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Abstract. We consider operators acting in the space C(X) (X is a compact topological space)

Au(z) = (ZN:e*”kTak> Z 2k (a(z)), ue C(X),

k=1 k=1

of the form

2

where ), € C(X) and ay : X — X are given continuous mappings (1 < k < N). A new formula
on the logarithm of the spectral radius r(A) is obtained. The logarithm of r(A) is defined as a
nonlinear functional \ depending on the vector of functions ¢ = (p5)X_,. We prove that

In(r(A4)) = Ap) = = max { Z/ prdvg — 1/)},

where Mes is the set of all probability vectors of measures v = (vx)n_; on X x{1,..., N} and \*
is some convex lower-semicontinuous functional on (C™ (X))*. In other words \* is the Legendre
conjugate to .

1. Introduction. In the process of solving various mathematical and physical problems
one comes across investigations of spectral properties of operators acting in spaces F'(X)
of functions on a set X and having a form

N N
= (Y @, Jule) = Y anl@)u(ap(@), ue F(X),
k=1 k=1

where o : X — X are given mappings (describing the dynamics of the system),
Ty, u(z) = u(ag(z)) are the evolution operators and ay, are certain functions such that
the operators (axu)(x) = ar(z)u(x) describe influences of a medium.
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The spectral properties of the operators A depend on all parameters: the spaces F/(X),
the mappings «aj and the coefficients ax. One of the most important characteristics of an
operator is the spectral radius. We recall that the spectral radius of a bounded operator
Ais r(A) = max{|\| : A € 0(A)}, where o(A) is the spectrum of A.

The operators A having only one summand on the right hand side are called weighted
shifts or weighted composition operators. Let X be a topological compact space with a
measure pu, F'(X) = L,(X,u), a € C(X) and A be a weighted shift operator

Au(z) = a(x)u(a(x)).

If « is invertible and the measure p is a-invariant, the following formula on the logarithm
of the spectral radius holds:

Inr(A) = max {/ ln|a(x)du},
v esq X

where Mes,, is the set of all a-invariant probability measures on X (see [AL]). In the
situation when the measure p is a-invariant and « is not invertible, A. Antonevich,
V. Bakhtin and A. Lebedev introduced a new dynamical invariant 7(v) of an invariant
measure v generated by the mapping o and proved that

(1) mnr(A) = max {/Xln|a(x)|d1/—7—§:)},

veEMesq

also they proved that the dynamical invariant 7 is a convex and lower-semicontinuous
function on Mes,. This formula for the function Inr(A) is the Legendre transform of the
function 7(v)/p (see [ABL]).

It follows that under some assumptions we can obtain a very similar formula to (1)
on the logarithm of the spectral radius of A, when it possesses not only one but several
summands on the right hand side. To prove this formula we will need some facts of convex
analysis. In the next section we recall some basic definitions and theorems connected with
the Legendre transform (see [ET]).

2. Lower-semicontinuous convex functions. We will consider functions with values
in R = [~00,+0] (extended real-valued functions). Let V be a real linear space. The
function f: V — R is called convez if the inequality

fltu+ (L =t)v) <tf(u) + (1 —t)f(v)

holds for every t € [0,1] and all u,v € V such that the right-hand side is well defined.
The convex set D(f) = {v e V: f(v) < +oo} is called the effective domain of f.

Let V be, in addition, a topological space. The function f : V — R is lower-
semicontinuous on V if and only if the level sets {v € V : f(v) < ¢}, ¢ € R, are
closed. The lower-semicontinuous and convex functions will be the most important for
us. Before we recall some theorems on such functions, we give the definitions of conjugate
and biconjugate functions.

Let V be a linear normed space over a real field and V* be its conjugate space. Let
(v,v*) denote the value of the functional v* € V* at the vector v € V.
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DEFINITION 2.1. The function f* : V* — R defined by
() =sup{(v,v*) — f(v) ;v €V}, v* € V*

is called the comjugate function of f, in the Legendre sense. The conjugate of f*, i.e. the
function f** on V defined by

£ (0) = sup{(v,0*) — F*(v") 10" € V'], v EV
is called the biconjugate of f.

THEOREM 2.1. Let f : V — R be any function on V. Then the functions f* and f** are
always conver and lower-semicontinuous in the weak star topology of V* and in the weak
topology of V, respectively.

THEOREM 2.2. Let f : V — (—o00,+00] be any function nonidentically +o0co. Then f** =
f if and only if f is convex and lower-semicontinuous on V.

REMARK. Let V = C(X). In the formula (1) the function Inr(A4) = f(In|a|) is the
Legendre transform of the function f*(v) = % when v € Mes, and +oco when v ¢
Mes,,. The effective domain D(f*) is contained in the set Mes,,.

3. Spectral radius. Let X be a topological compact space , let a; : X — X be given
continuous mappings and ay be continuous positive functions on X. Let us consider an
operator A acting in the space C(X) and having the form

N N
x) = (ZakTak)u(m) = Zak(m)u(ak(x)); ue C(X).
k=1 k=1

If we denote the function Inay by ¢k, then we can rewrite the definition of A as

follows:
N
A= Z e Ty, .
k=1

Notice that the functions ¢} are some continuous functions on X. Let us define now the
logarithm of the spectral radius of the operator A as a functional which depends on the
functions ¢y. Let A : CYV(X) — R be the nonlinear functional defined by

A(p) = Inr(A),

where A = Zszl e?*T,, and o = (pr)h_; € CN(X).
Before we formulate our main theorem, we introduce some notation.

NOTATION. Let Mes denote the set of all probability measures on the set X x{1,..., N},
i.e. a vector of measures v = (v;)N_, € Mes iff Ek 1vk(X) = 1 and for every k the
measure v is a positive measure on X.

MAIN THEOREM. There exists a convez lower-semicontinuous functional T on Mes such

that
M) = L_hax { Z/ prdvy, — )}
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Proof. We use the well known formula on the spectral radius

r(A) = lim ||A"

1
n

Since Tpa = (a0 )T, and Ty, To, = T, 00, the n-th power of A is equal to
Atu(z) = Y ag(@)u(a’(x)),
ceMn
where M" = {& = ()7, : &€ {1,...,N}},
ag(x) = ag, (z)ag, (ag, (2)) ... ag, (ag, 0...0ag, () and a(z) = ag o...0ag,(2).
Notice that since a;, is a positive function for every k£, a is also a positive function for
every £. Therefore the norm of the n-th power of A equals

[A™]| = sup Z ag(z).
X eemn

The main part of the proof is based on the following three lemmas.
LEMMA 1. The functional \ is a convex function on O™ (X).

Proof of Lemma 1. Let o and v be any vectors of functions that belong to CV (X). We
denote e¥* and e¥* by ay and by, respectively. Let A denote the operator Z,ICVZI arTy, and
B denote the operator Z,Icvzl b Ty, - Let us consider the value of A at a vector tp+ (1—1t)1)
for some t € (0,1). Let C; denote the operator corresponding to the argument tp+(1—t).
We have that

N N
Cy=Y eortU=Dver, =N "aib,'T,,.
k=1 k=1
The n-th power of C; of a function v € C(X) at « is equal to
Cru() = (Y atbi " TocJule) = 3 [ag(@)]'oe ()]~ u(af())
geMn geMr
and the norm of C}' equals
IC7 | = sup Y [ag(@)) [be ()] .
X eemn

Let t =1/pand 1 —¢t =1/q. Since t € (0, 1), the numbers p,q > 1 are conjugate, i.e.
1/p+1/q = 1. Applying the Holder inequality for sums we get

> lae@te@) < [ 3 aeto)] [ 3 belw)]

EeMn ceMn ceMn

By the above
IC <A™ B (1

and, in consequence,

r(Cy) < [r(A))'[r(B)' "
Therefore we obtain
Ato+ (1 —t)Y) =lnr(C) <tlnr(A)+ (1 —t)Inr(B) =tA(p) + (1 — )A(Y).

This means that the functional ) is convex on CV(X) and Lemma 1 follows. m
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The continuity of A is established by our next lemma.
LEMMA 2. The functional \ is a continuous function on C™ (X).

Proof of Lemma 2. Let o™ = (o), ¢* = (p))N_, belong to CV(X) and let ¢™

converge to ¢ in CV(X), i.e. [|¢° — ™|l = maxi<p<n [P} — ¢7|oc — 0 when m tends

to infinity. Let a]* denote the function e . Notice that for every k € {1,..., N} we have
al(z) = (¥ —ekTel) (@) — (el =)@ g0 (),

Since for every = € X the following inequalities hold:

~lle™ = ¢lloe < (k' = ) (@) < [l9™ = ¢°lloc,
it follows that for every k

e*l\@”’*@”llmag(m) <al(z) < el\wmﬂo“\lmag(x)_
In consequence for every £ € M™ we get that

e lle™ ¢l Z al(z) < Z af'(x) < enlle™ —#° Z al().
geMn ceMn ceMn
From this we obtain
eI e | A < (AR F < eleT e Ag

and letting n tend to infinity
— oo (Ag) < 1(Ap) < elle™ = lep(Ap),

m

e~ lle

where the operators Ay and A,, correspond to ¢° and ™, respectively. Now letting
m tend to infinity we obtain the continuity of the spectral radius of A on the space
CN(X). Consequently, we obtain the continuity of the logarithm of spectral radius, i.e.
the continuity of the functional A on CV(X), and Lemma 2 follows. =

The functional \ is a convex and continuous function on CV(X). Theorem 2.2 gives
A = A**. By the above we can write that

N
(2) Al) = sup { > /X pxdiy — X(0) : v = ()}, € cN<X>*},
where

N
ww) =sup {3 [ ndn = Ng) o= (s € Y.
k=1

The effective domain of the functional ), i.e. the set of ¢ such that A(y) < +o0, is
the whole space CV(X). It is interesting that the effective domain of the functional \*
is a subset of the set of all probability measures on X x {1,..., N}, i.e. D(A\*) C Mes.

LEMMA 3. The effective domain of the functional \* is contained in the set Mes.

Proof of Lemma 8. For any ¢ = (px)2_, € CV(X) and ¢ € R let p + ¢ denote the vector
of functions (), + c)2_,. If to the vector of functions ¢ corresponds the operator A, then
to the vector of functions ¢ + ¢ corresponds the operator e“A. By the above, we obtain
that

AMe+ce)=Inr(eflA) =c+Inr(4) = A) +c.
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For every ¢ and ¢ we have that

N N N
‘) > %/Xmmduk—wm =;L¢kduk—x<w>+c(;uk<x>—1)-

It ng’zl vp(X) — 1 # 0 then letting ¢ tend to plus or minus infinity we can obtain that
the right hand side of the above inequality tends to plus infinity. This means that the
value of the function A\* at such a vector of measures v = (v;,)_, is equal to plus infinity.

Let us consider now a vector of measures v = ()1, in which for some k = [ the
measure f; is not positive. For this measure there exists a function ¢ > 0 such that
Jx ¥dv < 0. Take now a vector of functions ¢” = (¢9)_; in which ¢} = ¢ and ¢) =0
when k # [. For every ¢ we have that

(3) ) > Z/ cdvy, — Mep®) = c/X Y, — Mep?).

Let A denote the operator corresponding to some function ccp ,ie. AY = Z o €% kTak
Suppose now that c is a negative number. For & = [, el = e < 1, and for k # [,
et = 1. It follows that ||A%|| < N and, in consequence, 7(A%) < N. By the above, we
obtain

Mep?) =Inr(A2) <InN

for every negative c.

Because ¢ [ ¢dy; > 0 and A(cgp”) < In N for every negative ¢, the right hand side of
the inequality (3) tends to plus infinity letting ¢ tend to minus infinity. It gives that the
value of the function \* is equal to plus infinity at any vector of measures in which at
least one measure is not positive. Summarizing, if Zi\’=1 vp(X) —1 # 0 or at least one
measure vy, is not positive, then A*(v) = +o00. This means that D(A\*) C Mes. The proof
of Lemma 3 is complete. m

Notice now that, first, by Lemma 3 we may restrict our search for the supremum in
the formula (2) to the set Mes, second, because the set of all probability measures is
weak-star compact, we may change the supremum to the maximum. For these reasons
we can rewrite the formula for the function A as follows:

0 g {3 ).

where Mes is the set of all probability measures on X x {1,..., N}. The functional 7 in
the formulation of the Main Theorem is the restriction of the conjugate functional of A
to the set Mes. The set Mes is convex. Therefore, by Theorem 2.1, the functional 7 is
also convex and lower-semicontinuous on Mes. m

FINAL REMARK. Very similar formulae on the logarithm of r(A) hold when we consider
the operator A acting in other spaces, but the proofs must be modified. For the case of
discrete spaces, it is possible to obtain, in a combinatorial way, an explicit form for 7.
The above questions will be the subject of separate papers.
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