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Abstract. In this survey, we summarise some of the recent progress on the structure of spectral
isometries between C*-algebras.

A fundamental question in physics asks to what extent the algebraic model one chooses
for a given physical system is predetermined by the geometric data obtained from the
system. In a quantum mechanical system the data are the measurements, that is, the
spectral values of the observables, which are represented by self-adjoint operators on
some Hilbert space. Following the approach by Jordan, von Neumann and Wigner [7] the
mathematical model is the one of a Jordan algebra. Therefore the question reads in this
case: If all spectral values of the observables in a quantum mechanical system are known,
will the algebraic model be uniquely determined up to Jordan isomorphism?

In [9], Kaplansky phrased this question mathematically rigorously in the following
way: Suppose that T: A — B is a linear surjection between semisimple unital complex
Banach algebras A and B. Suppose that T1 = 1 and that, for every x € A, Tx is
inwvertible if and only if x is invertible. Is T necessarily a Jordan isomorphism? For a nice
exposition on the history and the plentiful results on Kaplansky’s question, we refer the
reader to Aupetit’s survey in [3]. Among the many contributions is the Gleason-Kahane—
Zelazko theorem stating that every unital invertibility-preserving linear mapping into a
commutative semisimple Banach algebra must be multiplicative; see [20].

For an element x in a unital Banach algebra A, let o(x) denote its spectrum. We call a
linear mapping T: A — B spectrum-preserving if o(Tx) = o(x) for all z € A. It is easy to
verify that, for surjections between semisimple algebras, this assumption is equivalent to
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T1 =1 (T is unital) and Tz invertible if and only if x invertible. Therefore the following
result answers Kaplansky’s question positively in the context of von Neumann algebras.

THEOREM 1 [4]. Let T be a surjective spectrum-preserving linear mapping between the
von Neumann algebras A and B. Then T is a Jordan isomorphism.

Since von Neumann algebras are, to a large extent, the algebras of operators occurring
in the algebraic formalism of quantum mechanics, Aupetit’s result provides indeed an
elegant and satisfactory answer to the original question. Despite this fact, it has its
drawbacks. The main one probably is that one needs to know all measurements of all
observables. This is in general a difficult task. It is therefore close at hand to try to
weaken the assumption to preservation of only part of the spectrum or possibly only one
spectral value. We shall here take the view that the spectral radius (i.e., in a sense the
“largest eigenvalue”) should be sufficient to give the same result. In this article, we will
report on some recent progress made in this direction.

For an element = in a Banach algebra, let

r(z) = sup{]A|| A € o ()} = lim_||a"[|'/"

denote the spectral radius of x. We say that T: A — B is spectrally bounded if it is linear
and there exists a constant M > 0 such that, for all © € A, r(Tz) < M r(x). We say that
T is a spectral isometry if r(Txz) = r(x) for all z € A.

Every bounded linear operator from a commutative C* algebra is spectrally bounded;
thus it is impossible to hope for a description of spectrally bounded operators on arbi-
trary C*-algebras. The situation, however, changes once we impose suitable infiniteness
conditions on the domain; see [11] and [13]. In the following, we shall focus our attention
on spectral isometries. Several of their basic properties are compiled in [12, Section 4];
we shall use them in the sequel without further reference.

Suppose that T: A — B is a spectral isometry from the C*algebra A into the com-
mutative C*algebra B. By [10, Lemma 2.1], T(zy) = T(yz) for all z,y € A and, since
T is injective, we conclude that A is commutative as well. The Banach-Stone theorem
thus yields the following version of the Gleason-Kahane—Zelazko theorem for spectral
isometries.

PROPOSITION 2. Ewvery unital spectral isometry from a unital C*-algebra onto a commu-
tative unital C*-algebra is multiplicative.

Let us now change the assumption on the codomain. Suppose that B is finite dimen-
sional. Then A must be finite dimensional as well; hence both are finite direct sums of
full matrix algebras. Supposing that 7" is onto, we derive the following description.

PROPOSITION 3. Every unital spectral isometry from a unital C*-algebra onto a finite
dimensional C*-algebra is a Jordan isomorphism.

This is a consequence of [14, Corollary 5], which in turn rests on the earlier result for
A = B = M,(C) obtained in [2, Proposition 2] and the following fundamental compati-
bility of spectral isometries with central decompositions.
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PROPOSITION 4 [14, Proposition 2]. Let T: A — B be a unital surjective spectral isome-
try, e € A a central projection, and put f = Te. Then f is a central projection in B and
the restriction T, of T to eA is a unital spectral isometry onto fB.

These observations together with Theorem 1 made us surmise the following in [12].

CONJECTURE. Every unital surjective spectral isometry between unital C*-algebras is a
Jordan isomorphism.

Note that a positive answer to this conjecture would give a far-reaching generalisa-
tion of Aupetit’s theorem. It is well known that a Jordan isomorphism is unital and
invertibility-preserving; hence it preserves spectra and a fortiori is a spectral isometry.
We are therefore seeking a spectral radius characterisation of Jordan isomorphisms. This
can also be seen as a non-selfadjoint analogue of Kadison’s famous non-commutative ex-
tension of the Banach—Stone theorem: every unital surjective isometry between unital
C*-algebras is a Jordan *-isomorphism.

However, at this moment, the tools available do not seem to take us much beyond the
setting of von Neumann algebras. In this framework, we have the following result.

THEOREM 5. FEwvery unital spectral isometry from a von Neumann algebra onto a von
Neumann algebra without direct summand of type 11y is a Jordan isomorphism.

By symmetry, the hypothesis on the codomain could be put on the domain instead.
The remainder of this article will be devoted to describing the essential ideas that go into
the proof of Theorem 5.

Proof of Theorem 5. Let T: A — B be such a spectral isometry. We shall use the de-
composition of von Neumann algebras into various types according to Murray and von
Neumann and refer the reader to [22] for details. We begin with decomposing A into its
finite and properly infinite part, A = Ag, ® As- Let z be the maximal finite central
projection in A so that Ag, = zA. Since T restricts to a *-isomorphism between the
centres of A and B ([12, Corollary 4.4]), z’ = T’z is the maximal finite central projection
in B and, by Proposition 4 above, T.: Ag, — z'B = By, is a unital surjective spectral
isometry. Likewise, 77 _. is a unital spectral isometry from the properly infinite von Neu-
mann algebra A,, onto B.,. Clearly, T is a Jordan homomorphism if and only if both 7,
and 7T;_, are Jordan homomorphisms.

The main result in [13] states that every unital surjective spectrally bounded operator
S from a properly infinite von Neumann algebra is a Jordan homomorphism. Its proof
uses the fundamental fact that every surjective spectrally bounded operator is bounded,
as observed by Aupetit in [1, Theorem 5.5.2], and it is thus sufficient to show that
Se is idempotent for every projection e in the domain ([13, Lemma 2.1]). The crucial
property, however, is that Sz is nilpotent of order n for every z with =™ = 0 ([13,
Lemma 3.1]), which rests on a spectral-radius characterisation of nilpotent elements due
to Ransford and White [18]. This enables us to apply the result by Pearcy and Topping [16]
that every properly infinite von Neumann algebra is linearly generated by elements of
square zero. For more details, see [13, Theorem 3.6]. As a result, S = T_, is a Jordan
homomorphism.



268 M. MATHIEU

In order to analyse T, we further decompose Ag, into subalgebras of type I and
type II: Ag, = A; ® As, where A; is a finite type I von Neumann algebra and A, is
of type II;. Once again, there is a central projection z; € A such that A; = 214 and
As = (z — z1)A. As T, respects this central decomposition, and 7,_,, maps As onto a
direct summand of B of type II;, our hypothesis allows us to assume that 7, acts on a
finite type I algebra. The claim is thus accomplished by [14, Theorem 11], but we will
add a few comments on its proof here.

Every finite type I von Neumann algebra is a direct product of n-homogeneous von
Neumann algebras each of which is of the form C(X, M,,(C)) for some hyperstonean
space X. We can therefore focus on von Neumann algebras of the latter kind, i.e. assume
that A = C(X, M, (C)). Since Z(A) = C(X), every Glimm ideal I of A is of the form

I={feC(X,M,(C))| f(t) =0 for some ¢t € X}.

One of the nice properties of T' is that is respects Glimm ideals, that is, J = T'I is a Glimm
ideal in B as well ([14, Proposition 10]). By means of this, we obtain an induced operator
T:A = A/I — B = B/J. The spectral radius formula in quotient C*-algebras (see [17,
Theorem 2] or [15, Corollary on p. 274]) enables us to deduce that 7" is a unital surjective
spectral isometry ([14, Proposition 9]). By the above, A is isomorphic to M, (C) so B
is finite dimensional as well. Since B is primitive by Halpern’s result ([6, Theorem 4.7]),
it follows that B is also isomorphic to M,,(C), so that we are back to the case of n x n
matrices, which was already treated (compare Proposition 3). Recall that the Glimm
ideals separate the points of A; this entails that T is a Jordan isomorphism under the
assumption that A is a finite type I von Neumann algebra.

Consequently, 7, is a Jordan isomorphism too, which completes the proof. =

REMARKS. 1. Some of the arguments in the proof of Theorem 5 extend to more general
C*algebras. For instance, the application of the spectral theorem in the first paragraph
also works in every C*algebra of real rank zero. Properly infinite von Neumann algebras
can be replaced by purely infinite simple unital C*-algebras, as observed in [11]. Thus
the argument using Glimm ideals also works in the case A = C(X,C), where X is totally
disconnected compact and C' a purely infinite simple unital C*-algebra. However, this
does not seem to lead to a strategy to tackle the situation of general C*algebras.

2. The case of infinite type I factors had been treated earlier by Bresar and Semrl [5];
see also [19].
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