l X" ﬂ X7L+1 .

of objects and morphisms of BS such that d"d" ! = 0 for all n. The category of all
(co)chain complexes in BS is denoted by BS (resp., BS). The quotient (seminormed)
spaces

H,(%X,0) = ker(d,—1)/im(d,)

(resp., H"(X,0) = ker(d")/im(d"~')), n € Z, are called the (co)homology groups of the
complex (X%,0). The complex (X,0) is said to be exact if all (co)homology groups are
trivial. If X,, = {0} (resp., X" = {0}) for all n, n < 0, then we say that (X,0) is a
nonnegative complex. Note that each chain complex (X,0) determines a cochain complex
(%,9) by setting X" = X_,, and d' = d_,, n € Z. Similarly, a cochain complex (X,0)
determines a chain complex (X,2). That defines a functor BS — BS (resp., BS — BS)
called the conjugate functor. Let (¥,0) € BS and let (X*,0*) be its dual complex:

a

a*
* n—1 * n *
: Xn—l Xn Xn

By definition, (X*,0*) = B((X,0),C) € BS. The well known [11, 7.6.13] Sequence Prime
Principle asserts that (%,0) is exact iff so is its dual complex (X*,0*).

+14)...

2.1. Projective and flat Banach spaces. Projective (resp., flat) Banach spaces are impor-
tant from the infinite-dimensional spectral mapping property viewpoint (see [1]). Let us
recall the relevant definitions and simple properties of these spaces.

Let Y € BS and (X,0) € BS. The functor B(Y,?) : BS — BS transforms the complex
(%,9) into a new complex B(Y, (X,9)):

e BY, X)) T BY X)) P BOY X ) e

where 5,(T) = d, - T, T € B(Y,X,,). By analogy, one defines a cochain Banach space
complex B((X%,9),Y). A Banach space Y is said to be projective (resp., injective) if the
complex B(Y, (X,0)) (resp., B((%,0),Y)) is exact for each exact Banach space complex
(X,0). A Banach space Y is said to be flat if its dual space Y* is injective. The class of
all projective (resp., flat) Banach spaces is denoted by Proj (resp., Flat).
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LEMMA 1. Let Y € BS. Then Y € Flat iff (X,0)QY is exact whenever (X,0) € BS is
an ezact complex, where (X,0)®Y is the projective tensor product of the complex (¥,9)
and the space Y .

Proof. Note that (X,0)®Y is exact iff so is its dual ((X,0)®Y)* by the Sequence Prime
Principle [11, 7.6.13]. But,

(%,0)RY)" = B((%,2),Y™)

to within an isomorphism in BS. Therefore, Y* is injective iff (X,0)®Y is exact whenever
(%,0) is exact. m

LEMMA 2. Let Y € BS, n € N and let A"Y be its n-th exterior power (see [8]). Then
A"Y € Proj (resp., \"Y € Flat) whenever Y € Proj (resp., Y € Flat).

Proof. By [3], A"Y € Proj. Now let Y € Flat. To prove that A"Y € Flat, we use Lemma
1. Take an exact complex (E{, 0) € BS. By induction on n, and using Lemma 1, we infer

that the complex (%, D)@Y‘X’” remains exact. On the other hand, A™Y is a complemented
subspace in Y®". Therefore (X,0)® A" Y is also exact. m

2.2. Banach space bicomplexes. By a Banach space bicomplex we mean a triple (¥X,0/,0/)
with X = {X™™ : n.m € Z} being the underlying Banach spaces, 0. = {d/""" €
B(xmm Xmm+t)} the column differentials, and 2 = {d;™ € B(X™™, 6 X"t1m)} the
row differentials, such that the diagram

_ X7z+1,m _ .
mn,m
7 1
g
1
X nm Xn,7n+1

T T

is commutative, and all columns (X*™,0"™) and all rows (X™*,0;,’*) are Banach space
complexes, where X*™ = {Xkm} xm® = {X™F} and 00 = {d}""}, 00 = {d}F}. If
we reverse the horizontal and (or) vertical arrows we obtain other versions of bicomplexes
as well as chain and cochain complexes. For us, of interest will be the “double-cochain”
and “double-chain” versions of a bicomplex. This is caused by our future applications
[5] to spectral theory. We also say chain (resp., cochain) bicomplex instead of “double-
chain” (resp., “double-cochain”). One easily checks that ;™ (ker(d/'™)) C ker(di™"™)

and d"" (im(d"™ ")) C im(d} ™), therefore the quotient operator
Dln,m . Hm(%n’.7 ;’}7.) N I_Im(xn+1,o70/7,L+1,o)7 D,n’m(.’L‘N) — d;n,m(x)w,

is well defined. Moreover, the sequence

n,m
’

C— HM(X™M 00 o (T ) —
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is a complex called the m-th vertical cohomology complex of the bicomplex. By analogy,
one defines the n-th horizontal cohomology complex

n,m

RN Hn(%onn’alonn) DL) Hn(%onn—&—l’a:,m—&-l) ..

of the bicomplex. We say that a bicomplex (X,9:,0~) is bounded below if one can find
N € Z such that X™™ = {0} whenever n < N or m < N. The space X"V is called
the initial space of the bicomplex. If N = 0 then we say that (X,9,,0~) is a nonnegative
bicomplex with the initial space X%°.

Let (X,0/,0) be a Banach space bicomplex bounded below, X" =, ,,_, Xk e
BS a sum of (bounded) diagonals of the bicomplex. One defines a Banach space complex

...*)XnL,XnH_,...’

where 6"(z) = di®*(x) + (—1)°d"* (z) whenever x € X**, k + s = n, n € Z. The latter
is called the total complez of (%,0.,0~) and it is denoted by Tot(X,d,,0.). If (X,0,,0/)
is a Banach space bicomplex and il is an ultrafilter then (X, 0.4, 0~¢) is a bicomplex
called an ultrapower of (X,0/,0), where Xy = {X{"™"}, vy = {d/{"}, 0y = {d0i{"}-
Bearing in mind that the ultrapower functor preserves the finite direct sums (in BS) [9],
we conclude that

(2.1) Tot((Xy, g, 041)) = Tot(X,0,,0/)y.

The following lemmas can be proved by using the known diagonal chase method (see
[6, Appendix 2], [10, Ch. 2, Section 5.4]).

LEMMA 3. Let (X,0,,0+) be a nonnegative cochain bicomplex such that all its rows are
ezact at first i — 1 terms, H'(X%*,00*) # {0} and the differential

DY HY(X%*,00%) — H' (X*,0,°)

of the i-th vertical cohomology complez is trivial, where i € N. Then H*(X*™ 07™) # {0}
for some k,m < i.

REMARK 1. A chain version of the assertion of Lemma 3 is the following. Let (¥,0,2")
be a nonnegative chain bicomplex such that all its rows are exact at first ¢ — 1 terms,
H;(X0,0,09,) # {0} and the differential Dy, : H;(X1.4,0],) — Hi(Xo,e,0g,) of the i-th
vertical homology complex is trivial. Then Hy (X, ., Dl,,m) # {0} for some k,m < i.

LEMMA 4. Let (X,0/,0) be a nonnegative (co)chain bicomplex such that the first n ver-
tical or horizontal (co)homology complezes are exact. Then Tot(X,0,,0) is exact at the
first n terms.

3. Stability of spectra under some functors. In this section we introduce Stod-
kowski spectra of parametrized Banach space complexes and prove their stability under
functors considered above.

Let Q be a topological space and let X = {X,, : n € Z} be a collection of Banach
spaces. Assume that there exists a collection of continuous maps 0 = {d, : n € Z},



SPECTRAL MAPPING FRAMEWORK 165

dp, : Q — B(X,1+1,X,), such that (X,0()\)) is a chain Banach space complex

dn—1(X) dn(N)
Pk

n
"<_an1 Xn<_Xn+1b"'a

for each A € Q, where 9(\) = {d,(A\)}. The collection of Banach space complexes
(X,0(N)), A € Q, is called a parametrized chain Banach space complex or chain 2-Banach
complez and it is denoted by (X,2). If (X,9()\)) is a cochain complex for each A € Q,
then (X,0) is said to be a cochain 2-Banach complex. Morphisms of {2-Banach complexes
are defined in a self-evident way. Using the functors B(Y,?), B(?,Y), ?®Y, and 7y, we
could associate new -Banach complexes to the original 2-Banach complex (X,0). In
particular,
B((%,0),C) = (X*,2") ={(X",0(N)") : A € Q}

is the dual parametrized complex.

A parametrized (co)chain Banach space bicomplex is defined as a certain bicomplex
(X, v, D”) such that all its rows (X,,., D;lﬁ,) are (-Banach complexes, columns (X, ,,, D;m)
are A-Banach complexes, and (X,0'(\),0" (1)) is a Banach space bicomplex for all A € Q
and p € A. In this case we say that (X,0,0") is an Q x A-Banach bicomplez.

Now let (%,0) be a (co)chain parametrized Banach space complex,
En(X,0) = {A € Q: Hy(X,0())) # {0}},
and ¥"(%,0) = {A € @ : H"(X,0()\)) # {0}} if (X,9) is a cochain complex, n € Z.
Further, let
Uén % 0 U Ek x O
k<n
and let o ,(X,0) be the set of those A € 2 such that A € |y, X (X, 0) or the image of
the operator d,,—1()\) is not closed. By analogy, we set
o*™(%,0) = | =F(x,0)
k>n
and 0™"(X,0) is the set of those A € § such that A € U, ., ¥#(%,0) or the image of

the operator d"(\) is not closed, whenever (X,0) is a cochain complex. One easily checks
that 0%"(X,0) = 05,(X,2) and 0 ,(X,0) = 0™"(X,0), n € Z.

DEFINITION 1. The set-valued functions o5, ox n (resp., adn, o™™), n € Z, defined on
the class of all parametrized (co)chain Banach space complexes are called the Stodkowsk:
spectra. The set
T1(X,0) = 05,00 (X,0) = 07— (%,0) = | Tn(X,0)
nez

(resp., 0¢(X,0) = 0™®(X,0) = 0%7°(X,0) = U, ez 2"(X,0) for the cochain complex
(%,0)) is called the Taylor spectrum of (X,0). We set & = S5US, (resp., & = S°UG™),
where &5 = {05, : n € Z}, &, = {05, : n € Z} (resp., &° = {o%" : n € Z},
S™ = {0.71',n = Z})

In the sequel, 0 € G denotes one of Stodkowski spectra if the latter is not specially
indicated. Let (X,?) be an 2-Banach complex. Using the Sequence Prime Principle, we
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obtain (for details, see [12]) that
(3.1) o™X, ) =050 (%,0), 05,(X7,0%) =0™"(X,0).
To calculate all other Stodkowski spectra of the dual parametrized Banach space complex
it suffices to use the conjugate functor. For instance, if (X, ) is a chain Q-Banach complex
then

TOM(X ) = 050 (XF,07) = 05,,(X,07) = 0T(X,D) = 00 (X,0).
By analogy, we conclude that o, ,(X*,0*) = ¢%"(X,0) whenever (X,0) is a cochain
complex. The following assertion slightly extends relevant results from [2], [3] and can be
proved in the same way.

THEOREM 1. Let (X,0) be a (co)chain Q-Banach complex and let Y € BS.

a) Then o(%,0) C o(B(Y, (%,0))) and 0(%,0) C o((X,0)Y) for allc € &. Moreover,
these inclusions become equalities whenever Y € Proj and Y € Flat, respectively.
b) If il is an ultrafilter then

O Xy, 0y) = U Er(Xy,0y)
k>n

for all 0, € &;. Moreover,
U(%, D) = (T(./{u, Uu)

forallo € 6.

4. The spectral mapping properties. In this section we present a cochain version
of the spectral mapping properties for m-type Stodkowski spectra (see Definition 1). Our
approach strongly depends on the ultrapower functor. We have noted above (see (3.1))
that J-type Stodkowski spectra of chain complexes reduce to 7-type spectra of its dual
complex. That would allow us to formulate relevant assertions for d-type spectra. But
the ultrapower functor and the functor of taking the dual space are not compatible (see
[9]), therefore §-type spectra will appear in applications [5].

Let (X,0) and (2),0) be a nonnegative cochain parametrized Banach space complexes
such that both complexes have the same first term X = X° = Y° and let Q and A
be their spaces of parameters, respectively. We say that these complexes are m-spectrally
connected if there exists a nonnegative cochain 2 x A-Banach bicomplex (3,0’,9”) such
(3%°,09°) = (%,0), (3*9,07°) = (9),0) and

a(3%°,07°%) Co(X,0), o(3°™,07™) Co(D,0)
for all o € 6™, and s,m € N. Thus (3,0/()\),0~(u)) is a nonnegative Banach space
bicomplex with the initial space X for each (A, u) € Q x A. Their total complexes

Tot(3,0/(A), 0 (), (A, ) € Q x A, define an Q x A-Banach complex Tot(3,0/,0.); let
0(3,0/,0/) denote the Stodkowski spectrum of the latter complex.

PROPOSITION 1. Let (%,0) and (2),0) be a m-spectrally connected cochain complezes and
let c € ©™. Then
0(37 a’a D") C U(x’ D) X U(Q.)a 6)

for a parametrized Banach space bicomplez (3,0/,0+) connecting (X,0) and (2),9).
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Proof. Let 4 be an ultrafilter and let 0 = ¢™". Undoubtedly, the ultrapower (3,0/,0/ )y
(= (Bu, 04, 07y)) is a parametrized Banach space bicomplex connecting complexes
(X4, 04) and (g, 0y ). Moreover, (Xy,0y) and (Y, 0y) are w-spectrally connected by
means of (3,0/,09)y due to Theorem 1 (b). Appealing to (2.1) and Theorem 1 (b), we
also infer that

0(3,0/,01) = o(Tot(3,0/,0/)) = o(Tot(3,0/,0)y) = o(Tot(3y, 0y, 0vyg))
= 0 (3u, 01y, 0rry)
and
(3,05, 00s) = | BF(Tot(3y, 0rsr, 00rsr)).
k<n
Now take (X, p1) € 0(3,0,,00). If A ¢ 0(X,0) then A ¢ {J,,, 2*(Xy,0y) by Theorem 1
(b). It follows that
Mg o300t = | SFGEt o)
k<n

for all m € Z. Thus all rows of the bicomplex (3, 0/(\)g, 0~ (p)y) are exact at the first
n terms, which implies that Tot(3g, 9/ (A)y, 9/ (1)y) is exact at first n terms by virtue
of Lemma 4. The latter means that (A, u) ¢ U,<, SF(Tot(3u, 04, 074)), or (A, p) ¢
0(3,9/,0+), a contradiction. The same argument with columns of the bicomplex yields
uweo (@75) ]

REMARK 2. One can similarly prove a chain version of the assertion from Proposition 1.
Namely, let (X,0) and (2),0) be d-spectrally connected chain complexes. Then

0(37 0/, D//) c 0(:{’ D) X J(Q‘ja 6)
for a parametrized bicomplex (3,0/,0~) connecting (X,?) and (2),0), o € Gs.

DEFINITION 2. Let (X,0) and (2),0) be m-spectrally connected complexes parametrized
on a topological spaces Q2 and A, respectively, and let (3,0,,0~) be an 2 x A-bicomplex
connecting these complexes. By a spectral mapping with respect to (3,0/,0~) we mean a
continuous map f : Q@ — A such that

a) all vertical cohomology complexes

D™ R
0 — H™(R0(N) =+ — H™ (3,000 () " HP (3t ()
of the bicomplex (3,0/(\),0/(u)) are exact whenever p # f()\);
b) DY (f()\)) = 0 whenever the cohomology space H™(X,0())) is Hausdorff.

If only b) is satisfied then we say that f is a prespectral mapping.

Note that condition a) of Definition 2 means that all terms 'EJ*™(\, u), m,n € Z,
of the first spectral sequence associated with the bicomplex (3,9:()),0~ (1)) (see [8, Ch.
1, 4.8]) are vanishing whenever p # f(A).

Now let us prove the forward and backward spectral mapping properties of spectrally
connected complexes.
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THEOREM 2. Let (X,0) and (2,0) be cochain complezes parametrized on Q) and A, re-
spectively, and let 4 be an ultrafilter. If (Xy,0y) and (2),0) are w-spectrally connected
and f: Q — A is a prespectral mapping then

flo(%,0)) Co(D,0)
foralloc € G™.

Proof. Let (3,0,,0) be an Q x A-bicomplex connecting (X, 0y) and (2),?), and let
o =0"". Take X € 0(X,0) and let u = f()\). By Theorem 1 (b),

o(%,0) = o(Xu,00) = | ZF(Xy, 00).
k<n
Choose lowest i such that A € 3(Xy,0y). Then H?(Xy,04(\)) is a nontrivial Banach
space and \ ¢ o™~ (Xy,0y), otherwise A € |J, -, ; £%(Xy,0y) by virtue of Theorem 1
(b). Since (Xy,0y) and (2),?) are 7m-spectrally connected (by means of (3,0,,0/)) com-
plexes, it follows that o™¢~1(3™* 0/*) C o™ !1(Xy,0y) for all n. Thus all rows of
(3,0/,0) are exact at the first i — 1 terms. Moreover, the differential

DM ()« H' (X, 0u(N) — H'(3%*,0,°)
of the i-th vertical cohomology complex is trivial by Definition 2. Then H*(3%™, 07™) #
-

{0} for some k, m < i by virtue of Lemma 3. The latter means that u € o™(3*™,0;,"™)
a(3*™,07™). But o(3%™,0,"™) C 0(2,0). Therefore p € 0(,0). m

THEOREM 3. Let (X,0) and (9),0) be m-spectrally connected Banach space complezes
parametrized on Q) and A, respectively, f : @ — A a spectral mapping with respect
to an Q x A-bicomplez (3,0,,0) connecting (X,9) and (2,9), and let 0 € &™. If
0(9,0) =x(0(3,0/,0)) then

o(9,2) C f(o(X,2)),
where IIp : Q x A — A is the canonical projection.

Proof. Take p € (2),0). By assumption, (A, u) € 0(3,0,,0~) for some A € . Then
A € 0(X%,0) by virtue of Proposition 1. If f(\) # u then all vertical cohomology complexes
of the bicomplex (3,0/(\),0~(p)) are exact by Definition 2. Then Tot(3,0:(\), 0/ (1))
is an exact complex by Lemma 4. But the latter means that (A, ) ¢ 0¢(3,9,,0~). In
particular, (A, 1) ¢ 0(3,0,,0~), a contradiction. Therefore, pn = f(A\) € f(o(%,0)). Thus

o(9,9) € f(o(X,0)). m
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