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Abstract. We have shown in [1] that domains of integral operators are not in general locally
convex. In the case when such a domain is locally convex we show that it is an inductive limit
of L'-spaces with weights.

We begin with some definitions and facts concerning integral operators and their do-
mains. For more details and references on the subject we refer to [1]. In what follows we
only consider real valued functions and do not address the obvious modifications needed
in the complex case.

For finite measure spaces (T, dt), (S,ds) we denote by L°(T) and L°(S) the corre-
sponding spaces of measurable, finite a.e. functions, equipped with complete metric vector
topologies of convergence in measure. These topologies may be defined e.g., by means of
pseudonorms of the form u — [ %I‘u\’ with integration over S or over 7', which we re-
spectively denote by ps and pr. For a measurable function on T x S, k(¢, s), we consider
the integral operator K with kernel k, given by the formula Ku(t) = [k(t,s)u(s)ds.
We view this operator as an (unbounded) linear operator from L°(S) into L°(T). The
operator is defined on the set of all functions u € L°(S) for which |K||u| € L°(T) (i.e.,
S5 [E(t, s)|Ju(s)|ds < oo a.e.) This set is denoted Dg and referred to as the proper do-
main of K (as distinguished from the extended domain which is not considered here).
Dy is a complete, solid metric vector space with the topology defined by the pseudonorm
pr(u) = pr(|K||u|) + ps(u) and K : Di — L°(T) is continuous. We refer to this topol-
ogy as the metric topology of Dy . A sequence {u,} converges to 0 in D if and only
if both u,, and |K]||u,| (and hence Ku,) converge to 0 in measure. It is clear that for
the purpose of study of Dx we may restrict our attention to nonnegative kernels, & > 0,
the restriction made throughout the paper. Since (except for the purely atomic case) the
topology of convergence in measure is not locally convex, there is no a priori reason to
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expect Dy to be in general locally convex. A trivial situation when this is not the case is
when the kernel k vanishes on a set of the form 7' x S’ where S’ is a non-atomic subset
of S of positive measure. In this case Dy contains as a direct summand the space L°(S")
and cannot be locally convex. To avoid this trivial case we assume from now on that for
a.e. s € 5, k(t,s) > 0 on a subset of T" of positive measure. But even then, we constructed
in [1] examples of kernels k£ > 0 a.e. on T' x S with Dg not locally convex.

The simplest case of local convexity is that of a normed space. In this case we have
the following theorem proved in [1].

THEOREM 1. If Dy is a normed space, then it is an L'-space with a weight, i.e., there
isaw € L°S), w >0 a.e. such that D = {u € L°(S); [ |ujwds < oo} = L.

In the remainder of this note we shall use the terms weight and the corresponding
notation L} as they are introduced in Theorem 1. The set of all weights is partially
ordered and directed by the relation w; < w if and only if w; > cw a.e., where ¢ > 0 is
a constant. Note that this order reverses the pointwise relation <. Accordingly we have
the equivalence relation w ~ w; if and only if w < w; and w; < w. We denote by W
the family of all equivalence classes of weights. This set is again partially ordered and
directed in an obvious way. To the partial order of w-s corresponds the partial order by
continuous inclusion of Ll -s: w < wy if and only if L, c. L} .- We find it convenient
to think of L. as a topological space associated with the equivalence class [w], rather
than a normed space associated with a specific weight w. To simplify, we do not include
this convention in our notation, writing L} instead of L[lw]. Observe that the space of all
measurable functions L° can be written as the union of all spaces L., [w] € W. Hence
we can think of L° as the direct (inductive) limit of the topological spaces L., i.e., the
union of L.-s endowed with the strongest (largest) topology making all the inclusions
Ll c ULL continuous (see [2]). We refer to this topology as the D L-topology. Clearly
the DL-topology is stronger (larger) than the original metric topology of convergence
in measure. We could also introduce, using the above representation of L°, the largest
locally solid SDL, largest locally convex C'DL and locally solid and locally convex SCDL
topologies on L°. Tt is easily verified that the SD L-topology coincides with the metric
topology of L°.

As mentioned above, we are interested in describing the domain of K in the case
when it is locally convex. It is perhaps useful to consider some simple examples of locally
convex domains.

ExaMpLE 1. If T is purely atomic, 7' = {t,}, n = 1,2, ... say, then D is the intersection
of the sequence of spaces L' with weights w,,(s) = k(t,, s).

This example suggested a conjecture made in [1] that a locally convex Dy is the
intersection of a sequence of spaces L}U" with appropriately chosen weights w,,.

ExXAMPLE 2. Suppose that S is purely atomic, say S = {s,}, n = 1,2,... and that
k has the property that for a.e. ¢ the set {n;k(t,s,) > 0} is finite. Then Dk can be
identified with the space of all sequences, [°, with the product topology, i.e., the topology
of coordinate-wise convergence.
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ExXAMPLE 3. Suppose that S and T are purely non-atomic and that k(t,s) =
> on1 Yn(t)@n(s) where ¢, ¢, > 0 and that the sum is finite a.e. Then Dr C (L],
with the equality occurring if and only if lim sup{¢; ¢, (t) > 0} is of measure 0.

The last two examples seem to put in doubt the conjecture formulated above.

Instead we are going to prove that a locally convex domain can be represented as
a direct limit of spaces L. with [w] restricted to a directed set of equivalence classes
determined by the operator K which will be defined presently.

We say that the operator K is non-singular if there is u € Dg such that v > 0 a.e. It
is easily seen that if K is non-singular, then so is the transposed operator K* : L°(T') —
L°(S) with the kernel k*(s,t) = k(t,s). To avoid discussion of some trivial cases we
assume that K is non-singular and that K*v > 0 a.e. whenever v > 0 a.e. This amounts
to the assumption that for a.e. s the set {¢; k(t,s) > 0} is of positive measure.

We denote by Wi the set of all equivalence classes of functions of the form w = K*v,
v > 0 a.e., with the equivalence relation w ~ w; defined above, after Theorem 1. We
notice that Wx C W and inherits from W its partial order. To see that Wy is directed
it suffices to notice that for w = K*v and w; = K*v; we have [w] < [@] and [w;] <X [W)]
where W = K*min{v, v} , a definition independent of the choice of the representatives
w and wi. We further observe the following simple facts:

1) Dic = U{LL; [w] € Wic}.

2) For every w € Wk we have continuous inclusion Lllu Ce Dg.

Both facts follow from the observation that [ v(t)K|u|(t)dt = [¢K*v(s)|u(s)|ds.
Every function in L°(T), in particular K|u| for u € D, belongs to L} for some v > 0,
v € Dg+. Then [K*v] = [w] € Wk and u € L}. If u,, — 0 in L. then Ku,, — 0 in L}
where K*v = w and both w,, and K|u,| converge to 0 in measure, hence u,, — 0 in Dg.

The reason for considering the set of equivalence classes Wy rather than the set of all
weights coming into competition is an attempt to keep an order among the corresponding
L'-spaces. Already in the argument in [1] leading to Theorem 1 above, there are infinitely
many equivalent weights defining D which are now organized into Wy consisting of one
element. Notice that conclusion 1) above remains valid with Wy replaced by a larger set
of indices, W} consisting of all equivalence classes [w] € W such that [wi] < [w] < [ws]
with [w1], [wa] € Wk (see example 5 below). Note that Wy is cofinal in Wi,

On the union Dy = J{LL;[w] € Wk} = U{LL;[w] € W}} one can introduce
the direct limit topology, i.e., the strongest (largest) topology making all the inclusions
Ll C Dg continuous. We refer to this topology as DL-topology on D . Similarly as
above, we can introduce on D three weaker (smaller) topologies SDL, CDL and SCDL.
Similarly as in the case of LY, SDL-topology on Dy coincides with its metric topology.
We are now going to show (Theorem 4) that in the case when the metric topology on
D is locally convex, then all five possible topologies on Dy coincide.

These considerations are based on a classical result of Maurey-Nikishin which we state
in the form of the following lemma.

LEMMA. Let C be be a conver set of nonnegative functions which is bounded in L°(T). Then
there ezists a function v € L°(T), v > 0 a.e., such that [ v(t)f(t)dt <1 for all f € C.
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As a corollary we get the following theorem.

THEOREM 2. If the metric topology on Dy is locally convex and if B C Dk is a bounded
set in this topology, then B is contained and bounded in L., for some [w] € Wy.

Proof. Since the metric space Dy is solid and is assumed to be locally convex, the set
|B| = {|u|;u € Dk} is bounded in Dk and so is its convex hulls conv|B|. By continuity
of K the convex set C = K(|B|) is bounded in L°(T). Let v be as in the lemma. Then
for every u € By we have [, v(t) [ k(t,s)u(s)dsdt <1 implying that v € Dk~ and that
with w = K*v, we have u € Ll and |jul|, < 1 for all u € conv|B| and hence for all
uEB. m

We next consider some situations where the conclusion of Theorem 2 is of interest.

Suppose that Dg with its metric topology is a normed (and therefore Banach) space,
as in Theorem 1. Then the unit ball in the norm is bounded in Dg and, by Theorem 2,
is contained in Ll. This together with the reverse inclusion, L. C Dy implies that
Dy = L., the conclusion in Theorem 1.

We now consider convergent sequences in Dy with its metric topology assumed to
be locally convex. If w,, — u in Dk, then the set {u,u1,us,...} is bounded in Dy and
therefore, by Theorem 2, is contained in L. for some w € Wg. We have the following
theorem.

THEOREM 3. If the metric topology on Dy is locally convex and if (uy), u, € Dk is
a sequence convergent in this topology, u, — wu, then {u,ui,us,...} C Ll for some
[w] € Wk and (u,,) contains a subsequence convergent to u in L, with some [@] € W,
perhaps distinct from [w].

Proof. As already indicated, the first part of the statement follows readily from Theorem
2. To prove the second part, we may assume (using the first part) that v = 0. Then
px(un) — 0 and for some subsequence () of (u,) we have > px(4y,) < co. It follows
that the set {>_7° |ty |, [@1], |@1| + |tG2], ...} is bounded in Dy and therefore contained in
some L. Since @, — 0 in measure and |, | < >1° |@y,| for all n, the Lebesgue dominated
convergence theorem implies that @, — 0 in LL. m

The next result is a corollary to Theorem 3.

THEOREM 4. If the metric topology on Dy is locally convez, then it coincides with DL-
topology.

Proof. Since, as already remarked, the metric topology on Dy is weaker than DL-
topology, it suffices to show that every sequence convergent to 0 in the metric converges
to 0 in D L-topology. If this was not so, we could find a sequence u,, — 0 in the metric
pr and a neighborhood of 0 in the DL-topology, say U such that u, ¢ U for all n. By
Theorem 3 (u,,) contains a subsequence @, — 0 in some L., w € W and @, € UN L}
for large n, a contradiction. m

We conclude with two examples and a remark.

ExaMPLE 4. Dg is a Banach space if and only if VW contains its upper bound in the
sense of the <-order.
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Indeed, if Dy is a Banach space, then, by Theorem 1, Dy = L% for some [w] € W.
Then for every [w] € W, LI C L. and [w] is the upper bound of W. The reverse
implication is immediate.

EXAMPLE 5. One could expect the situation as in the previous example to occur in the
N
case when k(t,s) > > 75, ¥ (t)p;(s), ¥, > 0 ace.

In the case of equality, i.e., of a finite-dimensional K, we have WW = [} ¢;] consists
of a single element. In general the set of equivalence classes ¥V has as an upper bound
[>~1;] but it is not at all clear that it has the least upper bound, and even if it does,
whether this bound belongs to W} For instance, if N = 1, we have the situation where
Dg = L}D if [¢] € Wy, otherwise there exists a cofinal sequence in Wi, i.e., Dk is a
strong direct limit of L! spaces with weights (once it is known to be locally convex).

REMARK. The conclusion of Theorem 4 with D L-topology replaced by SD L-topology
or by C D L-topology could be obtained more directly without the use of the theorem of
Murey-Nikishin. This, however, appears to be needed to obtain Theorem 2 and Theorem
3 which seem to be of independent interest.

The author wishes to thank Iwo Labuda for useful comments.
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