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Abstract. Given a locally convex space (V,I"), we find (all) the multiplications 7 on V (asso-
ciative or not) such that the algebra A = (V, 7, ") becomes (i) A-convex, (ii) Im-convex.

0. Preliminaries. Given any seminorm p € sem (V) :={q:V — R, a seminorm} on a
C-vector space V', we define (see also [6])

(0.1) A(p,T):={A20:poT <A} CRy, TeLlV)=LWV,V),
L,(V):={T e L(V): A(p,T) # 0} C L(V),

(0.2)
(0.3) P Lp(V) = Ry p(T) »=inf A(p, T),
(0.4) Lp(V)=(L,(V),p), T'={p:pel}, 0#I Csem(V),
(0.5) V)= () LoV
pel’
(0.6) Li(V)=(Lr(V), D).

Obviously £;(V') is a seminormed algebra while £7(V) is an Im-convex (locally multi-
plicatively convex) algebra which, in particular, is (i) Hausdorff (ii) o-complete if (V,I)
is (see also [2], [7]).

In this context, the algebra £ (1), as above, whose elements might also be called “I-
uniformly bounded” endomorphisms of the locally convex space (V, I"), has been studied
in [7], [8]. The same algebra has been considered by E. A. Michael [3], the relevant study
being “geometrical” (via a local basis), in contradistinction with ours (ibid.) where the
treatment is algebraic (“arithmetical”, viz. through appropriate “operator seminorms”).

A seminorm p of an algebra A is
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(i) left A-convez iff for each w € A there exists a A, > 0 : p(wd) < A p(0) for all
0 e A

(i) locally multiplicatively conver (lmc) or algebra-seminorm iff there exists A > 0
satisfying p(wf) < Ap(w)p(0), w,0 € A.

(By a seminorm p of a vector space V' we mean a p : V — R, such that p(w + 6) <
p(w) + p(0), p(Aw) = [A|p(w) for all A € C, w,f € V)

On the other hand, we know that there exists a vector-space isomorphism 7 — [
between the vector spaces B(V) = B(V x V,V) := {m : V x V — V bilinear} and
L(V, L(V)) given by the relation

(0.7) (w)(0) =7(w,0), w0 eV,
or else by
(0.8) l(w)() =7(0,w), w,0 V.

We call | € L(V,L(V)) in (0.7) the left regular representation (IRR) of m while the [ in
(0.8) the right RR of m (rRR of 7). In this last case we put the symbol r instead of .

1. Main results. In the following V' denotes a C-vector space (we also can then consider
V as a space over the real field R).
Now we obtain the following:

PROPOSITION 1.1. For each seminorm p € sem(V') a multiplication m =1 on V' makes p:

(a) an A-convex seminorm iff

(1.1) Le LV, L,(V)) € LV, L(V)),
(b) an algebra-seminorm iff
(1.2) Le L,(V,L(V)) = LIV, p), Ls(V))-

For each family ) # I' C sem(V) of seminorms on V a multiplication m = [ on V
(associative or not) makes I':
(c) an A-convex family of seminorms iff
(1.3) Le LV, Lr(V)) = [ LV, £,(V)),
pel’
(d) a family of algebra-seminorms zﬁ”
(1.4) le Lp(V,L(V) = () Lp(V.L(V
pel’
Proof. (a) Let p be an A-convex seminorm on (V, 7 =[). Then for arbitrary w € V there
exists A\, > 0 such that p(wf) < \,p(#), 6 € V, pol(w) < Ayp. Thus, A\, € A(p,l(w)) # 0,
l(w) € L,(V), (w arbitrary), | € L(V, L,(V)).

Conversely, let | € L(V,L,(V)). Then l(w) € L,(V), w € V so that A(l(w),p) # 0.
Namely p(wf) = p(l(w)(0)) < Ap(0), 6 € V for all A € A(l(w),p) # 0. In other words p
becomes A-convex, on (V.7 =1) (wl = 7(w,0) = l(w)(9), w,0 € V).

(b) Let now p be an algebra—semlnorm on (V, 7). Then p(wf) < Ap(w)p(8), w,0 € V
(for some A\ > 0), so that p(l(w)(8)) < Ap(w)p(f), A\p(w) € A(l(w),p) # 0, w € V
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Thus p(l(w)) = inf A(p,l(w)) < Ap(w), w € V which means that [ € L,(V,L(V)) =
L((V,p), L;(V)). Below p(1) stands for the bound of each | € L((V,p), (L,(V),D)).
Conversely, if [ € £,(V, L(V)) there exists A > 0 such that p({(w)) < Ap(w), w € V.
Thus Ap(w) € A(p,l(w)), so that p(wb) = p((I(w)(0)) = (p e l(w))(®) < Ap(w)p(0),
w,0eV.
(c), (d) are easy consequences of (a), (b) respectively. m

REMARK 1.2. (a) We write AC(V,p) (respectively: AC(V,I")) for the set (space) of all
multiplications (associative or not) of V' making p (resp. I') A-convex. Thus Proposition
1.1 implies:

(1.5) AC(V, p) =L(V,L,(V)), peT
(1.6) AC(V,T) = L(V,Lr(V)) = () L(V, L,( 0+ C semV.

Similarly: For the subspaces imc(V, p), imc(V, I') of L(V, L(V')) making p, I (respectively)
algebra-seminorms we get

(1.7) Ime(V, p) =L,(V,L(V)) C AC’(V,p)7 pel
(1.8) Ime(V,I') = Lp(V.L(V)) = () L,(V.L(V)) € AC(V.T),0 # T C sem(V).

(b) Now we remark that C-I C L(V) for each family 0 # I' C sem(V) so that we
get
(1.9) V= L(V,C) 2 L(V,C-I) C L(V, Lr(V)) = AC(V, I).

By this last relation we see that:

COROLLARY 1.3. The dimension of the space AC(V,I") of all multiplications 7 = [ of
V, making (V,1,I") an A-convex algebra, is at least the dim V't of the algebraic dual V'
of V.

(c) For each A-convex seminorm p € sem(A) of an algebra A, the I[RR [ of A defines a

seminorm p = pol € sem (V) which is, in particular, an algebra seminorm if the algebra
A is associative. Thus we obtain:

COROLLARY 1.4. For each | € L(V,L,(V)) the seminorm p = pol € sem(V) satisfies
the relation:

(1.10) p(wh) < p(w)p(0), w,0 € V.
If in particular (V1) is associative then p is an algebra seminorm of A = (V,l = 7)
(which we call the Im-convex seminorm of (V,l) corresponding to p).

(d) For the space Imc(V,I") = (,cp Lp(V,L(V)) we see that it is getting smaller
while I' is getting larger (see (1.8)). In other words we observe that:

(d-1)For @ £ I C ACsem(V): 17 =7a (the locally convex topology defined on V/
by each ) # A C sem(V)) we can have L(V) D LA(V) # Lr(V) (see also [8]).

(d-2) If we take the topology 7 on V to be the largest one, it is possible to get
Lr(V,L(V)) = (0) (see (1.4)).

Thus arises a question:
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QUESTION 1.5. Is it possible to obtain a family A C sem(V') in the (non-empty!) set:

(1.11) sem(t):={ACsem(V):ta=71}#0

such that Imc(V, A) # (0) while Imc(V, Inax(7)) = (0)? (Here [pax(7) = Uresem(r) r).
(e) Let 0 # f € V*. By (1.9) we define [ = [y by the relation:

(1.12) I=1;:V = L(V): () = fw)- I, feV*.

Then we obtain an associative algebra (V,ls) (in which f is the unique character). More-
over we put:

(1.13) gV =Ry qpw) = [f(W)], feVT, weV, ¢ € sem(V).
Thus, we obtain the following:

COROLLARY 1.6. For each p € sem(V), 0# f e VT (lf(w) = f(w)]) we obtain:

(1.14) P=4qf=4qy-

Proof. p(w) = p(lf(w)(0)) = p(f(w)0) = [f(w)[p(0) = qr(w)p(0). =

(f) By the above we see that several questions arise regarding the use of the algebra
L;(V). In the present paper we further give some realizations of AC(V,I") and Imc(V, I").

2. Some concrete examples

PROPOSITION 2.1. Let € := {0 : k € K} C V7 be the dual set of an arbitrary base
e ={ex: k € K} of a C-vector space V':

) L — 17 KR = Aa
(2.1) er(E0) 1= 0nx = {o, K#N kA EK.

Then it is well known that for each w € V there exists a K, C K finite such that
w=Y ek Eo(w)ex. Put:

(2.2) w= Z € (w)e, = Z e (w)ew, we V.

rkeK,, KEK
Then for arbitrary O # I' C sem(V) we get:

(2.3) AC(V,I') = L(V,Lr(V)) = UK, Lr(V)) = Lr(V)F.
Proof. For each F € [(K,Lp(V)) we define F’ € L(V,Lp(V)) by
(2.4) F'(ex) := F(r), k€ K.
Then the correspondence F' — F” is a vector-space isomorphism. For example,
F'=G & F(k)=F'(e;) =G'(ex) =G(k), k€ K. n
Let now I (K, R ) stand for the subspace of all bounded elements in (K, R} ) = R,
(2.5) felo(K,R) < sup |f(K)] < +oc.

Also we put (for each f € Io(K,Ry), e ={e, : x € K} CV base)
(2.6) GV =Ry qe(w) = (W), weV, kEK
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(2.7) pw)= Y f(R)ge(w) = ) f(R)gs(w), we V.

KEK, KREK
Thus we obtain the following:

PROPOSITION 2.2. Let f € Io(K,R,), €,°,p as above. Then

(2.8) me(V,p) = £,(V, L(V)) € Lo, £,(V)).
If, moreover, f(k) > 1, k € K then
(2.9) me(V,p) 2 Lo (K, £,(V).

Proof. Let I € lme(V,p) and we put I'(k) := l(e4), & € K. Then p(I'(k)) = p(l(es) <
PUP(ex) =P) F(8) <P supse F()=p() - |l <-+oo. Tn other words: sup,,c x (' ())
<P) N flloo < 400 & I € loo(K, L,(V)) so that we have proved (2.8). Let in particular
f(k) > 1, k € K. Then for arbitrary I’ € o (K, L,(V)) we define [ € L((V,p), L5(V)) by
the relation

(2.10) l(es) :=1(k), k € K.

Thus for the unique linear extension of [ on V' we get: [(w) = e (Wl'(k),weV.
KEK, K

Hence:
W) < Y qu)pl'(p) < s;pﬁ(l’(u))-ZqH(w)
K,

HEK,

< Wlloe - > F(1)gu(w) = [V ccp(w), w € V.
K

Thus | € £,(V,L(V)) = L((V,p), L5(V)), while p(l) < ||I'||cc- The proof of (2.9) is now
easy (see also Proposition 2.1). m

REMARK 2.3. In [1] we find an interesting theory about the positive cone sem (V). Also
in [4], [5] there exists a rich general theory about Imc-algebras (with or without an
involution *). On the other hand the famous Vidav-Palmer Theorem can get an easier
form (if one uses the results above, see also [9]). In [2] we can also find some basic results
on algebra seminorms (in particular for barrelled and m-barrelled seminorms). Finally
we see that the A-convex structures on a locally convex space (V,I") constitute a “large”
space (while the Im-convex structures can constitute the zero space (0) if the family I is
sufficiently large; see also [8]). Thus the question 1.5 arises. Professor W. Zelazko posed
similar questions at the Bedlewo 2003 conference.
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