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Abstract. The webs have been studied mainly locally, near regular points (see a short list of

references on the topic in the bibliography). Let d be an integer ≥ 1. A d-web on an open set U

of C
2 is a differential equation F (x, y, y′) = 0 with F (x, y, y′) =

P

d

i=0
ai(x, y)(y′)d−i, where the

coefficients ai are holomorphic functions, a0 being not identically zero. A regular point is a point

(x, y) where the d roots in y′ are distinct (near such a point, we have locally d foliations mutually

transverse to each other, and caustics appear through the points which are not regular).

It happens that many concepts on local webs may be globalized, but not always in an obvious

way, and under the condition that they do not depend on local coordinates. The aim of this paper

is to make these facts precise and to define the tools necessary for a global study of webs on

a holomorphic surface, and in particular on the complex projective plane P2. Moreover new

concepts, inducing new problems, will appear, such as the dicriticality, the irreducibility or the

quasi-smoothness, which have no interest locally near a regular point of the web.

1. Global definition of a web. First of all, we homogenize the equation in the abstract,

for allowing the contact elements to be “vertical” (this notion does not make sense by

change of local coordinates), and write the differential equation ̟ = 0, where

̟ =
d∑

i=0

ai(x, y)(dx)i(dy)d−i

is now a homogeneous polynomial of degree d on U (removing also the condition a0 6≡ 0).

Moreover, if we multiply ̟ by a holomorphic non-vanishing function, we do not change

the solutions of the differential equation. Hence, gluing together local webs defined as

above, we get the following global definition.
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A d-web on a holomorphic surface M is the data of a holomorphic line bundle E

on M and of a homogeneous polynomial ̟ : Sd(TM) → E of degree d on M with

holomorphic coefficients in E, i.e. a holomorphic section of Sd(T ∗M) ⊗ E, TM de-

noting the complex tangent space to M , and Sd(TM) its d-th symmetric power. Lo-

cally, once given local holomorphic coordinates (x, y) and a local holomorphic non-

vanishing section σE on some open set U of M , the restriction of ̟ to U may be written

̟|
U

= (
∑d

i=0 ai(x, y)(dx)i(dy)d−i) ⊗ σE , with holomorphic coefficients ai. Thus, the

homogeneous polynomial
∑d

i=0 ai(x, y)(dx)i(dy)d−i may be written

d∏

i=0

(ri(x, y) dx + si(x, y) dy),

and the local “leaves” of the web are the curves, solutions of one of the differential

equation ri(x, y) dx + si(x, y) dy = 0. Moreover, we require that

• the germs of the coefficients ai at each point are primes (all their common divisors u(x, y)

must be units in the ring of germs of functions, avoiding extra-solutions u(x, y) = 0),

• the discriminant set of the homogeneous polynomial
∑d

i=0 ai(x, y)(dx)i(dy)d−i, i.e.

the set where its resultant vanishes (still called “caustic”), be an analytic set of com-

plex dimension at most 1 (off the caustic, the solutions of the d differential equations

ri(x, y) dx + si(x, y) dy = 0 must be mutually transversal).

These conditions and definitions depend neither on the choice of the local coordinates

(x, y) nor on the local trivialisation σE .

2. Type and degree. The bundle E is called the type of the web. When M = P2, the

d-webs of degree n are those for which E = O(n + 2d) (the (n + 2d)-th tensor power of

the dual O(1) of the tautological bundle O(−1)): they are the webs such that a generic

straight line of P2 is tangent to some leaf of the web at n distinct points (see Section 6

below). In particular an algebraic d-web (web whose the leaves are the tangents to some

algebraic envelope of class d) has degree 0: a generic straight line has in fact no chance

to belong to such an envelope; the converse is also true:

Theorem 2.1. The webs of degree 0 are the algebraic webs.

3. The contact manifold and the tautological contact form. Let M̃ be the total

space of the bundle PTM
π
→ M , projectivised of TM (for any point m ∈ M , the fibre

M̃m = π−1(m) is the projective line P(TmM) of the directions of lines in TmM). A point

m̃ of M̃ is called a contact element of M at m = π(m̃). For any non-vanishing vector

v ∈ TmM , [v] ∈ M̃m will denote the contact element generated by v.

Let (x, y) be local holomorphic coordinates on an open set U of M . We define local

coordinates on the set Ux of the contact elements in π−1(U) which are different from

[( ∂
∂y

)m] in the following way: the point [( ∂
∂x

)m + p( ∂
∂y

)m] has local coordinates x, y, p),

(x, y) denoting the coordinates of m in U . [Observe that we get [( ∂
∂y

)m] with the new

coordinates x′ = y and y′ = x].

We shall denote by L the tautological line bundle of P(TM): it is the sub-vector-bundle

of π−1(TM) whose fibre at each point [v] ∈ M̃ is the subspace of TmM generated by the
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vector v, with m = π([v]). Let L be the quotient bundle

0 → L → π−1(TM) → L → 0.

We shall denote by V the sub-bundle of TM̃ of vectors tangent to the fibres of π :

M̃ → M , hence the exact sequence of vector bundles 0 → V → TM̃ → π−1(TM) → 0.

Let ω : TM̃ → L be the composition of the two projections π−1(TM) → L and

TM̃ → π−1(TM) above.

Theorem 3.1. There exists a canonical isomorphism L ∼= L⊗V such that, on the domain

of local coordinates (x, y, p), ω reads (dy − p dx) ⊗ (( ∂
∂x

+ p ∂
∂y

) ⊗ ∂
∂p

).

This 1-form ω with coefficients in L will be called the tautological contact form.

4. The surface W , the critical curve and the caustic. Let ̟ : Sd(TM) → E

be a d-web on M . If we compose the map Ld → π−1(Sd(TM)) induced by the natural

inclusion L → π−1(TM)) with the map π−1(̟) : π−1(Sd(TM)) → π−1(E), we get

a holomorphic map Ld → π−1(E), i.e. a holomorphic section sW of the line bundle

L̆d ⊗ π−1(E). The zero set W = (sW )−1(0) of this section is an analytic complex surface

in M̃ .

Theorem 4.1. The data of W is equivalent to that of ̟.

In fact, if ̟ is written locally (
∑d

i=0 ai(x, y)(dx)i(dy)d−i)⊗σE , W has local equation

F (x, y, p) = 0 in M̃ , where F (x, y, p) =
∑d

i=0 ai(x, y)pd−i. Thus, it is sometimes the

surface W that we shall call “the web”.

We shall denote by W ′ the regular part of W , Σ(W ) = W \W ′ its singular part, and

πW : W → M the restriction of π to W .

We shall say that the web is smooth if W has no singularity (W = W ′). This implies

that W is irreducible in M̃ . More generally, we shall say that the web is quasi-smooth if

each irreducible component of W is smooth.

Let W0 be the subset of points m̃ in W ′ where the differential π em : TemW ′ → TmM

is an isomorphism, and denote by ΓW its complement W \W0 in W (containing Σ(W )).

We call ΓW the critical curve of the web, and its projection π(ΓW ) on M its discriminant

curve or caustic. The regular part of the web is the projection M0 = π(W0) of W0, i.e.

the set of points in M not belonging to the caustic (it is generally strictly smaller than

the projection π(W ′) of the regular part W ′ of W ).

Lemma 4.2. The critical curve ΓW is a complex analytical set of complex dimension at

most 1. The restriction to W0 of the projection πW : W → M is a d-fold covering over

its image M0 (= π(W0)).

Theorem 4.3. The critical curve ΓW is the zero-set (sΓ)−1(0) of a holomorphic section

sΓ of the line bundle [π−1E ⊗ V∗ ⊗ L̆d]|W over W , locally defined in M̃ by the equations

F ′
p = 0 and F = 0.

Remark. Assuming M0 to be connected, each connected component of W0 is itself a

covering of M0, which is completely defined up to isomorphism by the data of a conju-

gation class of sub-group of the fundamental group π1(M0). Hence, the family of these

conjugation classes is an invariant of the web.
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Theorem 4.4. There exists a canonical holomorphic section sΣ of the line bundle

[π−1(E) ⊗ L̆d+1]|ΓW
, locally defined by the equations (F ′

x + pF ′
y = 0, F = 0, F ′

p = 0).

Moreover, when M = P2, sΣ has a natural extension to all of W (still denoted by sΣ)

which is a section of [π−1(E)⊗ L̆d+1]|W , locally defined by the equations (F ′
x + pF ′

y = 0,

F = 0) on an affine open set of P2 with affine coordinates (x, y).

Definition. We shall say that a web is non-dicritical (resp. dicritical) if the section

sΣ over ΓW is not (resp. is) identically zero. More generally, if sΣ vanishes on some

irreducible component C of ΓW , we shall say that the web is dicritical along C.

5. Canonical foliation F̃ on W ′. Let ω
W

: TW ′ → L|W ′ be the restriction of the

contact form ω to the tangent space TW ′ to the regular part W ′ of W : it is necessarily

integrable since W ′ has dimension 2, and so defines a holomorphic foliation F̃ on W ′.

A leaf of the web in M is the projection by π of any leaf of F̃ in W ′ or of its closure

in W .

Theorem 5.1. We can also define this foliation as a holomorphic morphism ℓ : M →

TW ′ of a suitable line bundle M in TW ′,

• locally defined by the vector field X1 = F ′
p ( ∂

∂x
+ p ∂

∂y
)− (F ′

x + p F ′
y) ∂

∂p
in the case of a

non-dicritical web, and M = [π−1E∗ ⊗ V ⊗ Ld+1]|W ′
in this case,

• locally defined by the vector field X2 = ∂
∂ex

+ p ∂
∂ey

on W0, and X2 = ∂
∂x

+ p ∂
∂y

on ΓW

in the dicritical case, and M = L|W ′
in this case.

Proposition 5.2. The projection πW : W0 → M0 of the covering maps locally F̃ on d

distinct foliations Fi (1 ≤ i ≤ d), mutually transversal on M0.

Remark. Note that these d foliations are distinguishable only locally, on an open set

above which the previous covering is trivial. Globally, they may be undistinguishable. See

Section 6 below.

Theorem 5.3.

(i) If the web is non-dicritical, Σ(F̃) is equal to the zero-set s−1
Σ (0) of the section sΣ.

(ii) If the web is dicritical, F̃ has no singularity on W ′.

Let C be an irreducible smooth compact component of ΓW along which the web is

non-dicritical. Let {mα} be the set of (isolated) points of C ∩Σ(F̃). Near each point mα,

choose local coordinates (x, y, p) and a local trivialisation of E, hence a local equation

F = 0 of W . Denote by να the order at mα of the restriction of F ′
x + pF ′

y to C.

Theorem 5.4. The following formula holds:
∑

α

να = −(π∗c1(E) + (d + 1)c1(L)) ⌢ [C],

in which the sum
∑

α να does not depend on the various choices above.

This is a simple application of [CL].
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6. Irreducibility of W and global indistinguishability of the local foliations.

Have in mind the case of an algebraic 2-web on P2 whose leaves are the straight lines

belonging to some envelope of class 2: according to the fact that this envelope is a proper

conic, or degenerates into two points, W is irreducible or has two irreducible components,

and the two local foliations on M0 are globally indistinguishable or distinguishable.

Theorem 6.1.

(i) If W0 = W \ ΓW is connected, the web is irreducible.

(ii) Conversely, if the surface W is compact, connected and smooth (this last assumption

implying in particular that the web is irreductible), the open set W0 = W \ ΓW is also

connected.

Corollary 6.2. Every web whose surface W is compact and connected may be decom-

posed into irreducible webs W = W1∪W2∪· · ·∪Wr. The number of connected components

of W0 is exactly r if the web is quasi-smooth, and at least r in the general case.

One says that a d-web W is completely reducible if r = d. Locally, near every point of

M0, a web is always completely reducible. An open set of distinguishability will be every

open set U of M0 such that the restriction WU = W ∩ π−1(U) of W to U is completely

reducible (or equivalently such that the restriction of the covering π
W

: W0 → M0 to U

is trivial).

The space of leaves of M0, denoted by W0/F̃0, is the space of leaves of W0 for the

foliation F̃0 induced by F̃ on W0.

Let m be a point of M0 and Fi and Fj two distinct germs of leaves of the web at m0,

respectively belonging to the local foliations Fi and Fj of the web. Let m̃i and m̃j be the

lifts of m in W0, such that the germs of leaves of F̃ at m̃i and m̃j map respectively onto

Fi and Fj by π. We shall say that Fi and Fj are globally indistinguishable if the leaves

of F̃0 through m̃i and m̃j belong to the same connected component of W0/F̃0. If not, Fi

and Fj will be called globally distinguishable.

Theorem 6.3.

(i) If W = W1∪W2∪· · ·∪Wr has r irreducible components, the space of leaves W0/F̃0 has

at least r connected components, and exactly r if M is compact and the web quasi-smooth.

(ii) Two germs of leaves of the web at a point m of M0, Fi and Fj, are globally distin-

guishable if and only if the corresponding points m̃i and m̃j in W0 do not belong to the

same connected component of W0.

7. Webs on P2. Denote by (X, Y, Z) the homogeneous coordinates on P2, and (u, v, w)

the homogeneous coordinates on the dual projective plane P′
2 of projective straight lines

in P2: the line of coordinates (u, v, w) is the line of equation uX + vY + wZ = 0 in P2.

Lemma 7.1. The manifold P̃2 is naturally identified to the space of points ([X, Y, Z],

[u, v, w]) in P2 × P′
2 such that uX + vY + wZ = 0: a contact element is a pair given by a

point in P2 and a line through this point. By this identification, π becomes the restriction

of the first projection of P2 × P
′
2.
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The spaces P2 and P
′
2 have completely symmetric roles: the second projection

π′ : P̃2 → P
′
2 is also a space fibred by projective lines, with which the same constructions

as with π can be done. Denote respectively O(−1) and O′(−1) the tautological line bun-

dles of P2 and P′
2, O(1) and O′(1) their dual. Let ℓ = π−1(O(−1)) and ℓ′ = π′−1(O′(−1)).

Lemma 7.2.

(i) The vector bundle π−1(
∧2

TP2) may be identified to ℓ̆3.

(ii) The vector bundle L may be identified to the tensor product ℓ′ ⊗ ℓ̆2.

(iii) The vector bundle V is isomorphic to the tautological bundle L′ of P̃2 (identified to

the projectivized bundle of TP
′
2), and L = L ⊗ L′.

Let H(X, Y, Z; u, v, w) be a polynomial in the variables X, Y, Z, u, v, w, homogeneous

of degree n with respect to the variables (X, Y, Z), and homogeneous of degree d with

respect to the variables (u, v, w). We call (n, d) the bi-degree of homogeneity of H. Let

W be the surface of equations (H = 0, uX + vY + wZ = 0) in P̃2. Every polynomial H

defining the same surface W has the same bi-degree. The integer n is in fact equal to the

number of points at which a generic straight line [u0, v0, w0] of P2 meets the surface of

equation H(X, Y, Z; u0, v0, w0) = 0 in P2, i.e. is tangent to a solution of the differential

equation H(x, y, 1; y′,−1, y− xy′) = 0 defined by W on the affine set Z 6= 0, with x = X
Z

and y = Y
Z

. It has therefore a geometrical meaning not depending on the polynomial H.

This is true in particular when W is a web on P2. From Lemma 7.2 we deduce

Proposition 7.3. If H has bidegree (n, d), then E = O(n + 2d).

The number n is then the degree of the web, such as defined in Section 2.

Then W has for equation H(x, y, 1; p,−1, y−px) = 0, whose left term is a polynomial

of degree d with respect to p, with coefficients ai(x, y) polynomial of degree ≤ n+d with

respect to (x, y). Conversely, any web on P2 may be defined by this procedure from a

bi-homogeneous polynomial H. Identifying C2 to the affine open set Z 6= 0 of P2,

Theorem 7.4.

(i) A web on P2 is completely defined by its restriction to C2.

(ii) A web of equation F (x, y, p) = 0 on C
2, where F (x, y, p) =

∑d
i=0 ai(x, y)pd−i, may

be extended as a web on all of P2, if and only if all coefficients ai are polynomial in the

natural coordinates (x, y) of C2.

Denote respectively by ξ = c1(ℓ̆), ξ′ = c1(ℓ̆
′) and η = c1(L̆) the Chern classes of the

bundles π−1(O(1)), π̆−1(Ŏ(1)) and L̆.

Lemma 7.5. The following formulae hold :

(i) η = ξ′ − 2ξ,

(ii) H∗(P̃2, Z) = Z[ξ, ξ′]/(ξ3, ξ′3, ξ2 + ξ′2 − ξξ′).

Definition. The co-critical set of the d-web W is the set Γ′
W defined in P̃2 by the

equations vH ′
X −uH ′

Y = 0, wH ′
Y −vH ′

Z = 0, uH ′
Z −wH ′

X = 0, and H = 0. Its restriction

to the open set Zv 6= 0 is defined by the equations (F ′
x + p F ′

y = 0, F = 0), or (D′
x = 0,
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D = 0), where

F (x, y, p) = H(x, y, 1; p,−1, y − px) and D(x, p, r) = H(x, r + px, 1; p,−1, r).

We can observe that the non-dicritical webs on P2 are precisely the bi-webs, i.e. the

webs whose surface W defines also a web on P′
2. In this case, the co-critical set Γ′

W is a

curve, which is the critical curve of the n-web on P′
2, while ΓW is its co-critical curve;

moreover, the intersection ΓW ∩ Γ′
W is the singular set Σ(F̃) of the foliation F̃ .

Theorem 7.6. Every web W on P2 has a non-empty critical curve ΓW . For every non-

dicritical web on P2, the singular set Σ(F̃) = ΓW ∩Γ′
W of F̃ is non-empty (the intersection

number ΓW . Γ′
W may be computed explicitly, using the residues να of Theorem 5.4).

Recall that a d-web on P2 is said to be algebraic if its leaves are the straight lines

which belong to some algebraic envelope C of class d. If C is defined by the tangential

equation Φ(u, v, w) = 0 (where Φ denotes some homogeneous polynomial of degree d),

the corresponding algebraic d-web is defined by H(X, Y, Z; u, v, w) = Φ(u, v, w), not

depending on the variables X, Y, Z. The local equation of the surface W of the web, for

Zv 6= 0, is written: Φ(p,−1, y−px) = 0 with the affine coordinates defined above. (Up to

multiplication by a scalar, H is well defined). Algebraic webs are then the webs of degree

n = 0 (see Theorem 2.1).

Theorem 7.7. For a web on P2 to be algebraic, it is necessary and sufficient that the

identity F ′
x +pF ′

y ≡ 0 holds, with F (x, y, p) = H(x, y, 1; p,−1, y−px), or equivalently the

section sΓ′ of the bundle π−1(E) ⊗ L̆d+1|
W

is identically 0.

A web on P2 is said to be linear if all its leaves are straight lines of P2.

Theorem 7.8. Every linear web globally defined on P2 is algebraic.

Theorem 7.9. A quasi-smooth web on P2 is algebraic, if and only if any of its irreducible

components is dicritical.

Remark. If W is not quasi-smooth, the web may be dicritical without being algebraic.

Here is an example (with arbitrary scalar constants h and k):

H = u3Z3 − XZ2u2v + (X2Z/3 − XZ2 + kZ3)uv2

− (X3/27 − X2Z/6 + kXZ2/3 + hZ3 + Y Z2)v3.

8. Background on 3-webs. Let M0 be the regular part of a 3-web on a surface M .

Locally, near any point m of M0, there are three mutually transversal foliations F1,F2,F3

with respective tangent bundles T1, T2, T3. Let (i, j, k) be any permutation of (1, 2, 3): the

projection of Ti over Tj parallel to Tk defines a natural isomorphism Φij from Ti onto Tj .

However the bundles Ti may not be defined globally on all of M0. We shall remedy this

by the following construction. Let A′ be the set of (non-ordered) triples {X1, X2, X3} of

tangent vectors at a point m of M0, such that

(i) X1 + X2 + X3 = 0,

(ii) each Xi is tangent to one of the leaves of the web.
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This set A′ has a natural structure of holomorphic line bundle over M , locally iso-

morphic to any of the three Ti by the map Φi : {Xi, Xj , Xk} 7→ Xi since the triple

{Xi, Xj , Xk} is completely determined by the data of any of the three vectors.

The connection of Blaschke. Locally, every Ti may be seen as the normal bundle to

both Fj and Fk. Since TM0 is locally equal to Tj ⊕ Tk, there exists on Ti a unique

holomorphic connection ∇i which is a Bott connection for both Fj and Fk, such that

∇i and ∇j correspond to each other by the isomorphism Φij . Since Φij ◦Φi = Φj , there

exists a unique holomorphic connection ∇b on A′ corresponding to ∇i by Φi. We shall

call it the connection of Blaschke, its curvature Kb being the classical Blaschke curvature.

The connection of Chern. With the previous definitions, we can define a unique holo-

morphic connection ∇c on TM0, corresponding locally to ∇j ⊕∇k by the isomorphism

TM0 → Tj ⊕Tk: this is the connection of Chern, whose curvature Kc is called the Chern

curvature. It is easy to prove that the connection of Chern is also the unique holomorphic

connection on TM0, whose torsion vanishes and which preserves the web in the following

sense: each local Ti is preserved by the covariant derivative of ∇c.

Observe that ∇c may be written
(

Φj(∇
b) 0

O Φk(∇b)

)
, with respect to the local decom-

position TM0 = Tj ⊕ Tk, hence Kc =
(

Kb 0
O Kb

)
.

Abelian relations. An abelian relation for a 3-web above an open set U of M0 over which

the three foliations Fi are distinguishable the data of three holomorphic closed 1-forms

ω1, ω2, ω3 such that ω1 + ω2 + ω3 = 0 and Kerωi is the tangent space Ti to Fi for each

i = 1, 2, 3. This relation is said to be “non-trivial” if the ωi’s are not zero. For example,

if there exists some coordinate system (x, y) and 3 affine functions ui(x, y) (i = 1, 2, 3)

which are respectively first integrals of the Fi’s, there exist scalar constants ai such that

a1u1 + a1u1 + a1u1 be constant: thus the family ωi = aidui defines a non-trivial abelian

relation. It is easy to see that the set of abelian relations over a given U (or of germs at

a point m of M0) has a natural structure of vector space, whose dimension (called “the

rank”) is 0 or 1.

Theorem 8.1 (Blaschke-Chern). The following two assertions are equivalent :

(i) The Blaschke curvature vanishes.

(ii) There exists a non-trivial abelian relation near each point of M0.

This result follows from the fact that, when the Blaschke curvature vanishes, the

connection of Chern which has simultaneously zero curvature and zero torsion, preserves

therefore some locally affine structure on M0; it is easy to deduce locally functions ui,

affine with respect to the previous affine structure, which are first integrals of the Fi’s.

9. Abelian relations for arbitrary d. Let W be a d-web on M , U be an open set in

M0, and Ũ its pre-image (πW )−1(U) in W0. For any holomorphic section ξ of the dual L̆

of L over Ũ , 〈ξ, ω
W
〉 is a scalar holomorphic 1-form.

Definition. The space of abelian relations over an open set U of M0 is the subspace

R(U) of holomorphic sections ξ ∈ Γ(Ũ , L̆) such that



GLOBAL STRUCTURE OF HOLOMORPHIC WEBS 43

(i) d < ξ, ω
W

>= 0,

(ii)
∫
− < ξ, ω

W
>= 0, where

∫
− :

∧∗
TW0 →

∧∗
TM0 denotes integration along the fibre

of πW : W0 → M0 (in fact the finite sum of d terms, since πW is a d-fold covering).

The dimension r(U) of this vector-space is called the rank of W over U .

Remark. Obviously, this definition also has a meaning for the germ of the web at a

point m ∈ M0.

Lemma 9.1. Let A(U) (resp. B(U)) be the subspace of holomorphic sections ξ ∈ Γ(Ũ , L̆)

satisfying only the condition (ii) (resp. the space of holomorphic 2-forms on Ũ in the

kernel of
∫
−). The pre-sheaves U 7→ A(U) and U 7→ B(U) are OM0

-locally free sheaves of

respective rank d − 2 and d − 1.

Let A and B be the corresponding holomorphic vector bundles over M0. The map

D : ξ 7→ d〈ξ, ω
W
〉

is then a linear differential operator of order 1, generalizing the local operator ρ in [H4]

p. 437, and such that the abelian relations are the solutions of the equation Dξ = 0.

Let Rk be the space of (k+1)-jets of solutions of the equation Dξ = 0, i.e. the kernel of

the k-th prolongation Dk : Jk+1A → JkB of the morphism D : J1A → B defined by D:

it is a vector bundle over M0. In [H4], Hénaut proved that Rd−4 is a vector bundle of rank

(d − 1)(d − 2)/2, and that the natural projection Ψ : Rd−3 → Rd−4 is an isomorphism.

We may interpret this isomorphism as defining a connection on the bundle E = Rd−4

over M0. In fact, Rd−3 is equal to Jd−2A∩J1Rd−4. Since J1Rd−4 is the space of elements

of connection on Rd−4 and since Ψ is linear, Ψ−1 is a connection on E , the “connection

of Hénaut”, whose curvature generalized the Blaschke connection of the case d = 3 and

is an obstruction for the web to have the maximal rank (d − 1)(d − 2)/2: the abelian

relations are in fact the sections ξ of A such that jd−3ξ is a section of E with vanishing

covariant derivative (and conversely, if a section of E with vanishing covariant derivative

is the d − 3-jet of some section ξ of A, ξ is an abelian relation).

Remark. Of course, when d = 3, A = E . Moreover, for any d > 3, any section of E with

vanishing covariant derivative is effectively the d−3-jet of an abelian relation ξ when the

rank of the web is maximal.

In the particular case d = 3, E = A coincide with the dual of the bundle A′ defined

in the previous section, and the connection of Hénaut coincide with the dual of the

connection of Blaschke.
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