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Abstract. For an unbounded operator S the question whether its subnormality can be built up
from that of every S, the restriction of S to a cyclic space generated by f in the domain of S,
is analyzed. Though the question at large has been left open some partial results are presented
and a possible way to prove it is suggested as well.

1. Unbounded subnormal operators constitute an important class in operator theory
mostly because of their presence in quantum mechanics, see [6, Ch. III, par. 10] and [19].
Though a lot about their theory is already known (a patient reader is asked to wait until
the monograph [15] will appear) there are still some basic questions unanswered; one of
them is scrutinized here.

A densely defined operator S in a complex Hilbert space H is said to be subnormal
if there is another Hilbert space K containing isometrically H and a normal operator N
in K such that! D(S) C D(N) and Sf = Nf for f € D(S); recall that a densely defined
operator N is said to be normal if D(N) = D(N*) and |[Nf|| = ||[N*f|| for f € D(N). If
D(S) is invariant for S, that is, if

SD(S) C D(S)
then for any f € D(S) the sets
(1) Dfd:flin{S’"f; n=0,1,...}, Hfdzfclon
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! With D(A) standing for the domain of A.
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are properly defined 2. It is clear that if S is subnormal in ‘H then the restriction S = 1D,
of S to Dy is a subnormal operator in H for any f € D(S). The question whether the
converse holds, that is,

() if subnormality of any Sy implies that of S,

is what we intend to discuss in this paper. This kind of question is inherent in operator
theory and its importance in this case is in recovering subnormality of an operator from
that of any of its cyclic components.

2. Besides spectral measures we are going to deal with semispectral measures considered
on B(C) = the o-algebra of Borel subsets of C, which are nothing other than normalized
positive operator valued measures according to another terminology. Thus, denoting by
B, (H) the set of all non-negative members of B(H) = the algebra of all bounded
operators on H, we say that F' : B(C) — B, (H) is a semispectral measure if o +—
(F(o)f, f) is o-additive for every f € H and it is normalized by F/(C) = I.

Let us begin by recalling

THEOREM 1. An operator S is subnormal if and only if there is a semispectral measure
F on B(C) such that

@) (Sf.4) = /C HF(d2)f.g), |SFI? = /C P(F(d2)f. ), feD(S), geM.

Theorem 1 was proved® in [4]; it appears in [2] with an extra condition which is
needless.

Denote by M, (C) the set of all positive * Borel measures on C. We are going to make
use of the following

PROPOSITION 2. Let D be a dense subspace of H. Suppose {1if(0)}fep, py € M4 (C),
f €D. Then F defined by

3) (F(o)f.f) = ps(o), 0 € B(C), f €D
is a semispectral measure if and only if for all f,g € D and o € B(C) the following
conditions are satisfied:

(4) tiag(0) = [APug(o) for X € C,
(5) fifyg(0) + ppg(0) = 2(us(0) + pg(0)),
(6) (X)) = | £I1%.

If one defines
nro=(F()f9),  f.9€H,

or, what is the same, if one applies the definition (8) below, then

(7) lrgll < If Mgl fr9 €D.

2lin’ denotes linear span while ’clo’ denotes closure; this is for sets exclusively, for operators
we use the common ’bar’ notation.

% The bounded version of this is in [3].

4 Call a measure positive if it takes nonnegative values.
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We refer to {us}rep satisfying (4), (5) and (6) as a family of elementary spectral
measures.

Proof. If F is a semispectral measure then p s defined via (3) satisfies (4), (5) and (6).

On the other hand, (4), (5) and (6) imply that the mapping (f, g) — ps,q, where ¢ g,
f,g9 € D, can be defined by the polarization formula

1 . .

(8)  119(0) = {l1s19(0) = pr—9(0) +ittg4ig(0) = ipts—ig(0)l,  f,g €D, 0 € B(C),
is a semi-inner product (this comes from a version of the Jordan-von Neumann theorem
as stated in [17]). Due to (6), this immediately yields operators F'(¢) from the measures
Kr,g in a standard way so that ur, = (F(o)f, f). The fact that the resulting mapping
f+— F(o) is a semispectral measure provided (6) holds is straightforward. m

‘We now rephrase Theorem 1 in terms of elementary spectral measures.

COROLLARY 3. If D is a dense linear subspace of H and {us}sep is a family of elemen-
tary spectral measures on C then

(9) (S, f) = [Czduf, feD

defines a closable operator with® D(S) C {f € H; [ |2|*1s(d2z) < oo}. The operator S
is subnormal if

(10) IS0 = [ |* ;. se.

Conversely, if S is subnormal then there is a family {11t} cp of elementary measures
satisfying (9) and (10).
The family {us} rep is related to the semispectral measure F' of S by

(F(o)f f) =nps(o), oe€B(C), feD.
Proof. As {ys}sep is a family of elementary spectral measures it determines a semispec-
tral measure F', say, and in turn an operator S; by

D)) LS € H; /C 2us(d2) < oo}, (S fog) [E HF(d2)f.g). [ED(S)). g€ H.

Using the Najmark dilation E of F' we find a normal operator N in some larger space
K such that (Sif,g9)n = (Nf,g)x for f € D(S1) and g € H. Because N is closed
and D(N) = {f € H; [.|2/*(E(d2)f, f)x < +oo} we find that S; is a closed operator.
Because (Sf, f) = (S1f, f) for f € D(S) we get the required properties of S. (10) implies
ISfll = INf|| for f € D(S), which makes S subnormal. m

Due to the above reciprocity we can assign a family {/if} tcp of elementary spectral
measures to the operator S. More precisely, a family {y¢}scp of elementary spectral
measures, that is, measures satisfying (4), (5) and (6), is a family of elementary spectral
measures of an operator S if, in addition to these, it satisfies (9) and (10) as well.

® Notice that the inclusion may be strict (this comes from an example given in [10]) de-
spite the fact that {f € H; [, [2[*(F(d2)f, ) < oo} = {f € H; . |2I°(E(d2)f, f) < oo} for the
spectral measure F being the Najmark dilation of F.
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3. Suppose for an operator S the set

(11) M(S) Z{{ur}rep(s); (9) and (10) holds}

is not empty. Keeping in mind Theorem 1, Proposition 2 and Corollary 3 it is clear that S
is subnormal if and only if one can choose {115} rep(s) in M(S) to be a family of elementary
spectral measure, or a family satisfying (4), (5) and (6). For bounded operators M(SS) is
a singleton at most.

In the case of unbounded operators the set M(S) may be pretty sizable (cf. [16] for a
concrete example) and a random selection {/if}rep within it may not provide a family
of elementary spectral measures. For this take an operator S (for instance like in [16])
having two different families, say {1;} fep and {1/} rep, of elementary spectral measures
as well as fix f; and g; in D, both different from 0. Then the measures

s mg) S =1
pp =94 5y, + ) i f=g1,
1y otherwise,

satisfy (9) and (10) but their collection does not make up a family of elementary spectral
measures ((5) fails to hold).

The above indicates that subnormality of unbounded operators becomes a kind of
selection problem at least as the elementary spectral measures approach is taken. In this
matter a general result of [17] should be mentioned; its proof relies on the Markoff-
Kakutani fixed point theorem. Here we restate it as

THEOREM 4. S is subnormal if (and only if ) there is {j15} fep(s) € M(S) satisfying (4),
(6) and such that

Witg + f—g — 2y is a positive measure and pr(X) = || f]]

(sP)
for every f,g € D(S).

Notice that, if (SP) happens, each {344 + 57—g — fif} fep(s) must necessarily be in
M(S); for subnormality the point is if one of these measures is equal to {jf} tep(s)-

4. From now onwards we assume that
S has an invariant domain.

The following definition turns out to be suitable for our first result on the way to solve
the problem (é): say a subnormal operator S has the uniqueness property® if the family
of its elementary spectral measures is uniquely determined. This means precisely that the
corresponding semispectral measure is uniquely determined and, consequently, that all
minimal normal extensions of S of spectral type are unitarily equivalent (for the definition
and more details see [13]); it does not mean that there exists a minimal normal extension
of cyclic type which would make all of them, whatever they are, unitarily equivalent (again

6 This has different meaning than the notion of the uniqueness extension property set up
in [18].
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cf. [13] as well as [5] in relation to the complex moment problem 7). Conversely, if all the
normal extensions of cyclic type of a subnormal operator S are unitarily equivalent and
S has an invariant domain then it has the uniqueness property.

If S is subnormal then (9) and (10) can be strengthened to

(12) (Smf,S"f>:/zm2”d,uf, m,n=20,1,2...,
C

for every f € D. A statement converse to that would be weaker than that of Corollary 3.
Anyway, they both establish a link between subnormality and the complex moment prob-
lem, cf. [12, Proposition 3], which is as follows.

THEOREM 5. A cyclic operator® S, with a cyclic vector f € D(S), is subnormal if
and only {(S™f,S"f)}ox n=o i a complex moment bisequence (that is, (12) holds with
some fif).

REMARK 6. Notice that if dim H; is infinite any ¢ in D(Sy) is uniquely represented as
g = p(S)f with some p € C[Z]. If dimH; = n < +oo this is so anyway (with degp < n).
Then one can take {|p|?/1f},—p(s)s as a family of elementary spectral measures of Sy.

An alternative way to state the uniqueness property is to speak of vectors of unique-
ness: f € D(S) is said to be a vector of uniqueness® of S if the complex moment problem
{(S™f, 8™ f)}53 n=o is determinate '°. Thus, trivially, f € D(S) is a vector of uniqueness
of S if and only if Sy has the uniqueness property. In this section we are going to work
a bit towards relating the vectors of uniqueness or the allied uniqueness property to the
problem (é).

It deserves a mention that bounded, analytic and quasianalytic vectors are vectors of
uniqueness, cf. [12]. Among them bounded and analytic vectors make up a linear subspace
of D(S), the other two may not.

Though the uniqueness property may not be hereditary we have the following

PROPOSITION 7. Suppose S is subnormal. If every Sy is subnormal and has the unique-
ness property then S has the uniqueness property too.

Proof. Because every member p; of a family of elementary spectral measures of S co-

incides with the measure ,ugcf ) of the unique family {uéf )}gep ; of elementary spectral

measures of S¢, the conclusion follows. m
As a kind of immediate converse to Proposition 7 we get

PRrROPOSITION 8. If each Sy is subnormal and has the uniqueness property then there is
a unique family of measures {115} rep(s) satisfying (4), (6) as well as (12).

" This would be the same as ultradeterminacy of the corresponding moment problem while
the uniqueness property leads to determinacy, both in the sense of [5].

8 An operator S is cyclic if S = S; for some f € D(S), called a cyclic vector of S.

® This notion was introduced in [9] for symmetric operators and used there and in [8] to
describe their essential selfadjointness.

10 See [5].
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The only condition missing for {jf}sep(s) to be a family of elementary spectral
measures of S is just (5). In the rest of this section we show how to realize it.
First extend the definition (1) as

Dr=lin{S"f; n=0,1,..., f€F}, HrZ=cloDgr, Sr=S|p,

for arbitrary F C D(S). Notice D is always invariant for S.
In the above context our first result within the scheme of (&) follows.

THEOREM 9. Each of the following conditions tmplies that S is subnormal and has the
uniqueness property:

(a) for every f,g € D(S) the operator Sy 4\ has the uniqueness property;

(b) for every f,g € D(S) the bisequence {(S™f,S" f) + (S™g, S™g)}55 n—o is a deter-
minate complex moment bisequence;

(c) each Sy is has the uniqueness property and

(13) Witg + f—g — 205 35 a positive measure for every f,g € D(S).

Proof. Due to Propositions 8 and 7 the only thing to be checked is condition (5). It is
immediate in the case (a).
For (b) write 1!

2((S™f, 8" f) +(S™g,S8"g)) = (S™(f +9),S"(f +9)) + (S"(f — 9),S"(f — 9)),
(S™f,8"f) +(S™g,S"g) = /sz%"(uf + p1g)(dz),

(S™(f+9),5"(f +9) +{5"(f = 9),5"(f —9)) = [sz,z”(uﬂg + pj-g)(d2),

and compare them with uniqueness of the representing measure (determinacy).
As to (c), because the only positive measure satisfying

2™ 1.5y = [ 2 ey + 111y = 205) )
is 2u¢ itself, the conclusion follows. m

It follows from either (b) or (c) that Theorem 9 contains the result of [11] which, in
turn, generalizes that of [7] and [21] to the case of unbounded operators.

5. If we distance our main problem (&) from the uniqueness property the situation alters
seemingly: the results become 'necessary and sufficient’ though still not satisfactory. In
particular, as a byproduct of our main considerations in [14], we get 12

THEOREM 10. S is subnormal if and only if so is Sx for any finite set F C D.

In other words, subnormality of finitely cyclic components of an operator guarantees
its subnormality at large. This gives some support for the affirmative answer to our

' This argument is used in [1, Theorem 1].

!2 Let us mention that Theorem 9 can be deduced from a theorem of Bishop [2] asserting
that subnormal operators are precisely those which are in the strong operator closure of normal
ones (see, [20] for another approach to Bishop’s result from which Theorem 9 follows as well).
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principal question (&). Unfortunately, we cannot achieve it and this is why we have to
declare it as an open question. What we can do instead is to add an extra condition,
an induction argument which allows us to perform induction built upon Theorem 10;
this condition is a necessary one anyhow. Maybe this is a way to prove or disprove the
conjecture.

THEOREM 11. S is subnormal if and only if so is each Sy for f € D(S) and the following
holds:

(IA) for any finite subset {fi,..., fn} of vectors in D(S) the operator Sis, s,.. 1.} 8
subnormal whenever S¢y, . r.1 18 so.

Proof. Because subnormality is hereditary, one of the implications of the theorem be-
comes trivial. For the other show that S# is subnormal for any finite 7 and use Theorem
10. If F is a singleton it is just done by subnormality of any Sy. Then (IA) completes the
proof by induction. =

Undoubtedly, the approach of elementary spectral measures, or equivalently that of
semispectral measures, because of lack of uniqueness, depends on a selection possibility.
Under these circumstances Theorem 4 may provide a tool to implement the induction
argument (IA) of Theorem 11. Anyway the question whether (&) is true remains chal-
lenging.

The author acknowledges his appreciation of Jan Stochel’s kind interest in this paper
resulting in discussions on the matter. He also warmly thanks the referee for catching up
a number of misprints and inaccuracies: unfortunately TEX gnomes took the text over.
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