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Abstract. When drawing regular surfaces, one creates a concrete and visual example of a

projection between two spaces of dimension 2. The singularities of the projection define the

apparent contour of the surface. As a result there are two types of generic singularities: fold

and cusp (Whitney singularities). The case of singular surfaces is much more complex. A priori,

it is expected that new singularities may appear, resulting from the “interaction” between the

singularities of the surface and the singularities of the projection. The problem has already been

solved for the projection of a surface with a boundary. We consider here additional examples:

the drawing of caustics and the drawing of the eversion of a sphere.

1. Introduction. The singularity theory created by H. Whitney has a direct application

in the problem of representing a mathematical surface M . Indeed, drawing a regular

surface makes a projection f between M and the plane of the drawing P . As every

(differentiable) map between two spaces of dimension 2, f shows, generically, Whitney

singularities, i.e. folds and cusps, where the rank of f is less than 2, its maximal possible

value [Whitney]. In the case of drawings, it is common to call the image A of the singular

set Σ of f , A = f(Σ), the apparent contour. The apparent contour is the “local boundary”

of the representation of M in P . In addition to the cusp-points, the apparent contour

may present special points called crossing points, where the apparent contour intersects

itself. The crossing points are not related to the differential properties of f , but are simply

points of coincidence.

If the surface M is not regular but has itself singularities, the problem becomes much

more complex. It must be analyzed on a case by case basis. To our knowledge, only

a few cases have been studied. J. W. Bruce, P. J. Giblin and V. Goryunov succeeded

in giving the list of the singularities (and of their metamorphoses) associated with the

representation of a surface with a boundary [BruceGiblin, Goryunov]. Another result
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Fig. 1. Apparent contour A in the neighborhood a) of an elliptic umbilic D−

4 and b) of a
hyperbolic umbilic D+

4 ; the tangent plane Π rotates around the axis by π along the circuit γ.

concerns the representation of a surface with a corner [Babiker]. However this problem is

of codimension 2, and does not appear naturally in simple problems.

The appearance of singularities in drawings of singular surfaces constitutes a natural

problem every time that a new class of singular surfaces is discovered. For instance, an

interesting and novel example is provided by the drawing of caustics in the 3D space

(Lagrangian singularities). We shall present here a generic singularity in the drawings of

caustics (a special contact point).

Another case is that of immersed surfaces. The knowledge of the rules governing the

drawings of the surfaces is perhaps not necessary when only small parts are represented.

However, it becomes essential for global configurations or in the case of surfaces depending

on one parameter. We shall illustrate this with the example of the eversion of the sphere.

We wish to point out that, even if the computer graphics is useful to improve (through

shadings, cuttings, etc) the visual representation of surfaces, it is not sufficient to give by

itself a complete understanding of the drawing. This understanding necessitates above all

the knowledge of the apparent contour, of its singularities and of its metamorphoses. In a

sense, besides the computer vision, there exists a more fundamental vision that we might

call singularity vision, i.e. vision based on the recognition of the singularities produced

by the projection into the plane of the drawing. Thus, the singularity vision must precede

the computer vision.

The aim of our paper is to illustrate the problem of drawing singular surfaces by two

examples: the caustics and the eversion of the sphere. Our physicist’s point of view, being

rather practical and pragmatic, is in the spirit of G. Francis “Picturebook” [Francis]. Our

work should be supplemented by a rigorous analysis and we hope that our results will

stimulate new mathematical interest.
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2. Caustics in the physical space. Caustics in the physical space are associated with

the singularities of a Lagrangian projection π : L → R3 between a 3D-Lagrangian space

L, representing a congruence of rays, and our physical space R3 = {x, y, z} [ArnGusVar].

The caustic M is the image of the singular set Σ ⊂ L of π, the set of points where

the rank of π is strictly less than 3, its maximal possible value. M = π(Σ) is a surface

with singularities. Its regular part is formed by the fold-surface A2. Its singular part is

composed of cuspidal edges A3 and of 3 types of point singularities: the swallowtails A4,

the elliptic umbilics D−
4 and the hyperbolic umbilics D+

4 . M may also present 3 types

of self-intersections: self-intersection lines A2A2, intersections between 2 parts A2; triple

points T , intersections between 3 parts A2; and the points A2A3, intersections between

a cusp-line A3 and the surface A2.

Projecting M into the plane P of the paper produces an apparent contour A. The

generic point of A is the fold point of the representation f : M → P . The fold-lines F

possibly end at cusp-points C. Generically, the apparent contour does not pass through

the point singularities A4, A2A3, or T . However, it passes necessarily through the umbilics

D4. Indeed, since an umbilic D4 has a corank equal to 2, an axis is defined at the umbilic

point. Is is not difficult to see that the tangent plane Π to M along a small circuit γ

around the umbilic, rotates by π (Fig. 1). Consequently, there exists one point of γ that

contains the visual ray. The caustic being composed of 2 sheets, the apparent contour

passes through the points D4.

It is known that the contact of the representation of a line lying on a regular surface

with the apparent contour A is generically an ordinary contact (also called 2-fold contact

[BruceGiblinCS]). In the case of a cusp-line, the situation is different: a cusp-line A3 has,

in the drawing, a 3-fold contact with the apparent contour. In other words, the drawing of

a cusp-line passes tangentially through the apparent contour (Fig. 2). Inside the interior

space of the cusp, the cusp-line is visible only at these 3-fold contact points.

This special contact may be understood in the following way. We consider a congruence

of normals (the rays) to a surface W (the initial wave front) given by its Monge form:

z = α +
1

2
(βxxx2 + βyyy2) +

1

6
(γxxxx3 + 3γxxyx2y + 3γxyyxy2 + γyyyy3)

+
1

24
(δxxxxx4 + 4δxxxyx3y + 6δxxyyx2y2 + 4δxyyyxy3 + δyyyyy4) + . . .

The axes x and y are taken along the principal directions. The current point N = (X, Y, Z)

along a normal to W is parametrised by 3 coordinates: x and y defining the normal

passing through the point (x, y, z(x, y)) of W and a coordinate s along the normal. The

Lagrangian manifold L is then parametrised by x, y and s, and the Lagrangian projection

π is defined by π(x, y, s) = N . The singular set Σ ⊂ L of the application π is defined

by rk(dπ(x, y, s)) < 3, that is to say by det ∂(X, Y, Z)/∂(x, y, s) = 0. This equation is of

second degree in s : a(x, y)s2 + b(x, y)s + c(x, y) = 0. Each solution s±(x, y) describes

one of the two sheets M± of the caustic π(Σ). Let us consider the sheet M−. The current

point Q = (U, V, W ) on M− is parametrised by x and y: U(x, y) = X(x, y, s−(x, y)), etc.

We now impose some constraints in order to analyse the contact of the cusp-line with

the apparent contour. At first, the constant term α in the Monge form is chosen equal
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Fig. 2. Drawing of a cusp line A3. The posterior part of the cusp-line is hidden by the right fold
and the anterior part is hidden by the left fold, showing that the cusp-line represented passes
through the apparent contour. The values of the parameters are: βxx = 1.93, βyy = γxxy =
γyyy = δxxxx = δxxyy = δxyyy = δyyyy = 1, γxyy = 3.5.

to −1/βxx (βxx > βyy) in order to make M− passing through the origin: Q(0, 0) = 0.

The cusp-line is defined as the Thom-Boardmann class Σ1,1 [ArnGusVar], that is to say

by the cancellation of 3 determinants di: d1 = det ∂(U, V )/∂(x, y), etc. The expression of

the di allows one to see that the origin is a singularity A3 if γxxx = 0. Then, developing

the di to the second order in x and y, we may also impose the tangent to A3 at 0 to lie

in the vertical plane {y, z}, if δxxxy = −3γxxyγxyy/(βxx − βyy).

The tangent plane to M− at the origin being the vertical plane {y, z}, we consider

an orthogonal projection onto a plane P perpendicular to {y, z}. The plane P is defined

by its normal ~n = (0, sin a, cos a). The projection p is then given by p(~r) = ~r − (~n · ~r) ~n,

where ~r = (x, y, z). Let u1, u2 be the coordinates in P , the x axis being projected on the

u1 axis and the y and z axes being projected on the u2 axis. The apparent contour A

corresponds to the singularities of the map f : (x, y) 7→ p(Q(x, y)). With our constraints,

A is a line passing through the origin and tangent the u2-axis. We calculate that it is

given by u1 = kAu2
2 + . . ., with

kA = − β3
xxγxyy

2(γxxy cos a + βxx(βxx − βyy) sin a)2

On the other hand, one calculates that the projection of the A3-line in P is also given

by u1 = kA u2
2 + . . ., showing that this line and A have a 3-fold contact point (we have

checked that kA is independent of the terms ǫ of higher order in the Monge form).

3. Immersed surfaces. The eversion of the sphere being realized by a family of immer-

sions (differentiable applications of maximal rank), we have to consider first the represen-

tation of immersed surfaces, that is to say images of immersions S2 → R3 [MorinPetit].



SINGULARITIES IN DRAWINGS OF SINGULAR SURFACES 147

3.1. Singularities of an immersed surface. An immersed surface may possess 2 types of

special points: double points, forming self-intersection lines I and triple points T (Fig. 3).

a) b)

I T

0

1

1

1 0

0

0

Fig. 3. An immersed surface may have a) self-intersection lines I and b) triple points T . The
numbers stand for the screen numbers of the lines.

When we represent a self-intersection line, or any type of line, in the plane P of the

drawing, it is interesting to indicate the number of sheets encountered by our visual ray,

between the line and our eye. Let us call this number the screen number of the line,

which expresses the degree of non-visibility of the line. A line with a screen number 0 is

visible. In P , a triple point T appears as the intersection of 3 self-intersection lines. It is

important to note that the screen number of each self-intersection line varies by 1 unit

at T (Fig. 3b).

There exist also in P crossing points I − I between two self-intersections lines (their

screen number must differ from (at least) 2).

3.2. Apparent contour of an immersed surface. The generic point of the apparent contour

A of an immersed surface is the fold point. In the plane of the representation, a fold-

line bounds locally two sides: the side corresponding to the surface M , and the side

external to M . It is useful to know the side (in P ) corresponding to the surface (the

“co-orientation” of the fold-line). In our drawings, this side is indicated by a very small

arc of circle.

As in the case of regular surfaces, the apparent contour may have cusp-points C. The

co-orientation in the neighborhood of C points towards the interior of the cusp (see Fig.

4a). At the cusp-point C, the screen number of the fold-line changes by 1 unit.

In addition to the cusp-points, the apparent contour may have ordinary contact-points

κ with self-intersection lines I (see Fig. 4b). At a point κ, the screen number of the fold-

line and that of the self-intersection line are exchanged. Of course, the co-orientation of

A points towards the line I.

The apparent contour A may also have crossing points F−I with the intersection-lines

I, and self-intersection points F − F .
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Fig. 4. The apparent contour of an immersed surface may have a) cusp-points C, where the
screen number of the fold-lines F changes by one unit, b) contact-points κ with a self-intersection
line I, where the screen numbers of F and I are exchanged.

As noted in the preceding section, the apparent contour A, generically, does not pass

through the triple points.

3.3. Metamorphoses of the apparent contour of a regular surface. In order to treat the

eversion of the sphere, we need to know the metamorphoses of the apparent contour.

2
1

0F−2C 2C−0F 1F−2C 2C−1F 2F−2C 2C−2F

Fig. 5. The apparent contour of a regular surface may undergo 6 possible metamorphoses.

In the case of a regular surface, there exist 6 metamorphoses (see Fig. 5). In each case,

two cusps are appearing or disappearing. The metamorphoses are distinguished by the

fact that the cusps are appearing or disappearing and by the number of fold-lines (0, 1, or

2) when the 2 cusps are absent. Consequently, we propose to designate them by a symbol

containing this number of fold-lines (0F for zero fold-line, etc). Moreover, the symbol 2C

is added at the end or at the beginning depending on the type of the metamorphosis: a

creation or an annihilation of cusps. For instance, 0F −2C is the metamorphosis creating

a pair of cusps starting from “nothing”. 2C − 1F is the metamorphosis annihilating a

pair of cusps, the result being a single fold-line, etc.
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3.4. Metamorphoses of the apparent contour of an immersed surface. The metamorphoses

of regular surfaces are also metamorphoses of immersed surfaces. In addition, there exist

also metamorphoses typical of immersed surfaces. We give here the 4 metamorphoses

appearing in the eversion of the sphere (see Fig. 6). We name them using the elements

that they involve (the bifurcation parameter is the temporal parameter ε).

κC

I

F

II

I

κκ

F

I

κ κ
I

I
I

F

κκ

F

κ
κ

F

I

FI

FFI

CI

FIII

Fig. 6. 4 metamorphoses of the apparent contour of an immersed surface.

FI: the metamorphosis FI describes a self-intersection line I coming into contact with

a fold-line F of the apparent contour. The line I must be in the co-orientation

of F . During the metamorphosis a pair of contact-points κ is created (FI+) or

annihilated (FI−). An example of FI may be provided by the following model: the

fixed surface z = y2 is cut by the moving surface y = x2 − ε. The projection is the

orthogonal projection into the plane {x, z}. The metamorphosis occurs at ε = 0.

The distance between the two points κ is of order
√

ε, whereas the domain limited

by the fold and the intersection line has a thickness of order ε2.
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FFI: the metamorphosis FFI involves two folded surfaces, intersecting along a line I.

The line I is in contact with each line F by a contact-point κ. At the moment of

the metamorphosis, the two κ points are in coincidence and the line I appears as a

cuspidal curve. The metamorphosis creates or annihilates a self-intersection point

of the line I. FFI may be represented by the following model: the fixed surface

z = (x + y)2 is cut by the moving surface x = (y + ε)2.

CI: the metamorphosis CI involves a self-intersection line I and a cusp-point C. The line

I has a contact-point κ with one of the two fold-lines starting from C. During the

metamorphosis, the point κ glides along the fold-lines. It reaches C at the moment

of the bifurcation and then passes on the other fold-line. CI may be represented

by the following model: the fixed surface z = y3 + xy is cut by the moving plane

y = ε.

It is interesting to note that these 3 metamorphoses are in fact versions of singularities

of projections of surfaces with a boundary [BruceGiblin, Goryunov]. More precisely, they

correspond to the singularities of codimension 1.

The metamorphosis FI corresponds to the semi-lips (and semi-beaks) of [BruceGiblin]

and to the A1 of [Goryunov]. The metamorphosis FFI corresponds to the boundary

cusp of [BruceGiblin] and to the B1 of [Goryunov]. The metamorphosis CI corresponds

to the semi-cusp of [BruceGiblin] and to the 31 of [Goryunov]. In this comparison, the

contact-point κ corresponds to the semi-fold of [BruceGiblin]. In fact, the line I of our

3 metamorphoses play exactly the role of the boundary of the surface considered in

[BruceGiblin, Goryunov]. We now examine the fourth metamorphosis that involves 3 self-

intersection lines, and, for that reason, has no connexion with the subject of singularities

of projections of surfaces with a boundary:

FIII: the metamorphosis FIII involves a triple point, intersection point of 3 intersection

lines I, and a fold-line F . During the metamorphosis, the triple point passes from

the visible side of the fold to its invisible side. Simultaneously, a crossing-point

between two lines I passes through the triple point (in P ). The metamorphosis has

two variants; in one case the two points κ are separated by the third intersection

line; in the other case they lie on the same side. The metamorphosis is represented

by the following model: the fixed surface z = y2 is cut by the two moving surfaces

x = y−ε and x = ±2(y−ε) (the sign is − for the first variant and + for the second

variant). The distance of the triple point to F is of order ε2.

3.5. Crossings. In addition to the metamorphoses, there exist several types of modifi-

cations in which different lines (I or F ) come into contact and cross each other in the

plane of projection P . For example two visible separate fold-lines may get closer, come

into contact, and then cross, producing a pair of crossing points F − F . Between these

two crossing points the screen number of one the two lines is changed by 2 units.

There are many types of crossings, involving 2 or 3 lines I or F , but also points κ, C, T ,

etc. Some of them are analyzed in [Goryunov] and in [OhmotoAicardi]. The possibilities

depend essentially on the screen number of the lines and on the co-orientation of the

fold-lines. We do not give the details of these crossings, which are rather evident.
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4. Sphere eversion. The problem of the eversion of the sphere consists in giving an

explicit way to turn a sphere inside out, a possibility proved theoretically by S. Smale in

1957 [Smale]. The eversion is realized by a 1-parameter family of “transversal immersions”

undergoing, at some moments, certain transformations [MorinPetit]. Our purpose is not

to give a new solution, but rather a new representation of the eversion of the sphere,

based on the singularities of the apparent contour. We choose the solution exposed in

[MorinPetit], which has the advantage to present two kinds of symmetries.

The first symmetry concerns the process everting the sphere: a first series of transfor-

mations is realized up to a “central model”. Then, the central model is rotated by π/2.

The rotation exchanges the position of the inside of the sphere with that of its outside.

Then, the opposite transformations are realized in the opposite order and the reversed

sphere is thus obtained. The initial problem is reduced to that of the construction of the

central model.

The second symmetry characterizes the surface itself: during the eversion, the surface

possesses an axis of symmetry (binary axis). We choose this axis for the direction of the

projection (this possibility is not exploited in [MorinPetit], which does not describe the

apparent contours). Consequently our drawings will be symmetrical around a center.

In a sense, the two symmetries divide the number of bifurcations of the apparent

contour by (roughly) 4.

4.1. The 6 transformations. Six types of transformations are involved in the eversion of

the sphere [MorinPetit] (Fig. 7).

QD0 D2 D1 T+ T

Fig. 7. The 6 transformations.

By the transformation D0 a small self-intersection line I forming a circle is created.

A simple example of D0 is provided by a sphere “crossing” a plane. Before the transfor-

mation the two surfaces are separate; at the moment of the transformation they have a

contact at 1 point; after the transformation they intersect along a small circle.

The transformation D2 is the transformation D0 in the opposite sense: the small circle

I annihilates.
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The transformation D1 is a deconnexion-reconnexion of two lines I.

By the transformation T+ a pair of triple points is created, resulting from the inter-

section of 3 surfaces.

The transformation T− is the transformation T+ in the opposite sense: a pair of triple

points annihilates.

The transformation Q involves 4 surfaces, mutually intersecting. The intersection lines

form a small tetrahedron, whose vertices are 4 triple points. During the transformation

the size of the tetrahedron decreases; at the moment of the transformation it is reduced

to 1 point; then it reappears after the transformation.

It is interesting to note that during these transformations, the apparent contour is

(generically) not altered. We are now ready to see how the eversion of the sphere may be

represented.

4.2. First step: creation of a first self-intersection line. We start with the standard

sphere. Its apparent contour A is a circle (Fig. 8). The sphere is “crushed” along the

binary axis, and by the transformation D0 the two poles cross, then forming a closed

self-intersection line I1. In this step, the apparent contour A is not modified.

D0
I1

A A

Fig. 8. First step: creation of a self-intersection line I1 by the transformation D0; the corre-
sponding sections are indicated below.

4.3. Second step: creation of a second self-intersection line. The self-intersection line I1

delimites 2 volumes: a lens-shaped volume at the center and a torus-shaped volume at the

periphery. The second step consists in distorting the torus-shaped part until it intersects

itself. The surface is first folded by a pair of metamorphoses 0F − 2C (Fig. 9b). The

apparent contour A has now two new components. Then the folding increases and the

internal parts of the two new components cross the line I1 (Fig. 9c). The folding continues

increasing and the external parts of the two new components come into contact with the

line I1. By two metamorphoses FI four contact-points κ appear (Fig. 9d). Finally, the

two folds in the central part get closer, until they intersect themselves through a new

transformation D0 (Fig. 9e). A new self-intersection line, 8-shaped, I2, is obtained. The

line I2 has 4 contact-points κ with the apparent contour.
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The last 2 drawings of Fig. 9 show the deformations realized to make the surface more

symmetrical: two crossings (Fig. 9f), followed by two metamorphoses FI (Fig. 9g).

I1

d)c)b)a)

e) f) g)

I2

Fig. 9. Second step: creation of a second self-intersection line I2 by the transformation D0

(between d and e).

4.4. The problem of the symmetry. Due to the symmetry imposed, the second transforma-

tion D0 has occurred on the apparent contour (Fig. 10a). This does not correspond to the

generic case (see Fig. 7). Here, we want to understand how one may perturb slightly the

transformation in order to recover the generic situation, that is to say the case without

symmetry. Figure 10b gives a solution.

D0

D0

a)

b)

F F

Fig. 10. a) the transformation D0 is seen along the axis of symmetry; b) the symmetry is broken
and the final drawing is now obtained after the generic representation of D0 plus 3 bifurcations
of the apparent contour.
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The two fold-lines first cross. The two surfaces are now facing each other along the

visual ray and the usual drawing of D0 may be realized. The result is a small circle. The

circle increases and comes in contact with the 2 folds, creating 2 pairs of contact-points κ.

Finally the torsion of the circle is realized by a bifurcation FFI and the 8 is obtained.

4.5. Third step: the creation of 4 triple points. The third step affects the central 8 (Fig.

11). Because of the symmetry, we describe the modifications of only the left part of the 8.

They involve 3 self-intersection lines: the line I1 and two parts of the line I2 forming the

8 (Fig. 11a). In that position, a fold-line F separates the two lines I2 from the line I1, and

the transformation T+ is actually impossible. Consequently, a crossing is realized between

I1 and F (Fig. 11b). The result is a self-intersection line of screen number 1 sandwiched

between two self-intersection lines of screen number 0. The transformation T+ may occur

then, producing a pair of triple points (Fig. 11c). Of course, another transformation T+

occurs symmetrically in the right part of the 8 (not shown on Fig. 11) and 4 triple points

are in fact created simultaneously. The remaining metamorphoses make the surface more

simple: a pair of contact-points is created by FI+ (Fig. 11d), a triple point moves to the

other side of the fold by FIII (Fig. 11e), and finally two contact points annihilate by

FI− (Fig. 11f).

I1

I2

I2

a) b) c)

d) e) f)

F

Fig. 11. Third step: creation of 2 pairs of triple points by two transformations T+ (only the left
central part is represented).

4.6. Central model. The remaining process is rather long and cumbersome. It involves

the transformations D1 and Q, the metamorphoses FI, FFI, CI, 1F −2C, 2C−2F , but

also a great number of crossings. For that reason, we give up detailing the way leading

to the central model. An explicit presentation shall be published elsewhere. Figure 12

shows the central model. It presents a higher symmetry: the axis of symmetry is now a
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4-fold axis (invariance through a rotation of π/2). However, if the internal and external

sides of the sphere were represented by two different colors, the resulting figure would be

invariant by a rotation of π/2 followed by the exchange of the colors. This observation is

at the root of the eversion of the sphere: the central model is rotated by π/2, exchanging

its internal and external sides, then all the transformations are realized in the opposite

sense. The final result is the everted sphere.

4

4

1

2 1
2

1

21

2

4

4

Fig. 12. a) The central model is invariant by a rotation of π/2. The numbers indicate the screen
numbers of the lines.

4.7. Cutting the surface. Using the representation of the surface M , one may deduce its

section by any plane V containing the direction of the projection. The trace of V is a

i0 i0

f0

i2

i1 i1 f0

i2f3
f0

f3f0 i2

i0

v

v

a) c)

b)

Fig. 13. a) The representation of the distorted sphere M before obtaining the central model; b)
cutting the surface by a vertical plane V (trace v), one obtains the series f0 − f0 − f3 − i2 −

i0 − i1 − i0i2 − i1 − i0 − i2 − f3 − f0 − f0; c) the section M ∩ V is drawn by connecting the
arcs and the crosses.
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line v, cutting successively folds (points f) and the intersection-lines (points i). Noting

the screen number of each point, we obtain a series of points denoted fn and im. Then,

the series is represented in the plane V : an arc of curve represents a point f (the sense

is given by the co-orientation of the fold-line) and a cross represents a point i. The arcs

and the crosses are not positioned on the same line, but with a height depending on their

screen number n and m respectively. Connecting these arcs and crosses, one obtains the

section M ∩ V . An example is given in Fig. 13.

5. Conclusion. We have shown that the concrete process of drawing singular surfaces

involves new types of singularities that result from the interaction between the singular-

ities of the surface and the singularities of the projection into the plane of the drawing.

Their understanding is necessary if we want to control complex graphical representations

of singular surfaces, for instance those of the eversion of the sphere. We have also shown

how to obtain sections of the surfaces.

Our results provide new elements for a “singularity vision”, that is to say the recog-

nition of the role of the singularities in the process of drawing and of seeing.
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