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Abstract. A stable deformation f t of a real map-germ f : R
n, 0 → R

p, 0 is said to be an

M-deformation if all isolated stable (local and multi-local) singularities of its complexification

f t
C are real. A related notion is that of a good real perturbation f t of f (studied e.g. by Mond

and his coworkers) for which the homology of the image (for n < p) or discriminant (for n ≥ p)

of f t coincides with that of f t
C. The class of map germs having an M-deformation is, in some

sense, much larger than the one having a good real perturbation. We show that all singular

map-germs of minimal corank (i.e. of corank max(n − p + 1, 1)) and Ae-codimension 1 have an

M-deformation. More generally, there is the question whether all A-simple singular map-germs of

minimal corank have an M-deformation. The answer is “yes” for the following three dimension

ranges (n, p): n ≥ p, p ≥ 2n and p = n + 1, n 6= 4. We describe some new techniques for

obtaining these results, which lead to simpler proofs and also to new results in the dimension

range n + 2 ≤ p ≤ 2n − 1.

1. Introduction. In the theory of singularities of analytic mappings, a stable perturba-

tion of an unstable germ plays a similar role to the Milnor fibre in the theory of isolated

hypersurface singularities. The study of special points and the topology of the discrimi-

nant of such perturbations has led to important results of singularity theory in the last

20 years. For complex germs f : Cn, 0 → Cp, 0, n ≥ p − 1, the discriminant (or image,

for p > n) of a stable perturbation has the homotopy type of a wedge of p − 1−spheres
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(see [5], [14]). Over the reals, the topology of the discriminant is more complicated and

few results are known so far. Therefore, a natural question is the existence of a real per-

turbation which shows aspects of the topology of its complexification. One problem is

the existence of real deformations of map-germs from Rn to Rp, for which the maximal

numbers of isolated stable singular points are simultaneously present in the discriminant,

which are called M-deformations. There is also the notion of good real perturbation due

to Marar and Mond, for which the homology of the discriminant of a stable perturbation

of a given germ coincides with that of its complexification. This is analogous to that of

an M -variety XR in real algebraic geometry for which the sum of the Betti numbers is

the same as the corresponding sum of its complexification XC.

In [17], the first and second authors show that all A-simple singularities of map-

germs from Rn to Rp, where n ≥ p, of minimal corank (i.e. of corank n − p + 1) have

an M-deformation. The proof of this result is based on the property that all A-simple

singularities f of minimal corank can be deformed into a germ of lower codimension

whose 0-stable invariants differ from those of f by at most one – one can then inductively

split off real stable singular points from 0 one by one.

The case n < p is not completely understood yet. Results are known for some pairs

(n, p). For plane curve-germs, the classical result by A’Campo [1] and Gusein-Zade [7]

shows that they always have M-deformations, i.e. deformations with δ real double-points

(notice that the δ-number is the only 0-stable invariant in this case). In this case the

concept of a good real perturbation coincides with that of an M-deformation. As in the

case of plane curves, when p = 2n, the only 0-stable invariant appearing is the number

of double points. In [10], Klotz et al. classify A-simple germs f : Rn → R2n and show

that they have M-deformations and this is equivalent to the existence of a good real

perturbation.

When p = n + 1, we show in [18] that all A-simple corank-1 germs from Rn to Rn+1,

where n 6= 4, have an M-deformation. We also show that in dimensions (4, 5) the open A-

orbit in A3 is A-simple and consists of germs that do not have an M-deformation and also

do not have a good real perturbation. This was the first example of an A-simple singular

germ of minimal corank without an M-deformation (more examples will be constructed

in Section 7 of the present paper). The proofs are based on new techniques for detecting

positive A-modality.

The class of map-germs having an M-deformation is larger than the one having a good

real perturbation in at least three respects. Firstly, for specific pairs of dimensions (n, p)

where both notions have been studied for A-simple singular germs of minimal corank

(except for p = 2n where both notions coincide, see above). For example, for the pair (2, 3)

there is only one series of A-simple corank-1 mono-germs having good real perturbations

[12], but all such A-simple corank-1 germs have M-deformations. Secondly, good real

perturbations are known to exist for some real representative of each Ae-codimension

1 orbit of minimal corank map-germs from Cn to Cp, see [3], [8], [9] and [15]. In the

present paper we show that all representatives of each Ae-codimension 1 orbit of minimal

corank map-germs from R
n to R

p have an M-deformation. (Notice that there are real

Ae-codimension 1 orbits, e.g. the beak-to-beak map of the plane, without a good real
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perturbation). Finally, all “low multiplicity” germs (to be defined below) have an M-

deformation. For n = p = 2 germs of local multiplicity three have “low multiplicity” —

and, for example, f = (x, y3 + x3y) does not have a good real perturbation.

In this paper, we address the question of the existence of M-deformations, reviewing

known results and discussing methods and techniques which have recently shown to be

useful to solve them. Using these techniques, we obtain new results on the existence of

M-deformations for A-simple map-germs in dimensions (n, 2n − 1) and we show that

all corank-1, Ae-codimension 1 map-germs have an M-deformation (complementing the

results in [3] and [9]). The new techniques avoid partial classifications of A-simple orbits,

and we hope that they allow us to complete the determination of the M-nice dimensions

(n, p) (i.e., those (n, p) for which all A-simple singular germs Rn → Rp of minimal corank

have an M-deformation) in forthcoming work.

The following theorem summarizes what is presently known on M-deformations (some

statements are new and some were known before, see the remark following the statement

of the theorem). For standard notation on A- and K-equivalence of map germs (such as

the Ae-codimension cod(Ae, f) and the local multiplicity mf (0) of a map-germ f) we

refer the reader to our earlier papers on M-deformations [17, 10, 18].

Theorem 1.1. A. Let f : Rn, 0 → Rp, 0 be an A-simple, singular map-germ of minimal

corank. Then

1. If cod(Ae, f) = 1 then f has an M-deformation (also note that cod(Ae, f) = 1 and

singular of minimal corank implies A-simple).

2. If mf (0) ≤ n/(p − n + 1) + 1 (we say that such an f has “low multiplicity”) then

f has an M-deformation.

3. For all pairs of dimensions (n, p) with p ≤ n and p ≥ 2n − 1 (and any n ≥ 1) and

for p = n + 1, n 6= 4, all f as above have an M-deformation.

B. Suppose f : Rn, 0 → Rp, 0, with n + 1 ≤ p ≤ 2n − 2, A-simple and singular

of minimal corank and not of “low multiplicity”. Then for dimensions (4, 5) and also

for (n, p) = (4 + 3k, 5 + 4k), all k ≥ 1, the open A-orbit in A3 (which is not of “low

multiplicity”) does not have an M-deformation.

Remark 1.2. The statements A.1, A.2, A.3 for p = 2n − 1 and B for k ≥ 1 are new.

The remaining results can be found in the following articles: A.3 for n ≥ p is in [17], A.3

for p = 2n is in [1, 7] for n = 1 and in [10] for n ≥ 2 (and note that for p > 2n there are

no 0-stable invariants, hence all germs have a trivial M-deformation), and finally A.3 for

p = n + 1 and B for k = 0 are from [18].

The contents of the remaining sections of the present paper are as follows (all singular

map-germs f : R
n, 0 → R

p, 0 considered here will be of minimal corank, i.e. of corank 1

for n < p or of corank n − p + 1 for n ≥ p):

• 0-stable invariants and M-deformations

• All Ae-codimension-1 mono-germs have an M-deformation

• All mono-germs in the K-class of Ak, k ≤ n/(p − n + 1) have an M-deformation

• Counting arguments for detecting positive A-modality
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• New results on the existence of M-deformations for A-simple germs: the dimensions

(n, p) = (n, 2n − 1)

• A-simple, singular germs of minimal corank without an M-deformation

2. 0-stable invariants and M-deformations. Let f : Kn, 0 → Kp, 0 be an A-simple,

singular map-germ of minimal corank, i.e. of corank 1 (for p ≥ n) or n − p + 1 (for

n > p). In fact, for n > p, any A-simple germ f of corank n−p+1 is A-equivalent to the

“suspension” of some A-simple equidimensional corank-1 germ f̃ , and the discriminants

of f and f̃ are diffeomorphic. We will therefore consider corank-1 germs in dimensions

(n, p), p ≥ n, of the (pre-normal) form

f : K
n, 0 → K

p, 0, (x, y) 7→ (x, gn(x, y), . . . , gp(x, y)).

The K-class of such an f is Ak, k ≥ 0, if

mf (0) := dimK On/f∗Mp = k + 1.

The K-type of an s-germ f = (f1, . . . , fs) : Kn, S → Kp, q, where

S = {(x, y1), . . . , (x, ys)} 7→ q = f1(x, y1) = . . . = fs(x, ys),

whose ith component germ fi is of type Aki
, will be denoted by Ak(s,m) = A(k1,...,ks),

where
s

∑

i=1

ki = m = b1k1 +

r
∑

i=2

bikli .

Here k(s, m) denotes a “partition” of m with s summands ki ≥ 0, and for r = 1 the

sum on the RHS is zero (the RHS says that k1 appears b1 times in the partition, and

so on). For equidimensional germs we only consider singular component germs of type

A≥1, but for p > n we also have to consider immersive A0 components. Notice that for

corank-1 maps f we can embed the space of s-fold points in the source in Kn+s−1 (with

coordinates (x, y1, . . . , ys)). On Ak(s,m) ⊂ K
n+s−1 there acts a subgroup Sk(s,m), of order

ck(s,m) =
∏r

i=1(bi!), of the permutation group Ss that preserves the partition k(s, m)

of m.

The closures of the sets Ak(s,m) ⊂ Kn+s−1 in the source of f are the 0-sets of maps

Gk(s,m), which are defined as follows. For D := p−n+1 and ℓ ≥ m+s let Gk(s,m) := ϕ◦jℓ
sf

be the composition

K
n+s−1, 0

jℓ
sf

−→ Jℓ
s

ϕ
−→ K

(m+s−1)D, 0,

where ϕ−1(0) defines the closure of the set of Ak(s,m) points in the space Jℓ
s of ℓ-jets of

s-germs (including the diagonal). This set is a smooth submanifold. Let fs : Āk(s,m) =

G−1
k(s,m)(0) → Kp be the restriction of the map Kn+s−1 → Kn−1+sD, given by

(x, y1, . . . , ys) 7→ (X, Yn,1, . . . , Yn,s, . . . , Yp,1, . . . , Yp,s), X = x, Yi,j := gi(x, yj),

to the main diagonal Yi,1 = . . . = Yi,s, i = n, . . . , p, in Kn−1+sD, which is isomorphic

to Kp. The map fs (not to be confused with a deformation f t of f with parameter t)

has degree ck(s,m) and its image is the Āk(s,m) stratum in the target of f . (Also notice

that fs = f ◦ π, where π is the restriction of the projection (x, y1, . . . , ys) 7→ (x, y1) to
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Āk(s,m) ⊂ K
n+s−1, which has degree ck(s,m)/b1, and the restriction of f to the image of

π has degree b1.)

By a result of Mather, f is stable if and only if, for all k(s, m), jℓ
sf is transverse to

the closure of Ak(s,m) (or, equivalently, the maps Gk(s,m) are submersions). The relation

between the sets Ak(s,m) and the A-finiteness of f has been studied in [11] for p > n.

A map-germ f is A-finite if and only if the maps Gk(s,m) are K-finite (i.e. they are

submersive outside 0, equivalently the set-germs G−1
k(s,m)(0) are complete intersections

with isolated singularity at 0.) In fact, for equidimensional germs f the K-finiteness of

the Gk(s,m) for partitions k(s, m) with summands ki ∈ {1, 2} is already sufficient for

the A-finiteness of f (see [16]), and for p > n one can restrict to “partitions” k(s, m)

consisting of sequences of 0s (see [11]).

The sets Ak(s,m) ⊂ Kn+s−1 are of dimension 0 for n + s − 1 = (m + s − 1)D. For

D = 1 (i.e. p = n) this condition holds for all partitions k(s, n) of n, for D > 1 (p > n)

it holds for all “partitions” k(s, m) (possibly with 0 summands) with s = iD + 1 − n,

m = i(1−D)+n, with i ∈ [n/D, n/(D−1)] a positive integer. For each k(s, m) satisfying

the above condition we define the following “0-stable invariant” of f :

rk(s,m)(f) := c−1
k(s,m)mGk(s,m)

(0).

Let ∆(f) denote the image (for n < p) or the discriminant (for n ≥ p) of f . For K = C

any stable deformation f t of f has precisely rk(s,m)(f) points of type Ak(s,m) in ∆(f t).

For K = R the number rR

k(s,m)(f
t) of real Ak(s,m) points in ∆(f t) depends on the choice

of deformation f t, obviously rR

k(s,m)(f
t) ≤ rk(s,m)(f). We say that a real deformation f t

is an M-deformation of f if rR

k(s,m)(f
t) = rk(s,m)(f) for all k(s, m) satisfying the condition

n + s − 1 = (m + s − 1)D. Notice that for D > n + 1 (i.e. p > 2n) there are no 0-stable

invariants, so that any deformation is trivially an M-deformation.

In the study of M-deformations we have to relate real deformations f t of f to the

corresponding deformations Gt
k(s,m) of the maps Gk(s,m). The maps Gk(s,m) are defined

by iteration, see below (some general properties of the Gk(s,m) for corank-1 maps in

dimensions (n, p), for p ≥ n, and their relation to alternative ways – see e.g. [6, 11, 13] – of

defining the sets Āk(s,m) are described in [16]). Replacing the coordinates (x, y1, . . . , ys) ∈

Kn+s−1 (in the space of s-fold points in the source) by (x, y1, ǫ2, . . . , ǫs) := (x, y1, y2 −

y1, . . . , ys − ys−1), and setting for r = n, n + 1, . . . , p

g
(i)
r,1 := ∂igr/∂yi, i ≥ 1,

we define by iteration for j = 1, . . . , s − 1

g
(0)
r,j+1 :=

∑

α≥kj+1

g
(α)
r,j ǫ

α−kj−1
j+1 /α!, g

(i)
r,j+1 := ∂ig

(0)
r,j+1/∂ǫi

j+1, i ≥ 1.

The component functions G1, . . . , G(m+s−1)D of Gk(s,m) are then given for r = n, n + 1,

. . . , p by

g
(1)
r,1 , . . . , g

(k1)
r,1 ; g

(0)
r,j , . . . , g

(kj)
r,j (j = 2, . . . , s)

(here {g
(1)
r,1 , . . . , g

(0)
r,1} denotes the empty set).

For Ae-codimension-1 germs, and for low multiplicity germs (i.e. of multiplicity at

most (n/D)+1), we only have to consider s = 1, 2, but we require explicit expressions for
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the component functions of Gk(s,m). The case s = 1 is trivial, hence consider s = 2 and

take coordinates (x, y, ǫ) := (x, y1, y2 − y1) ∈ K
n+1. The maps Gk(2,m) associated with a

corank-1 map f = (x, gn, . . . , gp) have (m + 1)(p − n + 1) = n + 1 component functions,

namely m + 1 component functions Gi,1, . . . , Gi,m+1 for each gi.

Each term ϕ(x)yr in gi generates a term ϕ(x)ha(y, ǫ) in Gi,a, and for k(2, m) =

(k − 1 − l, l) with l = 0, . . . , [(k − 1)/2] the ha are given by:

ha = rayr−a, a = 1, 2, . . . , k − 1 − l,

hk−l+b =
∑

j≥k−l+b

rj(j − k + l)b

j!
yr−jǫj−k+l−b, b = 0, 1, . . . , l

with n0 = 1 and ns = n(n − 1) . . . (n − s + 1), as usual.

Notice that for r = k + 1 and k + 2

hk = l!
(

(k + 1)y + (l + 1)ǫ
)

and

hk = l!
(1

2
(k + 1)(k + 2)y2 + (k + 2)(l + 1)yǫ +

1

2
(l + 1)(l + 2)ǫ2

)

,

respectively. The coordinate change (y, ǫ) 7→ (y, ǫ − k+1
l+1 y) reduces these equations to

(l + 1)!ǫ and
l!(k + 1)(k − l)

2(l + 1)
y2 + ǫL(y, ǫ),

where ǫL can be removed using the first equation. Notice that the coefficients of ǫ and

y2 are positive for all relevant k, l. Also notice that for r = k we get hk = l! > 0.

Example 2.1. Let us apply this to the following 1-parameter deformation

f t = (x, yk+1 + x1y + . . . + xk−1y
k−1,

yk+2 + xky + . . . + x2k−2y
k−1 + t · yk, gn+2, . . . , gp),

where k = (n + 1)/(p− n + 1) and gi = xi1y + . . . + xik
yk such that all the xi appearing

in f t are distinct. Then f t induces maps Gt
(k−1−l,l) ∼K (x, ǫ, l!(k+1)(k−l)

2(l+1) y2 + l!t). Hence,

for all l = 0, . . . , [(k − 1)/2], we get for t < 0 two real A(k−1−l,l) points in the source (for

k − 1 even this gives one real A((k−1)/2,(k−1)/2) point in the target). We will see in the

next section that f0 is a pre-normal form for the A-orbit of lowest codimension in Ak

(which has Ae-codimension at least 1). Notice that any deformation of f0 that preserves

its K-type Ak induces K-trivial deformations of the maps G0
(k−1−l,l). It follows that the

germs in Ak of minimal A-codimension have an M-deformation.

3. All Ae-codimension-1 mono-germs have an M-deformation. In this section

we will show that all singular Ae-codimension-1 germs Rn, 0 → Rp, 0 of minimal corank

have an M-deformation. This result is best possible, because for dimensions (4, 5) there

is a corank-1 map-germ of Ae-codimension 2 that fails to have an M-deformation [18].

For n ≥ p the claim follows from the results in [17] (because all the rank p − 1 germs of

positive A-modality have Ae-codimension greater than one).
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Hence consider corank-1 germs in dimensions (n, p), p > n. Set D := p − n + 1 ≥ 2

(for p > n) and consider a germ f in Ak of Ae-codimension at most 1, then we have the

conditions:

(Cs) m + s ≤ k + 1, kD ≤ n + 1, (m + s − 1)D = n + s − 1.

The first and third condition are from [16] (rk(s,m)(f) = 0 for f of multiplicity k + 1 <

m + s, and for (m + s− 1)D = n + s− 1 the Ak(s,m) points in the source of an A-finite f

are isolated). And the second condition says that the codimension of the K-orbit of Ak

is at most n + 1 – notice that K-orbits of codimension greater than n + 1 cannot contain

germs f of Ae-codimension less than two.

For s = 1 we deduce from (C1) that m = k, mD = n and the dimension range

(n, p) = (rm, (m+ 1)r− 1), for all m ≥ 1, r ≥ 2. Notice that m ≤ k (first condition), and

putting k = m+c for some non-negative integer c we get kD = mD+cD = n+cD ≥ n+2c.

This implies c = 0 (for otherwise kD > n + 1, contradicting the second condition).

For s = 2 we obtain in the same way from (C2) that k = m + 1, (m + 1)D = n + 1

and (n, p) = (r(m + 1) − 1, r(m + 2) − 2), for all m ≥ 0, r ≥ 2.

For s ≥ 3 the conditions in (Cs) cannot hold simultaneously – for k ≥ m+2 we obtain

kD ≥ (m + 2)D ≥ n + 2 > n + 1, contradicting the second condition.

Hence we only have to consider s = 1 and 2 further, and notice that the dimension

ranges (n, p) are disjoint for s = 1 and s = 2. Thus for the (n, p) listed in case s = 1

only the invariant r(m)(f) can be positive for f of Ae-codimension 1, for the (n, p) listed

in case s = 2 only the invariants r(m−l,l)(f), l = 0, . . . , [m/2], can be positive for f of

Ae-codimension 1 and for all other (n, p), p > n, the Ae-codimension-1 germs have no

positive 0-stable invariants (in fact, one also easily checks that for p > 2n there are no

germs f of Ae-codimension 1).

For s = 1 (and the associated m, k, (n, p) specified above) we can take the pre-normal

form

f = (x, yk+1 + P1(x)y + . . . + Pk−1(x)yk−1, gn+1, . . . , gp),

with gi = Pi1(x)y + . . . + Pik
(x)yk + yk+2Ri, Ri ∈ Cn. Then G(k) ∼K (y, P (x)) with

P = (P1, . . . , Pn−1) : Rn−1, 0 → Rn−1, 0 the map x 7→ P (x) with component functions

the above Pi. A deformation P t of P lifts to a deformation f t of f , hence we can argue

as in [17] and conclude that the K-simplicity of G(k) (and hence of P ) is equivalent to

the A-simplicity of f , and that the K-simplicity of G(k) implies that we can split off Ak

points from f one by one. (A word on terminology: we have a map f t 7→ Gt
(k) and in

the above situation we may say that Gt
(k) ∼K (y, P t) “lifts” over this map.) Hence an

A-simple f (and Ae-codimension-1 corank-1 germs are A-simple) has an M-deformation.

But we can be more precise: if f (as in the above pre-normal form) has Ae-codimension

1 then the associated P (and hence G(k)) must be of type A1, and hence r(k)(f) = 2. To

see this, note that Ak has (for k = m and p− n + 1 = r) codimension rm = n. The open

A-orbit in Ak has A-codimension n and is stable, and the associated P (and G(k)) is a

diffeomorphism. The P associated with an A-orbit in Ak of Ae-codimension 1 must be

of type A1. Notice: the f with such a P must be unstable, and any f with a P of type

A2 or worse must be of Ae-codimension greater than 1, because we can deform such a
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P to A1. Such a deformation of P lifts to a deformation of the associated f and hence

decreases the r(k) number of f – this means that the Ae-codimension of f decreases and

is still positive, hence it must be greater than 1.

For s = 2 we refer to the pre-normal form in the example 2.1 in Section 2.

Hence we can conclude

Proposition 3.1. Let f : R
n, 0 → R

p, 0, p > n, be a map-germ of corank 1 and Ae-

codimension 1. Then f has an M-deformation and furthermore the invariants of f satisfy

the following conditions: for

(n, p) = (rm, r(m + 1) − 1), m ≥ 1, r ≥ 2: mf (0) = m + 1 and r(m)(f) = 2, and for

(n, p) = (r(m + 1) − 1, r(m + 2) − 2), m ≥ 0, r ≥ 2: mf (0) = m + 2, r(m−l,l)(f) = 2

for 0 ≤ l < m/2 and r(m/2,m/2)(f) = 1 for even m.

For dimensions (n, p) outside the ranges listed above there are no 0-stable invariants

rk(s,m)(f) or these are equal to zero for f as above (or there are no Ae-codimension 1

germs, as for p > 2n).

Remark 3.2. (i) For general (n, p) the above result cannot be improved: for (n, p) = (4, 5)

there is a corank-1 germ of Ae-codimension 2 without an M-deformation [18].

(ii) It follows from the results in [17] that all singular map-germs f : Rn, 0 → Rp, 0,

n ≥ p, of minimal corank n − p + 1 and Ae-codimension 1 have an M-deformation.

Furthermore, the 0-stable invariants of such f are all zero for mf (0) ≤ p, otherwise

r(p)(f) = 2 (for f with mf (0) = p + 1) and r(p)(f) = 2, r(p−l,l)(f) = 2 (0 < l < p) and

r(p/2,p/2)(f) = 1, provided p is even, (for f with mf (0) = p + 2) are the only non zero

0-stable invariants.

4. Germs of low multiplicity and M-deformations. The argument for s = 1 (where

k(p−n+1) = n) before the statement of Proposition 3.1, which implies that for k = n
p−n+1

the deformations of G(k) lift to deformations of the corresponding maps f in the K-orbit

Ak, yields the following

Proposition 4.1. All A-simple corank-1 germs f : Rn, 0 → Rp, 0, p ≥ n, in Ak, with

k ≤ n
p−n+1 have an M-deformation.

Notice that for k < n
p−n+1 or n not a multiple of p − n + 1 there are no 0-stable

invariants. Otherwise, for k = n
p−n+1 , r(k)(f) is the only 0-stable invariant of f . In the

latter case if f is A-simple then G(k) is K-simple (using the liftability of deformations

of G(k) as in [17]). And the K-simple real equidimensional germs G(k) can be deformed

to give mG(k)
(0) = r(k)(f) real points in some fibre near 0 (by noticing that these real

points can be split off 0 one by one [17]).

Example 4.2. The proposition implies the existence of M-deformations in the following

three examples (the first two recover results from [17] and [18], and the third is a new

result). (i) For p = n all A-simple germs f in A(n) have an M-deformation with r(n)(f)

real An-points. (ii) For p = n + 1 and n even all A-simple germs f in A(n/2) have an

M-deformation with r(n/2)(f) real An/2-points. (iii) And for p = 2n − 1 all A-simple

germs f in A(1) have an M-deformation with r(1)(f) real A1-points (i.e. cross-caps).
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For map-germs f in Ak, with k> n
p−n+1 , of higher multiplicity the invariants rk(s,m)(f)

with s > 1 can be positive. For example, equidimensional map-germs have 0-stable in-

variants rk(s,n)(f), for all partitions k(s, n) of n with s summands. But rk(s,n)(f) = 0 for

germs f of multiplicity mf (0) < n+s, and for n ≥ 3 any A-simple germ f has multiplicity

at most n + 2. Hence the only non-zero invariants rk(s,n)(f) are those with s = 1, 2.

For germs in dimensions (n, p) with p > n the following 0-stable invariants rk(s,m)(f)

can appear. Set D := p − n + 1 ≥ 2 (for p > n), the conditions

(m + s − 1)D = n + s − 1, s ≥ 1, m ≥ 0,

imply that for any positive integer i with n
D ≤ i ≤ n

D−1 there are 0-stable invariants

rk(s,m)(f) with

s = iD + 1 − n and m = i(1 − D) + n.

Furthermore, rk(s,m)(f) = 0 for all germs f of multiplicity mf (0) < m + s = i + 1.

Notice that if i = n/D is an integer then s = 1 and m = n/D – this corresponds to

the low multiplicity case k = n/D in Proposition 4.1 above. In general, as i increases

from i0 := ⌈n/D⌉ to im := ⌊n/(D − 1)⌋ the corresponding s (respectively m) increase in

steps of D (respectively decrease in steps of D − 1). If i = n/(D − 1) is an integer then

s = p/(D − 1) and m = 0, and the corresponding invariant rk(s,m)(f) (corresponding

to p/(D − 1)-fold points) is zero for all f of multiplicity less than m + s = p/(D − 1).

The higher i (with n
D < i ≤ n

D−1) often require multiplicities mf (0) ≥ i + 1 that A-

simple germs f cannot have, this can be shown with the techniques described in the next

section.

5. Detecting positive A-modality. In order to show that the A-simple germs in di-

mensions (n, p) have an M-deformation we need criteria for detecting positive A-modality.

For n ≥ p this is done by partially classifying A-orbits of a certain multiplicity (see [17]),

using the techniques described in Section 5.1 below. In [18] a new counting technique

for detecting positive A-modality of corank-1 germs in dimensions (n, n + 1) is used,

which is more efficient and avoids partial classifications. In Section 5.2 we describe this

counting technique for corank-1 germs in dimensions (n, p), p ≥ n, and illustrate it by

some examples. Example 5.1 describes the technique, in its most basic form, for certain

germs in dimensions (n, n + 1). Example 5.2 shows how the arguments in [17] in the

equidimensional case n = p (based on partial classifications) can be replaced by much

shorter counting arguments. Example 5.3 illustrates the counting technique for a germ

with integer weights ≥ 2 (in practise, we so far – in ruling out germs of positive modality

– only had to consider germs with one weight equal to 1, but the counting technique is not

limited to this case). Finally, for large p−n, modality often appears already at filtration

0 – Example 5.4 shows how modality at filtration 0 can be detected with the counting

technique for two germs in dimensions (n, 2n) (namely for the “bordering germs” (B.1)

and (B.2) in the classification of A-simple orbits in dimensions (n, 2n), n ≥ 2, in [10]). In

fact, the counting argument is applied in dimensions (2, 4) and the positive A-modality

for the corresponding germs in dimensions (n, 2n), n ≥ 3, can then be deduced using a

simple trick.
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5.1. Necessary and sufficient conditions for positive A-modality. Here the strategy is

the following. First, we rule out certain K-orbits that cannot contain any A-simple orbit.

This uses the necessary and sufficient condition for an A-orbit to be open in its K-orbit

in [19]. Second, for the remaining K-orbits one carries out a partial classification (ruling

out orbits of positive A-modality using Mather’s lemma).

5.2. Sufficient conditions: the counting technique. Here we use certain sufficient condi-

tions for positive A-modality that are based on counting arguments in A-tangent spaces

filtered by weighted degrees.

For map-germs f : Kn, 0 → Kp, 0, p ≥ n, of corank 1 we use source coordinates (x, y) =

(x1, . . . , xn−1, y) such that f(x, y) = (x, gn(x, y), . . . , gp(x, y)), and target coordinates

(X1, . . . , Xp). In describing elements of TA · f we sometimes use the shorter notation ei

for the target and source vector fields ∂/∂Xi and ∂/∂xi (where xn = y).

Let f : Kn, 0 → Kp, 0 be weighted-homogeneous with weights w = (w1, . . . , wn) and

weighted degrees δ = (δ1, . . . , δp), and let (θn)s, (θp)s and (θf )s denote the filtration

(more precisely, weighted degree) s parts of the modules of source-, target-vector fields

and vector fields along f , respectively. (Recall that the monomial vector fields u · ei ∈ θn,

v · ei ∈ θp and m · ei ∈ θf , with exponent vectors αu, αv and αm, have filtration s if

〈αu, w〉−wi, 〈αv, δ〉− δi and 〈αm, w〉− δi are equal to s.) For integers s ≥ 0 consider the

linear maps

γs(f) : (θn)s ⊕ (θp)s → (θf )s, (a, b) 7→ tf(a) − wf(b),

of K-vector spaces. Notice that (Ew, Eδ), where Ew :=
∑

i wixi · ei (where xn = y) and

Eδ :=
∑

j δjXj ·ej are the Euler vector fields in source and target, is in the kernel of γ0(f),

and we call e(f) := γ0(f)(Ew, Eδ) the Euler relation. From the Cp-module generated by

e(f) we get further relations in the higher filtration-s parts of TA · f (notice: e(f) = 0

implies γs(f)(f∗Xα · Ew, XαEδ) = 0 for target monomials Xα with 〈α, δ〉 = s).

Now let Hr
n and Hr

n−1 denote the vector spaces (possibly 0-dimensional) generated

by monomials in x, y and in x, respectively, of weighted degree r, then we can write

(θf )s = Hs+δ1
n ⊕ . . . ⊕ Hs+δp

n , Hr
n =

[r/wn]
⊕

i=0

yiHr−iwn

n−1 .

And (since wi = δi, i < n)

(θn)s = Hs+δ1
n ⊕ . . . ⊕ Hs+δn−1

n ⊕ Hs+wn
n .

Let Kr
p denote the vector space generated by target monomials Xα of weighted degree r

and set Br := {Xα ∈ Kr
p : αn + . . . + αp > 0}, then we have the decomposition

(θp)s = Ks+δ1
p ⊕ . . . ⊕ Ks+δp

p , Kr
p
∼= Hr

n−1 ⊕ Br

(remark: substitute x1, . . . , xn−1 in Hr
n−1 by X1, . . . , Xn−1). And we can decompose

Br ∼=
⊕

0<
Pp

i=n
αiδi≤r

p
∏

i=n

Xαi

i H
r−

Pp
i=n

αiδi

n−1 .

Finally, note that we have a vector space e(f)Ks
p of relations at filtration s from the Euler

relation.
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The counting arguments involve comparing the source and target dimensions of the

maps γs(f) (and taking into account the relations coming from e(f)Ks
p). More precisely,

we have that

cs := dim(θf )s − dim(θn)s ⊕ (θp)s + dim e(f)Ks
p

is a lower bound for the dimension of the cokernel of the linear map γs(f), and hence for

the dimension of a complete transversal of f at filtration s (see [2] for the definition of

a complete transversal). Using the above decompositions for the vector spaces appearing

on the RHS of the formula for cs we can cancel most of the direct summands (isomorphic

to Hi := Hi
n−1 for some i) and count only the dimensions of the few remaining terms.

Notice that we can cancel all the Hi summands between the first n − 1 components of

(θf )s and of (θn)s – hence it is enough to count the Hi in the ∂/∂Xj-components, j ≥ n,

of (θf )s and in the ∂/∂y-component of (θn)s (and, of course, in (θp)s and e(f)Ks
p).

The most basic form of the counting argument is then as follows. Suppose the kernel

of γ0(f) is 1-dimensional and therefore generated by (Ew, Eδ), and that cs ≥ 2, for

some s > 0, then dim(θf )s/imγs(f) ≥ 2 (so that the filtration-s complete transversal

of f is at least 2-dimensional). Then g := f + c1m1 + c2m2 + . . . (where the monomial

vectors mi generate the filtration-s complete transversal) is at least uni-modal, because

the filtration-0 part of any generator tg(a)−wg(b), (a, b) ∈ θn ⊕ θp, relating the mi must

lie in the kernel of γ0(f), which is 1-dimensional.

In order to apply this counting argument we typically find a germ f as above – that is,

f weighted homogeneous and with essentially unique weights (i.e. unique up to common

multiplicative factor) such that γ0(f) has 1-dimensional kernel generated by (Ew, Eδ) –

which is “best possible” within its K-orbit in the sense that γ0(f) is surjective (so that

the F 0A-orbit of f is open in its F 0K-orbit, where F s denotes the filtration on C×p
n

induced by the weights and weighted degrees of f).

Example 5.1. The following example from [18] uses the counting argument in its most

basic form (described above). The map-germ f : K2l+1, 0 → K2l+2, 0, where l ≥ 2, defined

by

f(x, y) = (x, yl+2 + x1y + . . . + xly
l, xl+1y + . . . + x2l−1y

l−1 + x2ly
l+1 + yl+3)

is weighted homogeneous for the weights w = (l + 1, l, . . . , 2, l + 2, l + 1, . . . , 4, 2, 1) with

weighted degree δ = (l + 1, l, . . . , 2, l + 2, l + 1, . . . , 4, 2, l + 2, l + 3). The map γ0(f) is

surjective with 1-dimensional kernel generated by (Ew, Eδ), and cancelling Hi direct

summands we find that c1 = dim H4 − 3 dimH0 = 5 − 3 (for l > 2) and c1 = dimH4 −

2 dimH0 = 4 − 2 (for l = 2). Hence we have at least one modulus at filtration 1.

Example 5.2. Detecting orbits of positive A-modality in the case n = p. In the argument

in [17] that all equidimensional corank-1 germs have an M-deformation there are three

lemmas, whose proofs occupy about 6 pages: Lemma 4.5 that shows that there are no

A-simple orbits of multiplicity ≥ n + 3 (for any n ≥ 3) and Lemmas 4.9 and 4.10 which

yield pre-normal forms for the A-simple germs of multiplicity n + 2. Using the counting

argument we can give short alternative proofs of these lemmas (see below).

First, consider corank-1 germs of multiplicity n + 3, n ≥ 3. The map-germ f =

(x, yn+3 + x1y + . . . + xn−1y
n−1) is weighted homogeneous for the weights n + 2,
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n+1, . . . , 4, 1 with weighted degrees n+2, n+1, . . . , 4, n+3. And γ0(f) is surjective with

1-dimensional kernel generated by (Ew, Eδ). Then (always after cancelling Hi summands

and omitting 0-dimensional His) c1 = dimH4 − dim H0 = 1 − 1 and in fact γ1(f) is an

isomorphism. Next c2 = dimH4 + dimH5 − dim H0 = 1 + 1 − 1 (for any n ≥ 3), while

c3 = dimH5 +dimH6−dim H0 = 1+1−1 (for n ≥ 4) and c3 = dimH5 = 1 (for n = 3).

It follows that (for any n ≥ 3) we either have dim(θf )2/ im γ2(f) > 1 (then there is a

modulus at filtration 2, as in the basic argument above) or else dim(θf )2/ im γ2(f) = 1

so that γ2(f) has 0 kernel and the complete filtration-2 transversal is generated by a

single monomial vector m. In the latter case the complete filtration-3 transversals of

f and f + λm, λ ∈ K, coincide (because ker γ1(f) = 0) and dim(θf )2/ im γ2(f) ≥ 1

then implies that there is a modulus at filtration 3. Notice that this argument implies

Lemma 4.5 in [17], because the A-orbits in An+2 of lowest codimension have filtration-0

part equivalent to f and contain all A-orbits in Ak, k > n + 2, in their closures.

Next, consider germs of multiplicity n + 2. In Lemma 4.9 of [17] map-germs fj have

been defined whose filtration-0 parts are given by

gj := (x, yn+2 + x1y + . . . + xj−1y
j−1 + xjy

j+1 + . . . + xn−1y
n),

where j = 1, . . . , n, and it was shown that all fj with j ≤ n− 2 are non-simple. It is easy

to see that any fj with j < n−2 can be deformed to fn−2, hence it is enough to apply the

counting technique to gn−2 (alternatively, we could apply the counting technique to gj

for all j ≤ n− 2). With the obvious weights and weighted degrees for f := gn−2 we have

that γ0(f) is surjective with 1-dimensional kernel generated by (Ew, Eδ). Furthermore we

find that c1 = dimH5 −dimH0 = 2−1 and c2 = dim H2 +dim H6 −dimH0 = 1+3−1,

hence (by the same reasoning as above) we see that any germ fn−2 with filtration-0 part

equal to f = gn−2 is non-simple.

Finally, Lemma 4.10 in [17] gives explicit normal forms for any A-simple germ of

type fn and fn−1 – but the invariants (and the existence of an M-deformation) of germs

of type fn and (for odd n) of type fn−1 are determined by their filtration-0 parts gn

and gn−1. For showing the existence of an M-deformation the explicit normal forms are

therefore not required in these cases. So it remains to consider fn−1 for even n – in

Lemma 4.10 this is done by showing that the series f̃k = gn−1 + (0, xk
n−1y

n−1) gives

the complete classification of A-orbits with filtration-0 part gn−1. Notice that only one

invariant depends on k, namely r(n/2,n/2)(f̃k) = k, the others are already determined by

the initial part gn−1. One can replace the proof of Lemma 4.10 by a shorter argument

analogous to the proof of part (iv) of Proposition 4.6 in [18]. Briefly, this argument uses

the maps G(n/2,n/2) associated with gn−1 and f̃k (for the former G(n/2,n/2) ∼K (x, ǫ2, 0)

and for the latter G(n/2,n/2) ∼K (x, ǫ2, y
2k)) together with the possible outcomes of the

counting argument (without actually carrying it out). The conclusion then is that either

we get the series f̃k (whose members have M-deformations, and by the results of [17]

this is actually the case) or else the A-orbits over the filtration-0 orbit of gn−1 are all

non-simple.

Example 5.3. Next, we consider an example of a corank-1 germ whose integer weights

are all greater than 1 (allowing rational weights we could always assume that w(y) = 1,
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of course). Such examples are difficult to find in the existing classifications of germs of

A-modality zero or one, so we construct an example in dimensions (2, 2) (of modality

at least two). The map-germ f = (x, x3y + y5) is weighted homogeneous for the weights

w = (4, 3) and weighted degrees δ = (4, 15). Then γ0(f) is surjective with 1-dimensional

kernel generated by (Ew, Eδ) and c1 = 0, in fact γ1(f) is an isomorphism. Finally, c2 =

dimH8 = 1 and c3 = dimH12 = 1, so we get at least one modulus at filtration 2 or 3. In

fact, calculating the “best possible” F 3A-orbit over f we obtain (x, x3y+y5+x2y3+ay6),

where a is a modulus. This confirms the “counting result”.

Example 5.4. In the first three examples, positive A-modality appears in positive fil-

tration – this is typical for germs in dimensions (n, p) with small p − n. For large p − n

we frequently have positive A-modality already in filtration zero. In the classification of

A-simple germs in dimensions (n, 2n), n ≥ 2, there are non-simple bordering germs (B.1)

to (B.8) whose orbits contain together all non-simple germs in their closures, and these

bordering germs often have moduli in filtration 0 (see [10]). The simplest examples are

the map-germs (B.1) and (B.2) from [10] for n = 2, given by

fa = (x, y2, x2y + y5, xy5 + ay7) and (x, y2, x3y + xy3, y5 + ax4y).

The first is quasi-homogeneous for the weights w = (2, 1) with weighted degrees δ =

(2, 2, 5, 7). We find that c0 = dimH6 + 2 dimH4 − 2 dimH0 = 1, hence we have at least

one modulus at filtration zero. The second is homogeneous with degrees δ = (1, 2, 4, 5). We

find that c0 = dimH4 +dim H3 +dim H2−dim H1−dim H0 = 1, hence we have at least

one modulus at filtration zero. The above map-germs in dimensions (2, 4) “correspond”

to map-germs in dimensions (n, 2n) for any n ≥ 3, and these have positive A-modality

as well. For example, fa corresponds for each n ≥ 3 to exactly one map-germ

f̃a = (fa(x1, y), x2, . . . , xn−1, x2y, . . . , xn−1y)

(in the sense that the normal spaces NAe · fa and NAe · f̃a are isomorphic, see [10]).

That the parameter a is not only a modulus for fa but also for f̃a can be checked by

simply giving the new extra variables a sufficiently high weight. Assigning xi, i ≥ 2,

the weight 8, the new extra component functions have weighted degrees 8 and 9. And

the filtration-0 vector fields in source and target that involve the new source and target

variables contribute nothing to the θfa
subspace of θf̃a

.

6. M-deformations of A-simple germs from Rn to R2n−1, n ≥ 3. In Example 4.2

(iii), Section 4 we have already seen that all A-simple multiplicity 2 germs f : Rn, 0 →

R2n−1, 0 of corank 1, have an M-deformation. In this section we deal with germs of

multiplicity greater than 2.

Lemma 6.1. Let f : Kn, 0 → K2n−1, 0, n ≥ 3, of corank 1.

(i) If mf (0) = 3, the A-orbit of f has the pre-normal form

f̃ = (x, x1y + q1(x, y), . . . , xn−2y + qn−2(x, y), axn−1y + qn−1(x, y), qn(x, y)), qi ∈ M3
n,

or it lies in the closure of some A-orbit of the type
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f ′ = (x, x1y + q1(x, y), . . . , xn−3y + qn−3(x, y), qn−2(x, y), qn−1(x, y), qn(x, y)), qi ∈ M3
n

and the latter are non-simple.

(ii) If mf (0) ≥ 4, then f is non-simple.

Proof. The normal forms in (i) follow easily using the complete transversal method.

Applying Mather’s Lemma one can see that f ′ is non-simple.

To prove (ii) we now use the weighted version of the complete transversal: given

weights w = (2, . . . , 2, 1), and weighted degree δ = (2, . . . , 2, 3, . . . , 3, 4), we find that the

“best possible” F 0A-orbit of multiplicity 4 is f0 =(x, x1y, . . . , xn−1y, x1y
2 + y4).

When n = 2 it follows from Mond’s classification ([13]) that (x1, x1y, x1y
2 + y4) is

adjacent to (x1, x1y, x1y
2 + y4 + ay6), which is non-simple (a is a modulus). The general

case follows similarly since f0 is adjacent to fa = (x, x1y, . . . , xn−1y, x1y
2 + y4 + ay6),

which is also non-simple.

Remark 6.2. Here is a quick alternative proof of (ii). Consider the weighted homoge-

neous germ f = (x1, x1y +ay3, x1y
2 + by4) which for weights w = (2, 1) and weighted de-

grees δ = (2, 3, 4) lies in the is “best possible” F 0A-orbit. By the counting argument c0 =

dimH2 = 1, hence we have at least one modulus at filtration 0 (in fact, in Sec. 4.2.2 of [13]

it is shown by heavy calculations that the unimodal germ (x1, x1y+y3, x1y
2 +cy4) yields

the lowest codimension orbit over the 3-jet (x1, x1y+y3, x1y
2)). Now we argue as in Exam-

ple 5.4 that the moduli of f are also moduli of F := (f, x2, x2y, . . . , xn−1, xn−1y) (just give

the xi, i > 1, weight > 4), and finally notice that the orbit of (x, x1y, . . . , xn−1y, x1y
2+y4)

lies in the closure of that of F . Also note that for a = 0 the f̃ in part (i) of the lemma

lies in the closure of the orbit of F , hence f̃ is non-simple for a = 0.

Proposition 6.3. All A-simple germs f : R
n, 0 → R

2n−1, 0 of corank 1 have an M-

deformation.

Proof. It follows from the classification in [13] that all A-simple corank-1 germs in di-

mensions (2, 3) have an M-deformation (see the concluding remarks in [17]). Then, we

can consider n ≥ 3. For pairs (n, 2n − 1), n ≥ 3, it follows from section 4 that r(1)(f) is

the only 0-stable invariant.

As we saw in Lemma 6.1, if f is A-simple and mf (0) > 2, then mf (0)=3 and its pre-

normal form is f̃ . The map-germ G(1) is defined by G(1)(x, y)=(x1+
∂q1

∂y (x, y), . . . , axn−1+
∂qn−1

∂y (x, y), ∂qn

∂y (x, y)).

Suppose a 6= 0. Then G(1) is an Ak singularity and so we can apply Lemma 4.8 of [17]

to find a germ G′ of lower K-codimension, to which G(1) is K-adjacent to, such that

mG(1)
(0)−mG′(0) ≤ 1. Write G′(x, y) = (G′

1(x, y), . . . , G′
n(x, y)). Of course G′ is also an

Al singularity and we can suppose that rank(G′
1, . . . , G

′
n−1) = n − 1. Write qn(x, y) =

qn(0, y) + x1q̃1(x, y) + · · · + xn−1q̃n−1(x, y), for some q̃i, i = 1, . . . , n − 1, and define

q′n(0, y) =
∫

G′
n(0, y)dy and g(x, y) = (x, x1y+q1(x, y), . . . , axn−1y+qn−1(x, y), q′n(0, y)+

x1q̃1(x, y)+· · ·+xn−1q̃n−1(x, y)). The germ g is A-finite and adjacent to f . Also r(1)(f)−

r(1)(g) ≤ 1. Therefore we can split off A1-points (i.e. cross-caps) from f one by one.

Notice that f̃ also has an M-deformation for a = 0 (by the previous remark such a

f̃ is non-simple). In this case G(1) has corank 2 and is therefore K-equivalent to a germ
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F (x, y) = (x1, . . . , xn−2, Fn−1(x, y), Fn(x, y)). Let (H, h) be the K-equivalence taking

G(1) to F . Applying Lemma 4.8 of [17] to F we obtain a germ F ′ with multiplicity at

least one less than the multiplicity of F . Define G′ = (H, h)−1.F ′, then

G′(x, y) = (x1 + λ1(x, y), . . . , xn−2 + λn−2(x, y), G′
n−1(x, y), G′

n(x, y)).

We have
∫

(xi + λi(x, y))dy = xiy + q′i(x, y), i = 1, . . . , n − 2,

∫

G′
i(x, y)dy = q′i(x, y), i = n − 1, n.

Define

g′(x, y) = (x, x1y + q′1(x, y), . . . , xn−2y + q′n−2(x, y), q′n−1(x, y), q′n(x, y)).

Again g′ is A-finite, adjacent to f and r(1)(g
′) < r(1)(f).

7. A-simple singular germs of minimal corank without an M-deformation. In

[18] we show that all corank-1, A-simple germs of multiplicity l + 1 from R
2l into R

2l+1

have an M-deformation. We also show the existence of an A-simple map-germ from R4

into R5 of multiplicity 4 that does not have M-deformation, namely

g = (x1, x2, x3, y
4 + x1y, y6 + y7 + x2y + x3y

2).

In what follows we generalize this result. That is, we construct unfoldings of the germ

g, which are A-simple germs from R4+3k into R5+4k of multiplicity 4 that do not have

M-deformations.

Proposition 7.1. The map-germ f : R4+3k → R5+4k (k ≥ 1) given by

f = (x1, . . . , x3(k+1), y
4 + x1y + x6y

2, y6 + x2y + x3y
2, x4y + x5y

2 + x6y
3, . . . ,

x3k+1y + x3k+2y
2 + x3k+3y

3),

is 6-determined, is A-simple and has Ae-codimension two. The 0-stable invariant of f

is r(1,0,0)(f) = 3. The bifurcation set of f in the parameter (u, v)-plane (the unfolding

is given in the proof below) is the union of the non-positive part of the u-axis and the

cuspidal curve 8u3 + 27v2 = 0 and divides the parameter plane into 3 connected regions.

The numbers of real A(1,0,0)-points in these regions are 2, 2 and 0. Hence there is no

M-deformation for f .

Proof. The argument follows the proof of Prop. 4.8 in [18], and is in fact slightly simpler

(the remark following this proof describes the differences between the k = 0 and the

k ≥ 1 cases). Using the unipotent group A1 one checks that f is 7-determined. But since

the 7-weighted transversal is empty we can conclude that actually f is 6-determined. The

Ae-versal unfolding of f is given by

F = (u, v, x, y4 + x1y + x6y
2 + uy2, y6 + x2y + x3y

2 + vy3, x4y + x5y
2 + x6y

3, . . . ,

x3k+1y + x3k+2y
2 + x3k+3y

3).

The bifurcation set B(f) is the union of sets Bk(s,m) consisting of (u, v) for which Gk(s,m)

is non-submersive for some (x, y, ǫ2, . . . , ǫs) (corresponding to the s-tuple of source points
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(x, y), (x, y + ǫ2), . . . , (x, y + ǫ2 + . . . + ǫs)). The map Gk(s,m) defines the closure of

the Ak(s,m) set in the source, and we only have to consider “partitions” k(s, m) with

m + s ≤ mf (0) = 4 and k(s, m) 6= (0) (see [16]). Arguing as in the proof of Prop. 4.8 in

[18], we see that it is sufficient to determine the three sets B(0,0), B(0,0,0) and B(0,0,0,0)

(essentially we obtain all relevant Bk(s,m) by cutting these three sets with suitable parts of

the diagonal). One can check easily that G(0,0) and G(0,0,0) are submersions for all (u, v)

and that B(0,0,0,0) = {8u3 +27v2 = 0}∪ {v = 0, u ≤ 0} (see [18]). Now one calculates the

numbers of real A(1,0,0)-points of F(u,v) at a point (u, v) in each of the three regions in

the complement of R
2 \ B(f).

Remark 7.2. Define f : R
4+3k → R

5+4k for k ≥ 1 as above and for k = 0 by f :=

(x1, x2, x3, y
4 + x1y, y6 + x2y + x3y

2) (notice that then g = f + y7 · e5 for k = 0). There

are two differences between the k = 0 and the k ≥ 1 cases: (1) for k = 0 there is an

additional 0-stable invariant, namely r(2)(f). And (2) for k = 0 the map-germ f fails to

be 6-determined, but it is topologically 6-determined and furthermore its negative versal

unfolding, given by

F = (u, v, x, y4 + x1y + uy2, y6 + x2y + x3y
2 + vy3),

is topologically versal (this is shown in the proof of Prop. 4.8 in [18] using a result of Da-

mon [4]). Hence the bifurcation set in the base of a versal unfolding of g is homeomorphic

to that in the base of a negative versal unfolding of f . And the latter has for k = 0 the

v-axis as an extra component – F(u,v) has two A2-points for v < 0 and none for v > 0

(recall that for k ≥ 1 there are no isolated stable A2 points, so it makes geometric sense

that the v-axis is not a component of the bifurcation set for k ≥ 1).
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