TOPOLOGICAL ALGEBRAS, THEIR APPLICATIONS, AND RELATED TOPICS BANACH CENTER PUBLICATIONS, VOLUME 67 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2005

ON A-CONVEX AND lm-CONVEX ALGEBRA STRUCTURES OF A LOCALLY CONVEX SPACE

YANNIS TSERTOS

Department of Mathematics, University of Athens Panepistimiopolis, Athens 15784, Greece E-mail: ytsertos@math.uoa.gr

Abstract. Given a locally convex space (V, Γ) , we find (all) the multiplications π on V (associative or not) such that the algebra $A \equiv (V, \pi, \Gamma)$ becomes (i) A-convex, (ii) lm-convex.

0. Preliminaries. Given any seminorm $p \in sem(V) := \{q : V \to \mathbb{R}_+ \text{ a seminorm}\}$ on a \mathbb{C} -vector space V, we define (see also [6])

(0.1)
$$\Lambda(p,T) := \{ \lambda \ge 0 : p \circ T \le \lambda p \} \subseteq \mathbb{R}_+, \quad T \in L(V) \equiv L(V,V),$$

(0.2)
$$\mathcal{L}_p(V) := \{ T \in L(V) : \Lambda(p, T) \neq \emptyset \} \subseteq L(V),$$

(0.3)
$$\tilde{p}: \mathcal{L}_p(V) \to \mathbb{R}_+ : \tilde{p}(T) := \inf \Lambda(p, T),$$

(0.4)
$$\mathcal{L}_{\tilde{p}}(V) \equiv (\mathcal{L}_{p}(V), \tilde{p}), \quad \tilde{\Gamma} \equiv \{\tilde{p} : p \in \Gamma\}, \quad \emptyset \neq \Gamma \subseteq sem(V),$$

(0.5)
$$\mathcal{L}_{\Gamma}(V) \equiv \bigcap_{p \in \Gamma} \mathcal{L}_{p}(V),$$

(0.6)
$$\mathcal{L}_{\tilde{\Gamma}}(V) \equiv (\mathcal{L}_{\Gamma}(V), \tilde{\Gamma}).$$

Obviously $\mathcal{L}_{\tilde{p}}(V)$ is a seminormed algebra while $\mathcal{L}_{\tilde{\Gamma}}(V)$ is an lm-convex (locally multiplicatively convex) algebra which, in particular, is (i) Hausdorff (ii) σ -complete if (V, Γ) is (see also [2], [7]).

In this context, the algebra $\mathcal{L}_{\tilde{\Gamma}}(V)$, as above, whose elements might also be called " Γ -uniformly bounded" endomorphisms of the locally convex space (V, Γ) , has been studied in [7], [8]. The same algebra has been considered by E. A. Michael [3], the relevant study being "geometrical" (via a local basis), in contradistinction with ours (ibid.) where the treatment is algebraic ("arithmetical", viz. through appropriate "operator seminorms").

A seminorm p of an algebra A is

²⁰⁰⁰ Mathematics Subject Classification: Primary 46H05.

 $Key\ words\ and\ phrases:\ A\mbox{-}convex,\ lm\mbox{-}convex,\ uniformly\ bounded,\ regular\ representations.}$ The paper is in final form and no version of it will be published elsewhere.

392 Y. TSERTOS

- (i) left A-convex iff for each $\omega \in A$ there exists a $\lambda_{\omega} > 0 : p(\omega \theta) \leq \lambda_{\omega} p(\theta)$ for all $\theta \in A$.
- (ii) locally multiplicatively convex (lmc) or algebra-seminorm iff there exists $\lambda > 0$ satisfying $p(\omega\theta) \leq \lambda p(\omega)p(\theta)$, $\omega, \theta \in A$.

(By a seminorm p of a vector space V we mean a $p: V \to \mathbb{R}_+$ such that $p(\omega + \theta) \le p(\omega) + p(\theta), p(\lambda\omega) = |\lambda|p(\omega)$ for all $\lambda \in \mathbb{C}, \omega, \theta \in V$.)

On the other hand, we know that there exists a vector-space isomorphism $\pi \to l$ between the vector spaces $\mathcal{B}(V) \equiv \mathcal{B}(V \times V, V) := \{\pi : V \times V \to V \text{ bilinear}\}$ and L(V, L(V)) given by the relation

$$l(\omega)(\theta) \equiv \pi(\omega, \theta), \ \omega, \theta \in V,$$

or else by

(0.8)
$$l(\omega)(\theta) \equiv \pi(\theta, \omega), \ \omega, \theta \in V.$$

We call $l \in L(V, L(V))$ in (0.7) the left regular representation (lRR) of π while the l in (0.8) the right RR of π (rRR of π). In this last case we put the symbol r instead of l.

1. Main results. In the following V denotes a \mathbb{C} -vector space (we also can then consider V as a space over the real field \mathbb{R}).

Now we obtain the following:

Proposition 1.1. For each seminorm $p \in sem(V)$ a multiplication $\pi \equiv l$ on V makes p:

(a) an A-convex seminorm iff

$$(1.1) l \in L(V, \mathcal{L}_p(V)) \subseteq L(V, L(V)),$$

(b) an algebra-seminorm iff

(1.2)
$$l \in \mathcal{L}_p(V, L(V)) \equiv \mathcal{L}((V, p), \mathcal{L}_{\tilde{p}}(V)).$$

For each family $\emptyset \neq \Gamma \subseteq sem(V)$ of seminorms on V a multiplication $\pi \equiv l$ on V (associative or not) makes Γ :

(c) an A-convex family of seminorms iff

(1.3)
$$l \in L(V, \mathcal{L}_{\Gamma}(V)) = \bigcap_{p \in \Gamma} L(V, \mathcal{L}_{p}(V)),$$

(d) a family of algebra-seminorms iff

(1.4)
$$l \in \mathcal{L}_{\Gamma}(V, L(V)) \equiv \bigcap_{p \in \Gamma} \mathcal{L}_{p}(V, L(V)).$$

Proof. (a) Let p be an A-convex seminorm on $(V, \pi \equiv l)$. Then for arbitrary $\omega \in V$ there exists $\lambda_{\omega} > 0$ such that $p(\omega \theta) \leq \lambda_{\omega} p(\theta)$, $\theta \in V$, $p \circ l(\omega) \leq \lambda_{\omega} p$. Thus, $\lambda_{\omega} \in \Lambda(p, l(\omega)) \neq \emptyset$, $l(\omega) \in \mathcal{L}_p(V)$, (ω arbitrary), $l \in L(V, \mathcal{L}_p(V))$.

Conversely, let $l \in L(V, \mathcal{L}_p(V))$. Then $l(\omega) \in \mathcal{L}_p(V)$, $\omega \in V$ so that $\Lambda(l(\omega), p) \neq \emptyset$. Namely $p(\omega\theta) \equiv p(l(\omega)(\theta)) \leq \lambda p(\theta)$, $\theta \in V$ for all $\lambda \in \Lambda(l(\omega), p) \neq \emptyset$. In other words p becomes A-convex, on $(V, \pi \equiv l)$ ($\omega\theta \equiv \pi(\omega, \theta) \equiv l(\omega)(\theta)$, $\omega, \theta \in V$).

(b) Let now p be an algebra-seminorm on (V, π) . Then $p(\omega \theta) \leq \lambda p(\omega)p(\theta)$, $\omega, \theta \in V$ (for some $\lambda > 0$), so that $p(l(\omega)(\theta)) \leq \lambda p(\omega)p(\theta)$, $\lambda p(\omega) \in \Lambda(l(\omega), p) \neq \emptyset$, $\omega \in V$.

Thus $\tilde{p}(l(\omega)) := \inf \Lambda(p, l(\omega)) \leq \lambda p(\omega), \ \omega \in V$ which means that $l \in \mathcal{L}_p(V, L(V)) \equiv \mathcal{L}((V, p), \mathcal{L}_{\tilde{p}}(V))$. Below $\hat{p}(l)$ stands for the bound of each $l \in \mathcal{L}((V, p), (\mathcal{L}_p(V), \tilde{p}))$.

Conversely, if $l \in \mathcal{L}_p(V, L(V))$ there exists $\lambda > 0$ such that $\tilde{p}(l(\omega)) \leq \lambda p(\omega)$, $\omega \in V$. Thus $\lambda p(\omega) \in \Lambda(p, l(\omega))$, so that $p(\omega\theta) \equiv p((l(\omega)(\theta)) = (p \circ l(\omega))(\theta) \leq \lambda p(\omega)p(\theta)$, $\omega, \theta \in V$.

(c), (d) are easy consequences of (a), (b) respectively.

Remark 1.2. (a) We write AC(V, p) (respectively: $AC(V, \Gamma)$) for the set (space) of all multiplications (associative or not) of V making p (resp. Γ) A-convex. Thus Proposition 1.1 implies:

(1.5)
$$AC(V,p) = L(V, \mathcal{L}_p(V)), \ p \in \Gamma$$

(1.6)
$$AC(V,\Gamma) = L(V,\mathcal{L}_{\Gamma}(V)) = \bigcap_{p \in \Gamma} L(V,\mathcal{L}_{p}(V)), \ \emptyset \neq \Gamma \subseteq semV.$$

Similarly: For the subspaces $lmc(V,p), lmc(V,\Gamma)$ of L(V,L(V)) making p,Γ (respectively) algebra-seminorms we get

(1.7)
$$lmc(V,p) = \mathcal{L}_p(V,L(V)) \subseteq AC(V,p), \ p \in \Gamma$$

$$(1.8) \quad lmc(V,\Gamma) = \mathcal{L}_{\Gamma}(V,L(V)) \equiv \bigcap_{p \in \Gamma} \mathcal{L}_{p}(V,L(V)) \subseteq AC(V,\Gamma), \emptyset \neq \Gamma \subseteq sem(V).$$

(b) Now we remark that $\mathbb{C} \cdot I \subseteq \mathcal{L}_{\Gamma}(V)$ for each family $\emptyset \neq \Gamma \subseteq sem(V)$ so that we get

(1.9)
$$V^{+} \equiv L(V, \mathbb{C}) \cong L(V, \mathbb{C} \cdot I) \subseteq L(V, \mathcal{L}_{\Gamma}(V)) \equiv AC(V, \Gamma).$$

By this last relation we see that:

COROLLARY 1.3. The dimension of the space $AC(V,\Gamma)$ of all multiplications $\pi \equiv l$ of V, making (V,l,Γ) an A-convex algebra, is at least the dim V^+ of the algebraic dual V^+ of V.

(c) For each A-convex seminorm $p \in sem(A)$ of an algebra A, the $lRR\ l$ of A defines a seminorm $\dot{p} \equiv \tilde{p} \circ l \in sem(V)$ which is, in particular, an algebra seminorm if the algebra A is associative. Thus we obtain:

COROLLARY 1.4. For each $l \in L(V, \mathcal{L}_p(V))$ the seminorm $\dot{p} \equiv \tilde{p} \circ l \in sem(V)$ satisfies the relation:

$$(1.10) p(\omega\theta) \le \dot{p}(\omega)p(\theta), \ \omega, \theta \in V.$$

If in particular (V,l) is associative then \dot{p} is an algebra seminorm of $A \equiv (V,l \equiv \pi)$ (which we call the lm-convex seminorm of (V,l) corresponding to p).

- (d) For the space $lmc(V, \Gamma) \equiv \bigcap_{p \in \Gamma} \mathcal{L}_p(V, L(V))$ we see that it is getting smaller while Γ is getting larger (see (1.8)). In other words we observe that:
- (d-1) For $\emptyset \neq \Gamma \subseteq \Delta \subseteq sem(V)$: $\tau_{\Gamma} = \tau_{\Delta}$ (the locally convex topology defined on V by each $\emptyset \neq \Delta \subseteq sem(V)$) we can have $\mathcal{L}_{\Gamma}(V) \supseteq \mathcal{L}_{\Delta}(V) \neq \mathcal{L}_{\Gamma}(V)$ (see also [8]).
- (d-2) If we take the topology τ on V to be the largest one, it is possible to get $\mathcal{L}_{\Gamma}(V, L(V)) = (0)$ (see (1.4)).

Thus arises a question:

394 Y. TSERTOS

QUESTION 1.5. Is it possible to obtain a family $\Delta \subseteq sem(V)$ in the (non-empty!) set:

$$(1.11) sem(\tau) := \{ \Delta \subseteq sem(V) : \tau_{\Delta} = \tau \} \neq \emptyset$$

such that $lmc(V, \Delta) \neq (0)$ while $lmc(V, \Gamma_{\max}(\tau)) = (0)$? (Here $\Gamma_{\max}(\tau) \equiv \bigcup_{\Gamma \in sem(\tau)} \Gamma$).

(e) Let $0 \neq f \in V^+$. By (1.9) we define $l \equiv l_f$ by the relation:

$$(1.12) l \equiv l_f : V \to L(V) : l_f(\omega) \equiv f(\omega) \cdot I, \ f \in V^+.$$

Then we obtain an associative algebra (V, l_f) (in which f is the unique character). Moreover we put:

$$(1.13) q_f: V \to \mathbb{R}_+: q_f(\omega) \equiv |f(\omega)|, \ f \in V^+, \ \omega \in V, \ q_f \in sem(V).$$

Thus, we obtain the following:

COROLLARY 1.6. For each $p \in sem(V)$, $0 \neq f \in V^+$ $(l_f(\omega) \equiv f(\omega)I)$ we obtain:

$$\dot{p} = \dot{q}_f = q_f.$$

Proof.
$$p(\omega\theta) \equiv p(l_f(\omega)(\theta)) = p(f(\omega)\theta) = |f(\omega)|p(\theta) = q_f(\omega)p(\theta)$$
.

(f) By the above we see that several questions arise regarding the use of the algebra $\mathcal{L}_{\bar{p}}(V)$. In the present paper we further give some realizations of $AC(V, \Gamma)$ and $lmc(V, \Gamma)$.

2. Some concrete examples

Proposition 2.1. Let $\varepsilon^{\delta} := \{ \varepsilon_{\kappa}^{\delta} : \kappa \in K \} \subseteq V^+$ be the dual set of an arbitrary base $\varepsilon = \{ \varepsilon_{\kappa} : \kappa \in K \}$ of a \mathbb{C} -vector space V:

(2.1)
$$\varepsilon_{\kappa}^{\delta}(\varepsilon_{\lambda}) := \delta_{\kappa\lambda} \equiv \begin{cases} 1, & \kappa = \lambda, \\ 0, & \kappa \neq \lambda, \kappa, \lambda \in K. \end{cases}$$

Then it is well known that for each $\omega \in V$ there exists a $K_{\omega} \subseteq K$ finite such that $\omega = \sum_{\kappa \in K_{\omega}} \varepsilon_{\kappa}^{\delta}(\omega) \varepsilon_{\kappa}$. Put:

(2.2)
$$\omega = \sum_{\kappa \in K_{\omega}} \varepsilon_{\kappa}^{\delta}(\omega) \varepsilon_{\kappa} \equiv \sum_{\kappa \in K} \varepsilon_{\kappa}^{\delta}(\omega) \varepsilon_{\kappa}, \ \omega \in V.$$

Then for arbitrary $\emptyset \neq \Gamma \subseteq sem(V)$ we get:

(2.3)
$$AC(V,\Gamma) = L(V,\mathcal{L}_{\Gamma}(V)) \cong l(K,\mathcal{L}_{\Gamma}(V)) \equiv \mathcal{L}_{\Gamma}(V)^{K}.$$

Proof. For each $F \in l(K, \mathcal{L}_{\Gamma}(V))$ we define $F' \in L(V, \mathcal{L}_{\Gamma}(V))$ by

(2.4)
$$F'(\varepsilon_{\kappa}) := F(\kappa), \ \kappa \in K.$$

Then the correspondence $F \to F'$ is a vector-space isomorphism. For example,

$$F' = G' \Leftrightarrow F(\kappa) = F'(\varepsilon_{\kappa}) = G'(\varepsilon_{\kappa}) = G(\kappa), \ \kappa \in K. \ \blacksquare$$

Let now $l_{\infty}(K, \mathbb{R}_+)$ stand for the subspace of all bounded elements in $l(K, \mathbb{R}_+) \equiv \mathbb{R}_+^K$,

(2.5)
$$f \in l_{\infty}(K, \mathbb{R}) \Leftrightarrow \sup_{K} |f(\kappa)| < +\infty.$$

Also we put (for each $f \in l_{\infty}(K, \mathbb{R}_{+})$, $\varepsilon \equiv \{\varepsilon_{\kappa} : \kappa \in K\} \subseteq V \text{ base}\}$

(2.6)
$$q_{\kappa}: V \to \mathbb{R}_{+}: q_{\kappa}(\omega) := |\varepsilon_{\kappa}^{\delta}(\omega)|, \ \omega \in V, \ \kappa \in K$$

(2.7)
$$p(\omega) \equiv \sum_{\kappa \in K_{\omega}} f(\kappa) q_{\kappa}(\omega) \equiv \sum_{\kappa \in K} f(\kappa) q_{\kappa}(\omega), \ \omega \in V.$$

Thus we obtain the following:

Proposition 2.2. Let $f \in l_{\infty}(K, \mathbb{R}_+)$, $\varepsilon, \varepsilon^{\delta}$, p as above. Then

(2.8)
$$lmc(V,p) \equiv \mathcal{L}_p(V,L(V)) \subseteq l_{\infty}(K,\mathcal{L}_p(V)).$$

If, moreover, $f(\kappa) > 1$, $\kappa \in K$ then

(2.9)
$$lmc(V,p) \cong l_{\infty}(K, \mathcal{L}_{p}(V)).$$

Proof. Let $l \in lmc(V,p)$ and we put $l'(\kappa) := l(\varepsilon_{\kappa}), \ \kappa \in K$. Then $\tilde{p}(l'(\kappa)) = \tilde{p}(l(\varepsilon_{\kappa}) \le \hat{p}(l)p(\varepsilon_{\kappa}) = \hat{p}(l)f(\kappa) \le \hat{p}(l)\sup_{K} f(\kappa) \equiv \hat{p}(l) \cdot \|f\|_{\infty} < +\infty$. In other words: $\sup_{\mu \in K} \tilde{p}(l'(\kappa)) \le \hat{p}(l) \cdot \|f\|_{\infty} < +\infty \Leftrightarrow l' \in l_{\infty}(K, \mathcal{L}_{p}(V))$ so that we have proved (2.8). Let in particular $f(\kappa) \ge 1, \ \kappa \in K$. Then for arbitrary $l' \in l_{\infty}(K, \mathcal{L}_{p}(V))$ we define $l \in \mathcal{L}((V, p), \mathcal{L}_{\tilde{p}}(V))$ by the relation

$$(2.10) l(\varepsilon_{\kappa}) := l'(\kappa), \ \kappa \in K.$$

(Thus for the unique linear extension of l on V we get: $l(\omega) = \sum_{\kappa \in K_{\omega}} \varepsilon_{\kappa}^{\delta}(\omega) l'(\kappa), \, \omega \in V.$) Hence:

$$\tilde{p}(l(\omega)) \leq \sum_{\mu \in K_{\omega}} q_{\mu}(\omega) \tilde{p}(l'(\mu)) \leq \sup_{K} \tilde{p}(l'(\mu)) \cdot \sum_{K_{\omega}} q_{\mu}(\omega)$$
$$\leq ||l'||_{\infty} \cdot \sum_{K} f(\mu) q_{\mu}(\omega) = ||l'||_{\infty} p(\omega), \ \omega \in V.$$

Thus $l \in \mathcal{L}_p(V, L(V)) \equiv \mathcal{L}((V, p), \mathcal{L}_{\tilde{p}}(V))$, while $\hat{p}(l) \leq ||l'||_{\infty}$. The proof of (2.9) is now easy (see also Proposition 2.1).

REMARK 2.3. In [1] we find an interesting theory about the positive cone sem(V). Also in [4], [5] there exists a rich general theory about lmc-algebras (with or without an involution *). On the other hand the famous Vidav-Palmer Theorem can get an easier form (if one uses the results above, see also [9]). In [2] we can also find some basic results on algebra seminorms (in particular for barrelled and m-barrelled seminorms). Finally we see that the A-convex structures on a locally convex space (V, Γ) constitute a "large" space (while the lm-convex structures can constitute the zero space (0) if the family Γ is sufficiently large; see also [8]). Thus the question 1.5 arises. Professor W. Żelazko posed similar questions at the Będlewo 2003 conference.

References

- [1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, Berlin, 1973.
- [2] A. Mallios, Topological Algebras. Selected Topics, North-Holland, Amsterdam, 1986.
- [3] E. A. Michael, Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).
- [4] T. W. Palmer, Banach Algebras and the General Theory of *-algebras. I. Algebras and Banach Algebras, Cambridge University Press, 1994.
- [5] T. W. Palmer, Banach Algebras and the General Theory of *-algebras II. *-algebras, Cambridge University Press, 2001.

396 Y. TSERTOS

- [6] A. C. Cochran, C. R. Williams and R. Keown, On a class of topological algebras, Pacific J. Math. 34 (1970), 17–25.
- [7] Y. Tsertos, On the locally m-convex algebra $\mathcal{L}_{\Gamma}(E)$ and a differential geometric interpetation of it, Portugaliae Mathematica 54 (1997), 127–137.
- [8] Y. Tsertos, *Uniformly bounded operators in locally convex spaces*, in: Inter. Conf. on "Topological Algebras and Applications", 1999, Tartu 2001, 173–182.
- Y. Tsertos, Multiplications and involutions on vector spaces, Journal of Math. Sci. 96 (1999), 3766-3771.