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Abstract. Suppose that A and B are unital Banach algebras with units 1A and 1B , respectively,

M is a unital Banach A,B-module, T = [A M
0 B ] is the triangular Banach algebra, X is a unital

T -bimodule, XAA = 1AX1A, XBB = 1BX1B , XAB = 1AX1B and XBA = 1BX1A. Applying

two nice long exact sequences related to A, B, T , X, XAA, XBB , XAB and XBA we establish

some results on (co)homology of triangular Banach algebras.

1. Introduction. Topological homology arose from the problems concerning extensions

by H. Kamowitz who introduced the Banach version of Hochschild cohomology groups

in 1962 [11], derivations by R. V. Kadison and J. R. Ringrose [9, 10] and amenability by

B. E. Johnson [8] and has been extensively developed by A. Ya. Helemskii and his school.

In addition, this area includes a lot of problems concerning automorphisms, fixed point

theorems, perturbations, invariant means, topology of spectrum, . . . [6].

This article deals with the cohomology and homology of triangular Banach algebras,

i.e. algebras of the form T = [A M
0 B ] in which A and B are unital Banach algebras and M

is a unital Banach A,B-module. These algebras were introduced by Forrest and Marcoux

[1], motivated by work of Gilfeather and Smith in [4]. Forrest and Marcoux also studied

and directly computed some cohomology groups of triangular Banach algebras (see [2]

and [3]). In this paper, after some preliminaries, we present two long exact sequences and

apply them to give some significant isomorphisms and vanishing theorems.

2. Preliminaries. We begin with some observations concerning cohomology and ho-

mology of Banach algebras. Some sources of references are [6] and [7].
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Let Lin denote the category of linear spaces and linear operators. A sequence · · · ←
Xn

dn←− Xn+1 ← · · · , X = {X, d} (resp. · · · → Xn δn−→ Xn+1 → · · · , X = {X, δ})
in a subcategory of Lin is said to be a (chain) complex (resp. (cochain) complex) if

dn−1 ◦ dn = 0 (resp. δn ◦ δn−1 = 0).

Suppose that A is a Banach algebra and X is a Banach A-bimodule.

For n = 0, 1, 2, . . . , let Cn(A,X) be the Banach space of all bounded n-linear mappings

from A× · · · ×A into X together with multilinear operator norm

‖f‖ = sup{‖f(a1, . . . , an)‖; ai ∈ A, ‖ai‖ ≤ 1, 1 ≤ i ≤ n},
and C0(A,X) = X. The elements of Cn(A,X) are called n-dimensional cochains. Con-

sider the sequence

0→ C0(A,X)
δ0

−→ C1(A,X)
δ1

−→ · · · (C̃(A,X)),

where δ0x(a) = ax− xa and for n = 0, 1, 2, . . .

δnf(a1, . . . , an+1) = a1f(a2, . . . , an+1)

+
n∑

k=1

(−1)kf(a1, . . . , ak−1, akak+1, . . . , an+1)

+(−1)n+1f(a1, . . . , an)an+1

where x ∈ X, a, a1, . . . , an+1 ∈ A, f ∈ Cn(A,X).

It is straightforward to verify that the above sequence is a complex. C̃(A,X) is called

the standard cohomology complex or Hochschild-Kamowitz complex for A and X. The

nth cohomology group of C̃(A,X) is said to be the n-dimensional (ordinary or Hochschild)

cohomology group of A with coefficients in X and denoted by Hn(A,X). The spaces

Kerδn and Imδn−1 are denoted by Zn(A,X) and Bn(A,X), and their elements are called

n-dimensional cocycles and n-dimensional coboundaries, respectively. Hence Hn(A,X) =

Zn(A,X)/Bn(A,X). Note that Hn(A,X), generally speaking, is a complete seminormed

space.

Assume that C0(A,X) = X and for n = 1, 2, . . .

Cn(A,X) = A⊗̂ · · · ⊗̂A︸ ︷︷ ︸
n

⊗̂X

in which ⊗̂ denotes the projective tensor product of Banach spaces. The elements of

Cn(A,X) are called n-dimensional chains. Consider the complex

0← C0(A,X)
d0←− C1(A,X)

d1←− · · · (Ĉ(A,X)),

where

dn(a1 ⊗ . . .⊗ an+1 ⊗ x) = a2 ⊗ . . .⊗ an+1 ⊗ a1x

+
n∑

k=1

(−1)ka1 ⊗ . . .⊗ akak+1 ⊗ . . .⊗ an+1 ⊗ x

+(−1)n+1a1 ⊗ . . .⊗ an ⊗ xan+1.

The n-th homology group of Ĉ(A,X) is called the (ordinary) homology group of A

with coefficients in X. It is denoted by Hn(A,X) which is a complete seminormed space.
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The dual X∗ of the Banach A-bimodule X is again a Banach A-bimodule with respect

to the following actions:

(af)(x) = f(xa), (fa)(x) = f(ax); f ∈ X∗, a ∈ A, x ∈ X,
In particular, A∗ is a Banach bimodule over A.

A complex X = {X, d} in a category of Banach modules is called admissible if it splits

as a complex of Banach spaces and continuous linear operators, i.e. the kernels of all its

morphisms are topologically complemented.

An additive functor F is said to be exact if for every admissible complex X = {X, d}
the complex F (X ) = {F (X), F (d)} is exact in the category Lin. Notice that F is a

functor.

A unital left Banach module P over a unital Banach algebra A is said to be projective

if the functor Ah(P, ?) is exact. Recall that for left Banach A-modules X and Y, Ah(?, ?)

takes left A-modules X and Y to Ah(X,Y ) = {f : X → Y ; f is a bounded left A-module

map}. Indeed Ah(?, ?) is a bifunctor contravariant in the first variable and covariant in

the second.

A left Banach A-module (resp. right Banach A-module, Banach A,B-bimodule) X is

called projective if X as a left Banach unital A+-module (resp. left Banach unital Aop+ -

module, left Banach unital A+⊗̂Bop+ -module) is projective, where A+ = A ⊕C denotes

the unitization of the Banach algebra A.Aop, the so-called opposite to A, is the space A

equipped with the multiplication a ◦ b = ba.

A complex 0 ← X0
d0← X1 ← · · · (X ) is called a resolution of the A-module X if the

complex 0 ← X
ε← X0

d0← X1 ← · · · is admissible. By a projective resolution we mean

one in which the Xi’s are projective.

Every left A-module X admits sufficiently many projective resolutions, especially it

admits the normalized bar-resolution B(X) as follows:

Consider free modules Bn(X) = A+⊗̂(A⊗̂ · · · ⊗̂A︸ ︷︷ ︸
n

⊗̂X) and B0(X) = A+⊗̂X, and

operators π : A+⊗̂X → X and dn : Bn+1(X)→ Bn(X), well-defined by

π(a⊗ x) = ax,

dn(a⊗ a1 ⊗ . . .⊗ an+1 ⊗ x) = aa1 ⊗ a2 ⊗ . . .⊗ an+1 ⊗ x

+
n∑

k=1

(−1)ka⊗ a1 ⊗ . . .⊗ akak+1 ⊗ . . .⊗ an+1 ⊗ x

+(−1)n+1a⊗ a1 ⊗ . . .⊗ an ⊗ an+1x.

Then the sequence 0← X
π← B0(X)

d0← B1(X)
d1← · · · is a projective resolution of X. We

denote the complex 0← B0(X)
d0← B1(X)

d1← · · · by B(X). In fact B induces a functor.

Let F be an additive functor. Then the functor Fn = Hn ◦ F ◦ B is called the n-

th projective derived functor of F. Fn is independent of the choice of resulotion. The

projective derived cofunctors could be defined in a similar way.

For a left Banach A-module Y , let ExtnA(?, Y ) denote the n-th projective derived

cofunctor of Ah(?, Y ). Given a right Banach A-module X, denote the n-th projective
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derived functor of X
∧
⊗A? by TorAn (X, ?). Recall that for a right Banach A-module X and

a left Banach A-module Y the projective tensor product of modules X and Y is defined

to be the quotient space X⊗̂AY = (X⊗̂Y )/L where L denotes the closed linear span of

all elements of the form xa⊗y−x⊗ay (x ∈ X, a ∈ A, y ∈ Y ). In fact ?⊗̂A? is a bifunctor

covariant in both variables.

3. Main results. Suppose that A and B are unital Banach algebras with units 1A and

1B , and Banach space M is a unital Banach A,B-module. Then

T =

[
A M

0 B

]
=

{[
a m

0 b

]
; a ∈ A,m ∈M, b ∈ B

}

with the usual 2× 2 matrix addition and formal multiplication equipped with the norm

‖ [ a m0 b ] ‖ = ‖a‖ + ‖m‖ + ‖b‖ is a Banach algebra which is called a triangular Banach

algebra [1].

Let X is a unital Banach T -bimodule, XAA = 1AX1A, XBB = 1BX1B, XAB =

1AX1B and XBA = 1BX1A.

Applying homological techniques we can establish the following long exact sequences

(see [5]):

0
π−1

→ H0(T , X)
φ0

→ H0(A,XAA)⊕H0(B,XBB)
δ0

→ Ext0
A⊗̂Bop(M,XAB)

π0

→ H1(T , X)
φ1

→ H1(A,XAA)⊕H1(B,XBB)
δ1

→ Ext1
A⊗̂Bop(M,XAB)

π1

→ H2(T , X)
φ2

→ H2(A,XAA)⊕H2(B,XBB)
δ2

→ Ext2
A⊗̂Bop(M,XAB),

→ · · · ρ2→ TorA⊗̂B
op

2 (M,XBA)
d1→ H2(A,XAA)⊕H2(B,XBB)

ψ2→ H2(T , X)

ρ1→ TorA⊗̂B
op

1 (M,XBA)
d1→ H1(A,XAA)⊕H1(B,XBB)

ψ1→ H1(T , X)

ρ0→ TorA⊗̂B
op

0 (M,XBA)
d0→ H0(A,XAA)⊕H0(B,XBB)

ψ0→ H0(T , X)
ρ−1→ 0,

Using these nice sequences we shall obtain some significant results:

Theorem 1 ([12, Proposition 2.11]). Let XAB = 0 and T = [A M
0 B ]. Then Hn(T , X) '

Hn(A,XAA)⊕Hn(B,XBB) for all n ≥ 0.

Proof. If XAB = 0, then Extn−1
A⊗̂Bop(M,XAB) = Extn

A⊗̂Bop(M,XAB) = 0.

Hence 0
πn−1

→ Hn(T , X)
φn→ Hn(A,XAA)⊕Hn(B,XBB)

δn→ 0.

Corollary 1 ([2, Corollary 3.5]). T = [ A M
0 B ] is weakly amenable iff so are A and B.

Proof. X = T ∗ is a Banach T -bimodule for which clearly XAA = A∗, XBB = B∗, XAB =

0 and XBA = M∗. Then the previous theorem, with n = 1, implies that

H1(T , T ∗) = H1(A,A∗)⊕H1(B,B∗).

Hence T is weakly amenable iff so are A and B.

Theorem 2. Let XBA=0 and T =[A M
0 B ]. Then Hn(T , X)'Hn(A,XAA)⊕Hn(B,XBB)

for all n ≥ 0.
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Proof. If XBA = 0, then TorA⊗̂B
op

n−1 (M,XAB) = TorA⊗̂B
op

n (M,XAB) = 0. Hence 0
dn→

Hn(A,XAA)⊕Hn(B,XBB)
ψn→ Hn(T , X)

ρn−1→ 0.

Corollary 2. Hn(T , T ) ' Hn(A,A)⊕Hn(B,B) if T = [A M
0 B ].

Proof. For X = T we have XAA = A,XBB = B,XAB = M and XBA = 0.

Corollary 3. If T = [A M
0 B ], then Hn(T ,M) = 0. In particular, with Tm =

[
A Tm−1

0 B

]

and T0 = T , we conclude that Hn(T , Tm) = 0.

Proof. Note that XAA = A,XBB = B,XAB = M and XBA = 0, if X = M .

Theorem 3. Denote by τ(D) the set of all bounded traces over the Banach algebra D,

i.e. τ(D) = {f ∈ D∗; f(d1d2) = f(d2d1), for all d1, d2 ∈ D}. Then τ(T ) ' τ(A)⊕ τ(B)

if T = [A M
0 B ].

Proof.
0→ H0(T , T ∗) φ0

→ H0(A,A∗)⊕H0(B,B∗)
δ0

→
Ext0

A⊗̂Bop(M, T ∗AB) = 0, since T ∗AB = 0. Note that then H0(D,D∗) = τ(D).

Remark. Thanks to Niels Jakob Laustsen for his comment on the fact that there is a

direct proof for Theorem 3.6:

The equality [
0 m

0 0

]
=

[
1 0

0 0

] [
0 m

0 0

]
−
[

0 m

0 0

] [
1 0

0 0

]

implies that f([ 0 m
0 0 ]) = 0 for every f ∈ τ(T ). Then fA(a) = f([ a 0

0 0 ]) and fB(b) = f([ 0 0
0 b ])

give two bounded traces over A and B respectively. Conversely, if we have two bounded

traces f1 and f2 on A and B, resp., then f([ a m0 b ] = f1(a) + f2(b) defines a bounded trace

over T .

Theorem 4 ([3, Corollary 4.2]). Let A be a unital Banach algebra with Hn(A,A) = 0

for all n > 1, and M be a left Banach A-module, then Hn(T , T ) ' Hn−1(A,B(M)) in

which T = [A M
0 C ].

Proof. Put X = T . By ExtnA(X,Y ) ' Hn(A,B(X,Y )) and Hn(C,C) = 0, the exact

sequence

· · · φ
n−1

→ Hn−1(A,A)⊕Hn−1(C,C)
δn−1

→ Extn−1
A⊗Cop(M,M)

πn−1

→ Hn(T , T )
φn→ Hn(A,A)⊕Hn(C,C)

δn→ · · ·
gives rise to

· · · → 0→ Hn−1(A,M)→ Hn(T , T )→ 0→ · · · .
Hence Hn(T , T ) ' Hn−1(A,B(M)).

Example. Suppose that A is a hyperfinite von Neumann algebra acting on a Hilbert

space H. M = H is a left A-module via a.ξ = a(ξ), a ∈ A, ξ ∈ H. It follows from [13,

Corollary 3.4.6] Hn(A,A) = 0 for all n. So Hn([A H
0 C ] , [A H

0 C ]) = Hn−1(A,B(H)). In

particular,

H2

([
A H

0 C

]
,

[
A H

0 C

])
= H1(A,B(H)) = 0

by [13, Theorem 2.4.3]. (See [3, Example 4.2].)
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