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Abstract. In general, little is known about the lattice of closed ideals in the Banach algebra
A(E) of all bounded, linear operators on a Banach space E. We list the (few) Banach spaces for
which this lattice is completely understood, and we give a survey of partial results for a number
of other Banach spaces. We then investigate the lattice of closed ideals in A(F’), where F' is one
of Figiel’s reflexive Banach spaces not isomorphic to their Cartesian squares. Our main result is
that this lattice is uncountable.

Introduction. It is a basic fact that, for each non-zero Banach space E, the set .7 (E)
of finite-rank operators on F is the smallest non-zero ideal in #(FE). In particular, its
closure .7 (E) is the smallest non-zero closed ideal in %(FE). Many other closed ideals
in #(FE) have been identified and studied, for instance the ideals of compact, strictly
singular, inessential, completely continuous, and weakly compact operators (e.g., see [35]
for details and numerous other examples).

The general structure of the lattice of closed ideals in #(F) is, nevertheless, far from
being well understood. Investigating this question is, in our opinion, a key step towards
a deeper understanding of Banach algebras of the form %(F) for a Banach space E.

The present paper should be seen as part of this programme. It provides a survey
of the major known results about closed ideals in Z(F) for various Banach spaces F,
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and it contains new information about the closed ideals in (FE) for one particular class
of Banach spaces F, namely Figiel’s reflexive Banach spaces not isomorphic to their
Cartesian squares.

More precisely, the paper is organized as follows. After setting up notation, conven-
tions, and some standard definitions in Section 1, we describe in Section 2 the (surpris-
ingly few) Banach spaces E for which all the closed ideals in #A(FE) are known. Then,
in Section 3, we survey some important partial results about closed ideals in #(FE) for
various particular Banach spaces E. Finally, in Section 4, we investigate the lattice of
closed ideals in #(F), where F is one of Figiel’s reflexive Banach spaces not isomorphic
to their Cartesian squares. Our main result is that this lattice is uncountable, adding
yet another surprising property to the already long list of pathologies possessed by these
apparently ‘nice’ Banach spaces.

1. Notation. In this section we describe the notation, conventions, and some standard
definitions that we rely on throughout the paper.

For a set X, we write P(X) for the power set of X, and we denote by Pg,(X) the
subset of P(X) consisting of the finite subsets of X.

All Banach spaces are supposed to be over the same scalar field K, where K = R
or K = C. Let E be a Banach space. We write E’ for the dual Banach space of E.
For m € N, we denote by E®™ the direct sum of m copies of E.

For each real number p > 1, the ¢,-direct sum of a sequence (E})¢2 , of Banach spaces
is defined by

(@),

This is a Banach space for coordinatewise defined vector space operations and the norm

el = ()" (@0 e (DA, )

k=1 k=1 P

{ (z1) ‘xk € By (k € N) and anknp < oo}

P

Similarly, the co-direct sum of a sequence (Ej)52, of Banach spaces is given by

(@Ek) .= {(zx) | 1 € By (k € N) and |[zx]| — 0 as k — 00} ;

Co

it is a Banach space for coordinatewise defined vector space operations and the norm

(@l = supllexll [ KN} ((a) € @Ek) ).

co

We use the term operator for a bounded, linear map between Banach spaces. The
collection of all operators from a Banach space F to a Banach space F is denoted by
B(E,F), or just Z(FE) in the case where E = F. We write I for the identity operator
on F.

DEFINITION 1.1 (Pietsch [35]). An operator ideal is an assignment .# which associates
to each pair of Banach spaces E and F' a linear subspace .# (E, F') of #(E, F) satisfying:

(i) F(E,F) is non-zero for some Banach spaces E and F}
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(ii) for any Banach spaces D, E, F, and G, the composite operator T'SR belongs to
(D, G) whenever R belongs to #(D, E), S to S(E,F),and T to Z(F,G).

We usually write .# (FE) instead of .7 (E, E).

For an operator ideal .# and Banach spaces £ and F, we write .#(FE, F) for the
closure (in the operator norm) of .#(E, F) in %(E, F). The assignment . thus defined
is an operator ideal, called the closure of .#. We say that the operator ideal .# is closed
if #=.7.

We shall consider the following operator ideals (and their closures) in this note:

— %, the finite-rank operators;

— ¥, the compact operators;

— W, the weakly compact operators;

— Z, the operators with separable images;

— ., the strictly singular operators;

— &, the inessential operators;

— Y4 (where € is a subset of Z(FE, F') for some Banach spaces E and F'), the operator
ideal generated by the set %.

We regard the first four of these operator ideals as so well-known that no definitions are
required. We proceed to define the final three.

DEeFINITION 1.2 (Kato [25]; Pietsch [35]). Let E and F' be Banach spaces.

(i) An operator T: E — F is strictly singular if T is not bounded below on any
infinite-dimensional subspace of E. In other words, for each € > 0 and each infinite-
dimensional subspace D of E, there is a unit vector € D such that |Tz| < e.

(ii) An operator T: E — F is inessential if, for each operator S: F — E, Ip — ST
is a Fredholm operator, that is, the spaces ker(Ig — ST) and E/im(Ig — ST) are
finite-dimensional.

We write . (E, F') and &(E, F) for the sets of strictly singular and inessential operators
from E to F, respectively. The assignments . and & thus defined are closed operator
ideals.

The following method of producing ideals in #(FE) for a Banach space E plays a key
role in many of the constructions that we shall present in this paper. Its roots go back to
Porta (see [37] and [3]).

DEeFINITION 1.3. Let D, E, F, and G be Banach spaces. For each subset ¢ of Z(F, F), set
Y#(D,G) :=span{STR|Re€ B(D,E), T €%, S c BF,G)}CABD,QG).

Suppose that € contains a non-zero operator. Then the assignment %, thus defined is an
operator ideal, called the operator ideal generated by €. It is clearly the smallest operator
ideal such that ¢ C % (F,F). In the case where £ = F and ¥ = {Ig}, we write g
instead of Y.

2. Classifications of the closed ideals in (F). In this section we shall give a survey
of the Banach spaces F for which all closed ideals in B(FE) are known. As it turns out,
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the list of such spaces is almost embarrassingly short. We shall also give remarks about
some closely related spaces.

It is ancient folklore that the matrix algebras M, (K), n € N, are simple. In other
words, we have the following result.

THEOREM 2.1. For each finite-dimensional Banach space E, the two trivial ideals {0}
and B(E) are the only ideals in (F). n

The first result about closed ideals in Z(E) for an infinite-dimensional Banach space F
is due to Calkin who in [5] classified all the ideals in Z(¢5). In particular he obtained the
following conclusion.

THEOREM 2.2 (Calkin). The ideal . ({2) of compact operators is the only non-trivial
closed ideal in B(l3). m

Calkin’s theorem has subsequently been generalized in two different ways.

First, Gohberg, Markus, and Feldman showed in [18] that the same conclusion holds
true for the other classical sequence spaces ¢, where 1 < p < 0o, and cg. A simplified
and unified proof of this result is given in [23].

THEOREM 2.3 (Gohberg, Markus, and Feldman). For E = {,, where 1 < p < oo, and
E =cy, the ideal £ (E) of compact operators is the only non-trivial closed ideal in (E). m

Second, Gramsch [22] and Luft [31] have independently classified the closed ideals in
P(H) for each infinite-dimensional Hilbert space H (not necessarily separable). To state
their result explicitly, we require the following terminology.

DEFINITION 2.4. Let x be an infinite cardinal.

(i) We denote by x* the minimum cardinal strictly greater than k.
(ii) We say that a Hilbert space H has dimension k, written dim H = &, if some (and
thus each) orthonormal basis of H has cardinality .
(iif) A subset Y of a metric space X is called x-bounded if, for each € > 0, there exists a
subset Z of Y of cardinality strictly less than s such that

Y C | ball(z,¢),
z€Z
where ball(z, ) denotes the open ball in X with centre z and radius €.
(iv) An operator T: E — F, where E and F' are Banach spaces, is called x-compact if
T(B) is k-bounded for each norm-bounded subset B of E. We write %, (E, F) for
the set of k-compact operators from E to F.

The assignment %, thus defined is a closed operator ideal. We note that the first two
of these operator ideals are already well-known: %, = ¢ (the usual compact operators)
and J, = £ (the operators with separable images). Moreover, the family of operator
ideals (#;) forms an increasing chain in the sense that 7, (F, F) C J\(E, F) for each
pair of Banach spaces ¥ and F' and each pair of cardinals x and A such that x < A
(see [22, Satz 2.1-2.2] or [31, Lemma 4.1-4.3]).
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The important realisation of Gramsch [22, Theorem 3.3] and Luft [31, Corollary 6.2]
is that, for each Hilbert space H, every proper closed ideal in #(H) has the form 7 (H)
for some cardinal £ < dim H, and that these ideals are pairwise distinct. More precisely,
they showed the following theorem.

THEOREM 2.5 (Gramsch and Luft). Let H be an infinite-dimensional Hilbert space. The
mapping k — J#,(H) is a lattice isomorphism from the set of cardinals k such that
No < k < dim H onto the set of non-trivial closed ideals in B(H).

In other words, the lattice of closed ideals in %8(H) is a chain of the form

{0}y ¢ F(H) = (H) = S (H) = E(H) = Ay, (H) & S, (H) = 2 (H) & -

where k is a cardinal satisfying N1 < x and kT < dim H. =

It seems to be unknown whether or not Gramsch and Luft’s theorem can be generalized
to non-separable /,- and cy-spaces in the same way as Calkin’s theorem was generalized
by Gohberg, Markus, and Feldman.

QUESTION 2.6. Let I be an uncountable set of cardinality x, say, and let F denote one
of the following Banach spaces

L) = {f 1=K | Y If@F <o} (1<p<o0)
i€l
and
co(I) :=={f: T —-K|theset {i €I ||f(¢)| > ¢} is finite for each ¢ > 0}.

Is it true that each non-trivial closed ideal in #(FE) has the form %) (E) for some cardi-
nal A with Rg < A < k7!

Until 2003, it appears that Theorems 2.1, 2.3, and 2.5 gave the full list of Banach
spaces E for which all the closed ideals in %(FE) are known. However, Charles J. Read
and the present authors have recently added a new member to this family (see [29,
Corollary 5.6]).

THEOREM 2.7 (Laustsen, Loy, and Read). For E := (@, (5).,, there are ezactly two
non-trivial closed ideals in B(E). Specifically, the lattice of closed ideals in B(E) is given
by
{0} C F(B) = #(E) = #(E) = £(E) = #/(E) € 7., (E) C B(E). =

REMARK 2.8. Theorem 2.7 was inspired by the classification of the complemented sub-
spaces in the Banach space (@;":1 (%), given by Bourgain, Casazza, Lindenstrauss,
and Tzafriri [4]. In fact, they prove analogous results for other Banach spaces than
(D=, ¥5)c,- To state their results in a unified way, set E := (D, Ex)p, where D
and E}, are given in one of the following four ways:

! Added in proof: Daws has answered Question 2.6 in the positive (Closed ideals in the Banach
algebra of operators on classical nonseparable spaces, Math. Proc. Cambridge Philos. Soc., to
appear).
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(i) D =co and Ej, = ¢% for each k € N;
(ii) D = ¢y and Ej, = ¢} for each k € N;
(iii) D = ¢; and Ey, = /5 for each k € N;
(iv) D = ¢; and Ejy, = (% for each k € N.

Then it is shown in [4, §8] that, for each infinite-dimensional, complemented subspace F'
of E, either F is isomorphic to D or F is isomorphic to E.

In the light of these results and Theorem 2.7, it is natural to ask what the closed
ideals in #(F) are in the cases (ii)—(iv).?

Another Banach space for which this question attracts attention is £ := (P, E’;)CO
for a fixed p > 1. It follows from [30, p. 72f] that E contains a complemented subspace
isomorphic to (P, %) ., as well as the ‘trivial’ complemented subspaces isomorphic
to ¢p and of finite dimension. Consequently, for p # 2, Z(FE) contains at least three
distinct non-trivial closed ideals, but we do not know if there are any others.

These questions were first raised in [29]. We intend to address them in future work.

3. Partial results about closed ideals in Z(E). Even though Banach spaces F for
which the lattice of closed ideals in #(F) is completely understood are rare, quite a few
interesting partial results are known. In this section we shall survey a number of such
results. Note that the state of knowledge at 1974 and 1977, respectively, can be found
in [6, Chapter 5] and [35, Chapter 5].

Porta [38] has shown that the lattice ideal(%(E)) of closed ideals in %(E) for a
Banach space E can be very complicated indeed. Precisely, Porta’s result asserts that it
is possible for it to have a sublattice isomorphic to the lattice Pgn(N) of finite subsets
of N. The construction is as follows. Let p = {p1, ps,...} be a countably infinite set of
real numbers greater than 1, set

oo

(3.1) Epi= (B tn),
2

k=1

and associate with each s € Pg,(N) the closed subspace
Ep(s) :={(xr) € Ep |2k =0 (k ¢ 5)}
of E. Then the mapping
s 9p ) (Ep), Pga(N) — ideal(#(Ep)),

is injective and inclusion-preserving in both directions, and Porta’s claim follows. Note
that the space E, is nice in many ways; for instance, it is reflexive, and we can even
arrange that it is isometrically isomorphic to its dual space by requiring that the set p

is self-conjugate in the sense that, for each p € p, the conjugate index p’ :=p/(p—1) is
also in p.

2Added in proof: Case (iii) has been resolved by Laustsen, Schlumprecht, and Zsak (The
lattice of closed ideals in the Banach algebra of operators on a certain dual Banach space,
preprint). They show that .7 (E) and %, (E) are the only non-trivial closed ideals in %(F)
for E = (D2, £5)e, -
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Pietsch [36] has shown that it is possible to have uncountably many distinct closed
ideals between the ideals of compact and strictly singular operators. Specifically, he has
found a family (2;)2<q<co Of closed operator ideals satisfying

H(E,F)C Z,(E,F)C Z,(E,F)C Z(E,F) (2<q<r <)

for each pair of Banach spaces E and F', and has observed that if p is a countable, dense
subset of the open interval |1, oo[, then all the ideals Z,(Ep) (2 < ¢ < c0) are mutually
distinct, where E, is the Banach space given by (3.1).

Porta [39] has studied the lattice of closed ideals in A(E) for E = {, & {,, where
1 < p < ¢ < co. His main results are that

(0} SF(B) = #(B) ¢ #(E) = 6(E) =1, (E) 1T, (E) #(E),
(Q
g, (B
and that, in the cases where either p = 2 or ¢ = 2, if ¢ is any other closed ideal in A(E),
then necessarily # (E) C _# C #(E). Volkmann [47] has generalized Porta’s results to
arbitrary finite direct sums of /,-spaces. Indeed, set I := ¢, © {,, ® --- D ¥, , where
n€{2,3,...} and 1 < p; <py < -+ <p, < o0. Then he has proved that the mapping

s—{T € B(E) | QT Iy, € H (by,) (k &)}

is a lattice isomorphism from P({1,...,n}) onto the set of closed ideals in ZA(FE) contain-
ing the ideal .(E) of strictly singular operators, where Jj: ¢, — E and Qy: E — £,
denote the canonical embedding and projection, respectively. In particular, there are ex-
actly n maximal ideals in Z(FE). Similar results hold if one of the spaces ¢, is replaced
with Co.

Building on work of Rosenthal [40] and Schechtman [41], Pietsch has demonstrated
that there are infinitely many closed ideals in H(L,[0,1]) for each p € ]1,00[ \ {2}.
Moreover, he has shown that there are uncountably many closed ideals in %(C|0,1])
(see [35, Theorems 5.3.9 and 5.3.11]). In both cases, the ideals have the form ¥ (E),
where F ranges over a certain family of complemented subspaces of the underlying Banach
space F.

Edelstein and Mityagin [15, p. 225] observed that the ideal #/(.J,,) of weakly compact
operators is a maximal ideal of codimension one in %4(J,), where 1 < p < oo and J,
is the p*® quasi-reflexive James space (cf. [24]). The first author [28, Theorem 4.16] has
proved that %/(J,) is the only maximal ideal in %(J,), and, using techniques similar to
Volkmann’s, he has applied this result to construct Banach spaces F such that 2(FE) has
any specified finite number of maximal ideals of any specified codimensions. Further, the
lattice of closed ideals in #(J,) has the form

{0} S F () = H (Ty) = L (Jp) = E(Jp) S G0, (Jp) S W () C B(T,),
and if there are any other closed ideals / in %(J,), then they have to satisfy
Go,(Jp) S I CH(Jp)

(see [28, p. 528]). For p = 2, there is at least one such closed ideal. Indeed, building on
work of Giesy and James [17], Casazza, Lin, and Lohman [9, Theorem 13(i)] observed
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that .J» contains a complemented subspace isomorphic to E := (D, (% )s,, and the
first author has shown that &5 (J;) is neither equal to %, (.J2) nor to # (J3).

While solving the unconditional basic sequence problem, Gowers and Maurey [20]
found the first example of a hereditarily indecomposable Banach space. They also showed
that the ideal .(E) of strictly singular operators is a maximal ideal of codimension
one in B(E) for each such space E; once again, this maximal ideal is unique (see [28,
Proposition 7.2]).

A completely different class of Banach spaces F with the property that the ideal . (E)
of strictly singular operators is the unique maximal ideal in Z(F) has been described
by Whitley [49, Theorem 6.2]. Namely, this is true for each Banach space E which is
complementably minimal in the sense that each closed, infinite-dimensional subspace of E
contains a subspace which is isomorphic to £ and complemented in E. Schlumprecht’s
space S is an interesting example of a complementably minimal Banach space (see [42]).

Androulakis and Schlumprecht [1] have proved that non-compact, strictly singular
operators exist both on Schlumprecht’s space S and on the particular hereditarily in-
decomposable Banach space FE that Gowers and Maurey constructed in [20], and so for
F =S and F =F, .(F) is not the only non-trivial closed ideal in %(F'). In the second
case Androulakis and Schlumprecht have even shown that the quotient . (E)/. % (E) is
non-separable by embedding the Banach space /., /cy into it (see [1, p. 670]). Neverthe-
less, it is unknown for both spaces how many ideals (if any) there are between % (F)
and 7(F).

It is a major open problem whether or not there exists a Banach space E such that the
ideal of compact operators is a maximal ideal of codimension one in %(FE). The reader
is referred to Schlumprecht’s paper [43] for the current state of this difficult problem
together with an impressive new method of attack.

Shelah [44] gave the first example of a non-separable Banach space E for which the
ideal 2 (F) of operators with separable images has codimension one in %(FE). However,
Shelah’s construction relies on the assumption of an axiom outside ZFC, the so-called oy,
(which in turn is a consequence of a set-theoretic axiom known as V' = L). Happily, this
extra axiom is in fact not necessary: Shelah and Steprans [45] have shown that such Ba-
nach spaces exist within ZFC. Wark [48] has subsequently modified Shelah and Steprans’s
construction to obtain a reflexive example. Further, assuming either Martin’s axiom or the
continuum hypothesis, Koszmider [26] has recently found a compact separable scattered
non-metrizable Hausdorff space K such that the Banach space F = C(K) of continuous
functions on K has this property. (Note that E is necessarily non-separable because K
is non-metrizable.)

Argyros and Tolias [2] have constructed a non-separable, non-reflexive hereditarily
indecomposable Banach space E for which .7 (F) = # (E) = Z (E).

Mankiewicz [32] on the one hand, and Dales, Loy, and Willis [11] on the other, have
found Banach spaces E such that ¢, is a quotient of B(FE). It follows that, for each of
these spaces F, #(FE) has at least 22" maximal ideals of codimension one. When solving
Banach’s hyperplane problem, Gowers constructed a Banach space G such that ¢, /¢ is a
quotient of Z(G) (see [19] and [21]). The first author [28, Theorem 8.4] has classified the
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maximal ideals in Z(G) by observing that each such ideal is the preimage of a maximal
ideal in £ /co.

We conclude this survey with some remarks about #({,). (Note that this is the same
as B(Ls[0,1]) because Pelczynski [34] has shown that the Banach spaces ¢, and L[0, 1]
are isomorphic.) Gohberg, Markus, and Feldman [18, Theorem 5.3] observed that there
are strictly singular, non-compact operators on ¢ . It follows from [30, Proposition 2.f.4]
that # ({~) is the unique maximal ideal in A ({,). Indeed, suppose that T € £ ({.) is
not weakly compact. Then, by the above-mentioned proposition, there is a subspace E
of /-, such that F = /., and T is bounded below on F. Let J: E — {., be the inclusion
mapping, and let U: ¢, — E be an isomorphism. We see that T(E) is a closed subspace
of {+ isomorphic to /. Since ¢, is injective, this implies that T'(F) is complemented
in {. Take an idempotent operator @ on /., such that im Q = T(E). Then we have a
commutative diagram

loe = loe
U*l
U E
(Tg)~"
E Tl T(E)
J Q
(o T sl

We conclude that the ideal generated by T is #({), and so each proper ideal in #({,)
is contained in # ({), as claimed.

The proof of [30, Theorem 2.£.12] shows that # ({») C .({~). Further, each weakly
compact set in /o, is norm separable (see [33, Exercise 2.99]), and so # ({s) C 2 ({s).
The ideals . ({) and 2 ({) are both proper because (., is infinite-dimensional and
non-separable, respectively. Hence we conclude that . ({s) = # ({) = 2 ({x) by
maximality of # ({s).

It follows from [14, p. 245] that /., has the (metric) approximation property, so
that .7 ({s,) = # ({s). Since non-compact operators from /., to ¢, exist (e.g., see [12,
Exercise 4(iii), p. 114]), # () is strictly contained in ¥, ({s,). The latter is a proper
ideal and thus contained in # (), but we do not know whether or not this inclusion is
strict.

We summarize the above results as follows:

{0} - ?(EOO) =X (lx) & QCO(ZOO) CH (l) = X (loo) = S (ls) = E(ls) & B(les),
and note that if there are any other closed ideals ¢ in %({..), then they must satisfy
H(los) & J W (leo).
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We do not know whether such ideals exist. However, since /., contains subspaces isometric
to F and E’ for every separable Banach space F, it seems likely that further closed ideals
can be found among ¥ ({,) and ¥ 5 (£ ), where F is a separable Banach space.

4. Figiel spaces. In this section we shall study the lattice of closed ideals in #(F),
where F' is one of Figiel’s reflexive Banach spaces not isomorphic to their Cartesian
squares. These Figiel spaces are {,-direct sums of finite-dimensional ¢,-spaces for certain
p’s and ¢’s (see Theorem 4.7, below, for details), and so they are nice in many ways. In
particular, in the light of Theorem 2.7, one might expect that the lattice of closed ideals
in B(F) for a Figiel space F' would be ‘well-behaved’. However, this is not the case: we
shall show that this lattice is uncountable and has a highly complicated order structure.

For a real number p > 1 and a natural number n, we denote by ¢} the n-dimensional
vector space over the scalar field K equipped with the norm

(1, .o = (Jar? + - + |an[P)1/P (o1,...,0p € K).

We write {e1,...,e,} for the canonical basis of .
Throughout thls section, we fix a sequence (pk) >, of real numbers greater than or
equal to 1, a real number ¢ > 1, and a sequence (ny)%2; of natural numbers, and we set

(4.1) Fo= (é eg;;)eq

The following result is a consequence of [29, Example 3.9].

THEOREM 4.1 (Laustsen, Loy, and Read). Let F' be the Banach space defined in (4.1),
and suppose that ¥ is an ideal in B(F) not contained in 7 (F). Then 7 contains the
ideal 9, (F).

It follows that

F(F) =X (F)=S(F)=&(F) S Y, (F),
and there are no closed ideals 7 in B(F) such that Z(F)C 7 C 9, (F). u

DEFINITION 4.2. We associate with each subset s of N a Banach space F(s) such that
there is a canonical embedding V;: F(s) — F and a canonical quotient map Ws: F —
F(s) satisfying

(42) WsVs = IF(S)'
More precisely, we split in three cases depending on the size of s.
First, suppose that s is empty. Then we set F(s) := {0}, V5 :=0, and W := 0.
Second, suppose that s is non-empty and finite, say s = {s(1), s(2),...,s(m)}, where
m € Nand 1< s(1) <s(2) <--- < s(m). Then we set
F(s):=bply) @ bply) @ - ® bl
and we equip F'(s) with the £;'-norm

(1, zm)ll = (a4 -+ DY (21 € B, zm € G0,

s(m)



CLOSED IDEALS IN #(E) 255

The embedding V: F(s) — F and the quotient map Wy: F' — F(s) are defined by
Va(mr)ier = (y5)520 and  Ws(2k)ply = (25(1) 2s(2) - - -5 Zs(m))
where (71)jL, € F'(s) and (2x)32, € F, and where (y;)52, € I is given by

xp if j = s(k) for some k € {1,...,m .
yj':{ k J () { } (]EN).

0  otherwise

Third, suppose that s is infinite, say s = {s(k) | k € N} with 1 < s(1) < s(2) < ---.

Then we set
— s (k)
F(s) = (@é ©),

and we define V;: F(s) — F and Ws: F — F(s) by
Vs(@k)pey = (yj)?i1 and Ws(2k)pzr == (Zs(j))?ih
where (71)72, € F'(s) and (2x)32, € F, and where (y;)52, € I is given by

. f @ if j = s(k) for some k € N )
Yi= { 0  otherwise U EN).

It follows from (4.2) that in each case Ps := Vi W is an idempotent operator on F' with
image isomorphic to F(s). We now give some basic rules of calculus for these operators.

LEMMA 4.3. Let s and t be subsets of N. Then:

(1) Psnty = PP
(11) PsUt:Ps+Pt_Psﬁt-

Proof. For each x = (73)3%, € F and j € N, the j*® coordinate of Ps Pz is given by

(PuPy1),; :{ (Pux); ifjes }

0 otherwise
T lfj ct p -
f . . .
_ { 0  otherwise } nres )"t ifjesnt = (Psnt);-
0 otherwise J
0 otherwise

Similarly, the j*® coordinate of (P, + Py — Psn¢)7 is given by

xz; ifjes z; ifjet xz; ifjesnt
Ps+ P, — P P = J J — J
((Fs + P = Paae)a); { 0 otherwise } + { 0 otherwise } { 0 otherwise

T if jesUt
= = (Ps i
{ 0  otherwise } (Peuee)s

It follows that PsPix = Psnex and (Ps + Py — Psnt)* = Psut, as required. m

For each subset S of P(N), let .#(S) be the ideal in %B(F) generated by the set
{Ps|s € S}, that is,
I(S) =Y p, |sesy(F);

we write .7 (S) for the closure of . (S).
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LEMMA 4.4. Let S be a subset of P(N).

(i) Z(S) ={0} if and only if S=0 or S = {0}.

(ii) F(S)=.Z(F) if and only if S# 0, S # {0}, and each s €S is finite.
(iii) Lets € S. Then Py € F(S) for each t C s.
(iv) Suppose that m € N and s1,...,8,;, €S. Then Ps,ys,u.-us,, € Z(S).

Proof. Clauses (i) and (ii) are both clear, and clause (iii) follows immediately from
Lemma 4.3(i).

Clause (iv) is obvious for m = 1. Now let m > 2, set t :=s; Usa U---US;,_1, and
assume inductively that P, € .#(S). Lemma 4.3(ii) implies that

PtUsm = Pt + Psm - Ptﬂs,,“
and so Pyus,, € Z(S) by the induction hypothesis and clause (iii). m

COROLLARY 4.5. Let S be a subset of P(N) such that S # 0 and S # {0}, and let
t € P(N). Suppose that there are m € N and sy, ...,S;, €S such that t\ (s1UsaU- - -Usy,)
is finite. Then P, € 7 (S).

Proof. Set t; :=tN(syUsaU---Usy,) and ta :=t\ (s1 Usa U---Us,,). Then t; and
to are disjoint with t; Uty = t, so that P, = Py, + P;, by Lemma 4.3(ii). Lemma 4.4(iii)
and (iv) imply that Py, € #(S). By assumption, to is finite, and so P, € #(F) C .#(S)
because .#(S) # {0}. Now the result follows. m

LEMMA 4.6. Let m € N, and let S1,...,S,, be subsets of P(N). Then
F(S1U---USy) =2(S1)+--+ 2 (Sh).

Proof. Clearly, Ps € Z(S1) + -+ Z(S,,) for each s € S; U---US,,. This implies that
FI(S1U---USy) € A(Sy)+ -+ F(Sy,) because £ (S1) + -+ + F(S,,) is an ideal.

For the reverse inclusion, it suffices to show that .7 (S;) C #(S;U---US,,) for each
j € {1,...,m}. However, this is immediate from the fact that Ps € Z(S; U---US,,)
whenever s € S;. =

To progress further, we shall specialize to the case where F' is of the form considered
by Figiel in [16]. He showed that, for each strictly decreasing sequence (py)72, of real
numbers greater than 2 and each real number ¢ with 1 < ¢ < inf py, there exists a sequence
(ng)52, in N such that the Banach space F' defined by (4.1) satisfies: for each m € N,
F®(m+1) is not isomorphic to any subspace of F®™. Casazza, Kottman, and Lin have
subsequently observed that Figiel’s proof in fact yields a stronger result (see [8]): one can
use the argument given by Figiel in [16, p. 297f] word for word to prove the following
theorem.

THEOREM 4.7. Let (py)72, be a strictly decreasing sequence of real numbers greater
than 2, and let q be a real number with 1 < q < inf py. Then there exists a sequence
(ng)52, in N such that, for each infinite subset s of N and each m € N, F(s)®(m+1 s
not isomorphic to any subspace of F®™, where F' and F(s) are the Banach spaces defined
by (4.1) and Definition 4.2, respectively. m
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In the remainder of this section (except Lemma 4.14, which applies under more general
conditions), we shall suppose that (pg)32,, ¢, and (ng)5>, are chosen in accordance
with Theorem 4.7 and that the Banach spaces F' and F(s) are defined by (4.1) and
Definition 4.2, respectively. Under these circumstances, the converse of Corollary 4.5 is
true, as we shall now show. Our proof is inspired by that of [27, Lemma 3.2].

PROPOSITION 4.8. Let S be a subset of P(N) such that S # 0 and S # {0}, and let
t € P(N). Then P, € Z(S) if and only if there are m € N and s1,...,8,, € S such that
t\ (s1UsgU---Usy,) is finite.

Proof. The implication ‘<=’ was proved in Corollary 4.5.
Conversely, suppose that P, € .Z(S), say

Py =) TPy R,
j=1

where m €N, Ry,...,Rn,T1,..., Ty, € B(F), and sy, ...,S,, € S. Define operators
Az (z,..,2), F—-F®" and 3: (v1,...,%m) = 21+ + 2, FO" = F.

Then we have a commutative diagram:

P,
F ¢ F
A by
Fom Fom
Ri® @Ry, T,®- T,
Psl@"'@Psm
Fom Fom,
Set
Ri=(Ps,® ®Ps, ) (R & ®Ry)A: F— F
and

T=X(T1& - &T,)(Ps,® - ®PF, ) F¥" = F

)

so that P, = TR. It follows from [28, Lemma 3.9(ii)] that Q := RTRT € #(F®™) is
idempotent with im () = im P;. Clearly, im Q C im(Ps, ®--- @ Ps,,).

For Banach spaces D and F, let us write D = F to indicate that D contains a subspace
isomorphic to F. Then we have

FO" > im(Py, @ - ® Ps,)) ®ker(Ps, @@ Ps,,)
ZimQ ®ker P, @--- @ker Py =im P, @ im Py, ® - @ im Py,
2 (Im P (s,Us0-0s,) ) 2T = F(E) (1 Usp U+ U sy, ) 20D,
By Theorem 4.7, this implies that the set t \ (s; Usa U---Us,,) is finite. =

The following lemma is a variation of the well-known Carl Neumann invertibility
criterion (e.g., see [10, Theorem 2.1.29(i)]).
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LEMMA 4.9. Let # be an ideal in a Banach algebra <7/, and let p € &/ be idempotent.
Thenp € 7 if and only if pe Z.
Proof. Only the implication ‘=’ requires proof. Suppose that p € 7 If p = 0, then

certainly p € . Otherwise take a € _# such that ||p—al| < 1/||p||?>. Then |p—pap|| < 1,
and so we may define

b::erZ(pfpap)"Gszf.

n=1
We have
J 2 bpap = (p +Y (p— pap)") (p— (p — pap))
n=1
Z p—pap)" — (p—pap) — > (p—pap)" = p,
n=1 n=2

as required. m

PROPOSITION 4.10. Let S and T be subsets of P(N), and suppose that S # () and S #
{0}. Then the following three assertions are equivalent:

(i) Z(T) < Z(S);
(i) 7(T) C 7 (S);
(iii) for each t € T, there are m € N and s1,...,8;, €S such that t\ (s1UsaU---Us,,)
is finite.
Proof. ‘(i)=-(ii)’ is clear, ‘(ii)=-(i)’ follows from Lemma 4.9, and ‘(i)<(iii)’ is a conse-
quence of Proposition 4.8. u
In [8, Corollary 5], Casazza, Kottman, and Lin proved that, for each s, t € P(N), F(s)
is isomorphic to F(t) if and only if the symmetric difference sAt := (s\t)U (t\ s) is
finite. Taking S = {s} and T = {t} in Proposition 4.10 yields the following generalization
of this result.

COROLLARY 4.11. Let s and t be non-empty subsets of N. Then #({s}) = Z({t}) if
and only if 7 ({s}) = F({t}) if and only if s At is finite. m

The set Pg, (N) of finite subsets of N is an ideal in the Boolean algebra P(N), and so
the quotient 2 := P(N)/Pg,(N) is again a Boolean algebra. Let 7: P(N) — 2 denote the
quotient homomorphism. We note that, by definition,

(4.3) 7(s) =7(t) <= sAt € Pgsy(N) (s,t € P(N)).

Let ideal(2) denote the lattice of ideals in 2, and let idealy(#(F')) and idealo(Z(F))
denote the lattices of non-zero ideals and closed non-zero ideals in %B(F’), respectively.
Then we can define mappings

O: W I(r N W)), ideal(2) — idealy(B(F)),

and

U: ¥ F(n1(%)), ideal(2) — idealy(B(F)).
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THEOREM 4.12. The mappings ® and ¥ are inclusion-preserving in both directions. In
particular, ® and ¥ are injective lattice homomorphisms.

Proof. Let % and % be ideals in 2. We must show that
P CY = (L) CP¥) — ¥Y(Z)CV(¥).

Both implications ‘=’ are easy, so it only remains to show that ¥(%) C ¥(%/) implies
that & C %.

To this end, set S := 7~ %(#) and T := 7~ !(Z). Then S and T are ideals in P(N)
containing Pg,(N), and .#(T) C .#(S) by assumption. Given ¢ € 2, take t € T such
that £ = 7(t). Proposition 4.10 implies that there are m € N and sq,...,s,;, € S such
that r := t\ (s; U---Us,,) is finite. Then r € S, and since S is an ideal, we also
have s := (s U---Uspy,) Nt € S. It follows that t = r Us € S. We conclude that
E=n(t) € m(S) = ¥, as required. m

In particular, we see that there are uncountably many closed ideals in %(F’). More
precisely, we have the following result.

COROLLARY 4.13. There is an uncountable subset S of P(N) such that .7 ({s}) # . ({t})
whenever s,t € S are distinct.

Proof. Take a maximal subset S of P(N) such that 7(s) # m(t) whenever s,t € S are
distinct. Tt follows from (4.3) and Corollary 4.11 that the closed ideals .#({s}), s € S,
are pairwise distinct. The set S is uncountable because P(N) is uncountable and Pgy, (N)
is countable. m

We shall next show that the mappings ® and ¥ fail to be surjective. In fact, it is not
hard to see that, for each non-zero ideal % in 2, we have strict inclusions 4, (F') C ®(#)
and ¢, (F) C U(%). However, it turns out that we can do a little better. This requires
introduction of the Banach spaces

(4.4) B, = (é &’f)g :

s

where r and s are real numbers greater than or equal to 1.

LEMMA 4.14. Let (pi)52, be a decreasing sequence of real numbers with p := inf p, > 1,
let (nk)72, be an unbounded sequence of natural numbers, and let ¢ > 1 be a real number.
Then the Banach space F' defined by (4.1) contains a complemented subspace isomorphic
to £, 4.

Proof. By induction, we choose a strictly increasing sequence (s(k));2; of natural num-
bers such that
new =k and  EYPTUP0 <2 (KeN).

If p < 2, then we may also arrange that p,) < 2 for each k € N. It follows from [46,

Proposition 37.6(i)] that the Banach-Mazur distance between £} and /}; is less than 2

for each k£ € N. Since Kpsw contains a 1-complemented copy of é Doy WE Can take opera-
tors Ry: (8 — £,°0%) and T.: £,°() — €% such that || Ry| =1, | Ti|| < 2, and TRy, = Ips.
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Set s := {s(k) | k € N}. Then we can define operators
R: (zx) — (Rexyk), Epq— F(s), and T: (zg) — (Thxk), F(s) — Ep,.

Clearly, they satisfy TR = I, , and so it follows from (4.2) and [28, Lemma 3.6] that
VsRTWs is an idempotent operator on F' with image isomorphic to E, ;. =

The following lemma is a simple modification of [29, Lemma 4.7].

LeEMMA 4.15. Let D and E be Banach spaces, and let P be an idempotent operator on E.
Then P € 9p(E) if and only if P € 9p(E) if and only if, for some n € N, there is an
idempotent operator Q on D®™ with im@Q 2 imP. m

PROPOSITION 4.16. Let % be an ideal in 2.

(G) If # = {r(0)}, then ®(¥) = F(F) and V(%) = F(F).
(i) If @ # {n(0)}, then Yg, (F) C ®(%) and G, ,(F) C V(¥), where p := inf py,
and the Banach space E, , is defined by (4.4).

In particular, the mappings ® and VU are not surjective.

Proof. Clause (i) follows from Lemma 4.4(ii) and the fact that 7= !({n(0)}) = Pga(N).
To prove clause (ii), note that % # {n())} means that we can take s € 7~ 1(%) \ Pgn(N).
Then we have

(4.5) P € &%) CU(¥).

By Lemma 4.14, the Banach space F'(s) contains a complemented subspace isomorphic
to E, 4. Since im Ps = F(s), there are operators R: E, , — F and T: F — E, , such
that I, . = TP,R. Now the inclusions ¥, . (F) C ®(%) and ¥, ,(F) C ¥(¥) follow
from (4.5) and the fact that (%) and ¥ (%) are operator ideals.

Assume towards a contradiction that P; € ?EM (F). Then, by Lemma 4.15, we can
take n € N and an idempotent operator () on Eﬁ?]; with im () = im P;. Casazza, Kottman,
and Lin have shown that E,, , = ES2 (see [7, Corollary 7(i)]). Hence, using the notation =
introduced in the proof of Proposition 4.8, we have

FrE, % E;%Q") Z (im Q)®2 = F(S)G)Q’

contradicting Theorem 4.7. When combined with (4.5), this shows that the inclusions
Yy, (F)C (%) and G, ,(F) C ¥(¥) are strict. The final clause now follows from the
facts that .7 (F) C 9, (F') and .7 (F) C 9 g, ,(F) because F' contains a complemented
subspace isomorphic to £, ; (¢f. Lemma 4.14). m

Clearly, E, , contains a complemented subspace isomorphic to ¢;, and so we have
4, (F) € 9, ,(F). We shall next determine when this inclusion is strict. Certainly, a
necessary condition is that E,, 2 ¢,. It turns out that this condition is also sufficient
(see Corollary 4.18, below).

We note that F,., = /, for each r > 1 and that Ey, = /; whenever s > 1 (e.g.,
see [30, p. 73]). Our next result establishes that E, ; 2 ¢, in all other cases of interest to
us (that is, whenever r > max{2, s}). This is surely well-known to specialists in Banach
space theory, but for the convenience of other readers, we include a proof. It relies on the
notion of cotype. We refer to [13, Chapter 11] for an introduction to this subject.
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LEMMA 4.17. Let r and s be real numbers with r > max{2, s} and s > 1. Then the Ba-
nach space E, s defined by (4.4) has cotype at least r. In particular, E, s is not isomorphic
to {.

Proof. Assume towards a contradiction that E, ; has cotype ¢, where 2 < ¢ < r. Then
there is a constant ¢ > 0 such that, for each k € Nand z;,...,z, € E, ,

(4.6) (Z”%” </ HZTJ x]H du) ,

where r; denotes the jth Rademacher function for each j € N. Take £ € N, and let
Ji: é’“ — E, s denote the canonical kt® coordinate embedding. Then

k 1k 2 1/2
(Z 175 (e)l ) KVt and (/O Hzrj(u)Jk(ej)H du) _
= j=1

so that (4.6) implies that
c> /YT S o as k— 00,

a contradiction.
The final clause is now immediate from the fact that ¢; has cotype max{2,s}. m

COROLLARY 4.18. Set p := inf pr > max{2, q}. The inclusion 9, (F') C Yg, ,(F) is strict
if and only if the inclusion ?gq (F) C ?Em (F) s strict if and only if p > 2.

Proof. By contraposition, we must prove that
%, (F)=%g, (F) < 9,,(F)=%g, (F) < p=2.

The first implication ‘=’ is clear.

For the second implication ‘=, suppose that ?gq (F) = ?EM (F). Take an idempotent
operator P on F with im P = E, ; (cf. Lemma 4.14). Then P € 9, (F) C 9, (F) by
the assumption, and so Lemma 4.15 implies that, for some n € N, there is an idempotent
operator @ on (™ with im Q = im P. Since (J™ = (,, Petczynski’s theorem [30, Theo-
rem 2.a.3] shows that either im () is finite-dimensional or im @ = ¢,, and so the same is
true for im P. By Lemma 4.17, this implies that p = 2.

Finally, if p = 2, then {, = E, , (see above), and so obviously ¢ (F) = %g, ,(F) in
this case. m

REMARK 4.19. All the closed ideals in %(F) that we have found are of the form & g (F')
for some complemented subspace E of F. Further, all the complemented subspaces E
of F' that we have used are of the form

(4.7 E=E@®Ee - ®E &),

where Ey, B, ..., Ej, ... are uniformly complemented subspaces of (!, (72, ... 0k, ...,
respectively. We have no particular reason to believe that all closed ideals in A(F)
have the special form mentioned above, nor that every complemented subspace of F' is

isomorphic to one of the form (4.7).

Finally, let us make some comments about maximal ideals in Z(F).
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Let X be a set. An ultrafilter % on X is fized if % = {u € P(X) | © € u} for
some =z € X, and free otherwise. It is a standard fact that an ultrafilter is fixed if
and only if it contains a finite set. There is a bijective correspondence between the
set of ultrafilters on X and the set of maximal ideals in the Boolean algebra P(X).
Specifically, an ultrafilter % on X corresponds to the maximal ideal {X \u | u € }
in P(X), and wvice versa. It follows from these facts that each maximal ideal in the quo-
tient P(X)/Pgn(X) has the form {7 (X \u) | u € Z} for some free ultrafilter %7 on X,
where m: P(X) — P(X)/Pgan(X) is the quotient homomorphism.

In particular, this discussion applies to X = N. When combined with Theorem 4.12,
it leads to the following question.

QUESTION 4.20. Let % be a free ultrafilter on N. Is the ideal .#({N\u | u € Z}) a
maximal ideal in B(F)?
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